JPH08281808A - Manufacture of stereoscopic shape - Google Patents
Manufacture of stereoscopic shapeInfo
- Publication number
- JPH08281808A JPH08281808A JP7090531A JP9053195A JPH08281808A JP H08281808 A JPH08281808 A JP H08281808A JP 7090531 A JP7090531 A JP 7090531A JP 9053195 A JP9053195 A JP 9053195A JP H08281808 A JPH08281808 A JP H08281808A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- dimensional shape
- producing
- shape according
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000000843 powder Substances 0.000 claims abstract description 283
- 239000000463 material Substances 0.000 claims abstract description 39
- 239000010410 layer Substances 0.000 claims description 65
- 238000002844 melting Methods 0.000 claims description 38
- 230000008018 melting Effects 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000003466 welding Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 9
- 229920005992 thermoplastic resin Polymers 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000000805 composite resin Substances 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- 239000011256 inorganic filler Substances 0.000 claims description 4
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 4
- 239000012763 reinforcing filler Substances 0.000 claims description 4
- 239000012779 reinforcing material Substances 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 abstract description 12
- 229920001721 polyimide Polymers 0.000 abstract description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 abstract description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 abstract description 4
- -1 polypropylene Polymers 0.000 abstract description 4
- 239000004743 Polypropylene Substances 0.000 abstract description 3
- 229920001155 polypropylene Polymers 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 22
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 229920005792 styrene-acrylic resin Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/221—Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
- G03G15/224—Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、立体形状の製造方法、
より詳細には、立体プリンタ等、型を用いないで立体形
状を製造する方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a method for producing a three-dimensional shape,
More specifically, it relates to a method for manufacturing a three-dimensional shape without using a mold, such as a three-dimensional printer.
【0002】[0002]
【従来の技術】エネルギー線、特に、紫外線を用いた立
体形状の製造方法は、既に、種々提案されているが、こ
のエネルギー線を用いた立体形状の製造方法には、以下
のような大きな欠点がある。 エネルギー線硬化性樹脂しか使用できないため、材料
物性に制限がある。 複雑な形状が作れない。 目的の形状を精度良く作ることができない。 は材料が限定されてしまうという大きな欠点である。
は鎖状の立体形状を作製できないし、鎖の輪と輪がく
っついた状態で成形されてしまう。この欠点を補うた
め、サポートを使用しているが、サポートの設計と加
工、設置に時間とコストが付加されてしまう。は穴が
あいている形状を作製しようとすると、エネルギー線に
よる硬化エリアが制御できず、楕円の穴が作製されてし
まうため、この変形を予期し、それに見合った加工デー
タに補正するという経験とノウハウが必要となってく
る。また、この硬化性樹脂は有毒であったり、異臭を有
するため、環境面での問題もあり、また、非常に高価で
レーザーの消耗とともにランニングコストが高いという
欠点を有する。2. Description of the Related Art Various methods for producing a three-dimensional shape using energy rays, particularly ultraviolet rays have been already proposed. However, the three-dimensional shape producing method using this energy ray has the following major drawbacks. There is. Since only energy ray curable resins can be used, the physical properties of the material are limited. I can't make complicated shapes. The desired shape cannot be made accurately. Is a major drawback of limited materials.
Cannot make a chain-like three-dimensional shape, and it will be formed with the rings of the chains stuck together. Although a support is used to make up for this drawback, it adds time and cost to the design, processing, and installation of the support. When trying to create a shape with holes, the curing area due to energy rays cannot be controlled, and elliptical holes are created.Therefore, with the experience of anticipating this deformation and correcting it to the processing data suitable for it. Know-how is needed. In addition, since this curable resin is toxic and has an offensive odor, there is a problem in terms of environment, and it is very expensive and has a drawback that the running cost is high along with the consumption of the laser.
【0003】また、CO2レーザで粉末材料を一層ずつ
溶融させて立体形状を製造する方法として、例えば、米
国特許第4863538,4938816,49448
17,5155321号等が知られている。この方法
は、樹脂粉末を均一な厚さで供給して層を形成し、デジ
タル信号化された立体形状の断面情報を炭酸ガスレーザ
ーを用いて粉末同士を溶融固化するものであり、未融着
の粉末材料が自然とサポートの役割をするので、エネル
ギー線利用の場合のの欠点をカバーできる。また、溶
融固化しない部分はサポート部を形成するため、複雑な
形状でも容易に作ることができ、基本的には溶融する樹
脂であればほとんどの樹脂が利用可能であり、前記の
欠点もカバーできる。Further, as a method for manufacturing a three-dimensional shape by melting powder materials one by one with a CO 2 laser, for example, US Pat. No. 4,863,538,49388816,49448.
No. 17,515,321 is known. In this method, a resin powder is supplied with a uniform thickness to form a layer, and the cross-sectional information of a digitally-shaped three-dimensional shape is melted and solidified by using a carbon dioxide gas laser. Since the powdered material of (1) naturally plays a role of support, it can cover the drawbacks in the case of utilizing energy rays. In addition, since the part that does not melt and solidify forms the support part, it can be easily made even in a complicated shape. Basically, almost any resin that can be melted can be used, and the above-mentioned drawbacks can be covered. .
【0004】[0004]
【発明が解決しようとする課題】しかし、上記CO2レ
ーザーによる方法は、レーザーでスポット溶融し、自然
固化に頼っているため、溶融粘度の高い樹脂、例えば、
ポリカーボネイトや無機粉末等が充填された複合樹脂の
場合には、互いの樹脂粉末の結合力が弱く、中にボイド
が存在したり、多孔質体となり、その樹脂の有する強度
等本来の物性を十分発揮できないし、また、表面が荒れ
たものとなる。また、レーザーの走査時間、照射エネル
ギー、スポット径などにより、精度と時間が決定され、
しかも、この精度と時間が相反した関係となるなどの欠
点がある。また、単にスポット的にその材料の溶融温度
以上に加熱しているだけなので、溶融粘度の高い材料で
は粉体同士の密着力が弱く、真の密度よりかなり低下し
た多孔質体となり、表面粗さが大きく、精度がでない、
強度が弱いなどの欠点が生じる。装置としても、CO2
レーザーにすることにより、エネルギー線硬化法より安
価であるが、やはりかなり高価である。However, in the method using the CO 2 laser, spot melting with a laser and reliance on natural solidification, therefore, a resin having a high melt viscosity, for example,
In the case of a composite resin filled with polycarbonate, inorganic powder, etc., the binding force between the resin powders is weak, voids exist inside, or it becomes a porous body, and the original physical properties such as strength of the resin are sufficient. It cannot be exhibited, and the surface becomes rough. Also, the accuracy and time are determined by the laser scanning time, irradiation energy, spot diameter, etc.
Moreover, there is a drawback that this accuracy and time are in a contradictory relationship. In addition, since the material is simply heated in a spot above the melting temperature of the material, the material with a high melt viscosity has a weak adhesion between the powders, resulting in a porous material with a much lower density than the true density, resulting in a surface roughness. Is large and not accurate,
Defects such as weak strength occur. As a device, CO 2
By using a laser, it is cheaper than the energy ray curing method, but it is also considerably expensive.
【0005】逆に、この方法では、レーザーでスポット
的に溶融直後から冷却が始まるため、スポット的に追随
して加圧固化しなければ緻密なものは得られないが、実
際にこれを実施するのは非常に難しいし、サポート部は
粉体のままであるため、このような局部加圧はサポート
部の変形をもたらし、形状精度を低下させてしまう。On the contrary, in this method, since cooling starts immediately after melting with a laser spot, so that a dense product cannot be obtained unless it is pressed and solidified following the spot, but this is actually carried out. It is very difficult to do so, and since the support part remains powdery, such local pressurization causes deformation of the support part and reduces the shape accuracy.
【0006】本発明は、上述のごとき実情に鑑みてなさ
れたもので、汎用樹脂を中心とした多種の材料にてその
材料物性を生かした成形ができることを中心として、複
雑な形状が作製できること、精度が良いこと、作製時間
が短いこと、装置コストとランニングコストが安いこ
と、さらには、作業環境性に優れること、すなわち、汎
用射出成形機と同等価格で、同材質の材料を短時間に、
金型無しに成形することを目的としてなされたものであ
る。The present invention has been made in view of the above-mentioned circumstances, and it is possible to produce a complicated shape with a focus on the fact that molding can be performed by using various physical properties of general-purpose resins while taking advantage of the physical properties of the materials. High accuracy, short manufacturing time, low equipment cost and running cost, and further excellent work environment, that is, at the same price as a general-purpose injection molding machine, material of the same material in a short time,
It was made for the purpose of molding without a die.
【0007】[0007]
【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)熱可塑性樹脂からなる粉体1と、
該粉体1より粒径の小さい異材質のパターンを形成する
粉体2により1層の粉体層を形成し、該粉体層を加熱圧
着するとともに、パターンを変化させながら前記粉体層
を層状に積み重ねた後、パターン化された粉体層の部分
を取り除くことを特徴としたものであり、更には、
(2)立体形状モデルの断面部以外の部分をパターンと
して用いること、更には、(3)パターンを形成する粉
体2を電子写真プロセスを用いて、前記粉体1に供給す
ること、更には、(4)パターンを形成する粉体2に、
加熱圧着温度で溶融し、前記粉体1より低強度または低
相溶性の材料を用い、粉体1と粉体2の混合部の溶着強
度を粉体1同士の溶着強度より著しく低くしたこと、更
には、(5)粉体2として、汎用の電子写真用トナー粉
体を用いること、更には、(6)パターンを形成する粉
体2に、粉体1より高融点の材料を用い、加熱圧着で溶
着するときの加熱温度を、粉体1の溶融温度以上で粉体
2の溶融温度以下とし、粉体1と粉体2の混合部の溶着
強度を粉体1同士の溶着強度より著しく低くしたこと、
更には、(7)粉体2としてセラミックス粉を代表とす
る無機粉体を用いること、更には、(8)粉体1の平均
粒径が20〜500μmであること、更には、(9)粉
体2の平均粒径が粉体1の粒径に対して1/5〜1/5
00であること、更には、(10)粉体1の層を形成
後、粉体2のパターン層を転写により形成すること、更
には、(11)粉体2のパターン層を転写により形成
後、粉体2の層を形成すること、更には、(12)粉体
2のかさ密度を粉体1のかさ密度より小さくしたこと、
更には、(13)加熱圧着する方法として、粉体層に粉
体1の溶融温度以上で、前記(4)又は(6)を満たす
一定の表面温度を有する圧着体を一定時間圧着するこ
と、更には、(14)一定の表面温度を有する圧着体の
粉体と接する表面層を、溶融粉体と密着性しない材質で
形成したこと、更には、(15)一定の表面温度を有す
る圧着体と粉体との間に溶融粉体と密着しない材質で、
且つその表面温度以上の熱変形温度を有するフィルムを
配置したこと、更には、(16)加熱圧着する方法とし
て、粉体1の溶融温度以上で前記(4)又は(6)を満
たす一定温度に非接触加熱した後、粉体1か粉体2のど
ちらか低い方の溶融温度以下で、一定の表面温度を有す
る圧着体を一定時間圧着すること、更には、(17)フ
ィルムに電子写真プロセスの感光ドラムからのトナーの
転送の役割をもたせたこと、更には、(18)層状に積
み重なった部分の温度を、粉体1の熱変形温度以下か、
粉体2の溶融温度以下のどちらか低い方の温度以下の一
定温度に保持すること、更には、(19)粉体1と粉体
2で形成した粉体層の一層の厚さが10〜800μmで
あること、更には、(20)粉体2のパターン部におい
て、粉体1が100重量部に対して粉体2を5〜80重
量部用いること、更には、(21)粉体1にガラス繊維
や無機フィラー等の強化材・充填材が入った樹脂複合材
料を用いることを特徴としたものである。In order to solve the above-mentioned problems, the present invention provides (1) a powder 1 made of a thermoplastic resin,
A single powder layer is formed from the powder 2 that forms a pattern of a different material having a smaller particle size than the powder 1, and the powder layer is thermocompression bonded and the powder layer is formed while changing the pattern. After stacking in layers, the patterned powder layer portion is removed, and further,
(2) Using a portion other than the cross-sectional portion of the three-dimensional model as a pattern, and (3) supplying the powder 2 forming the pattern to the powder 1 using an electrophotographic process, and , (4) the powder 2 forming the pattern,
A material which is melted at a thermocompression bonding temperature and has a lower strength or a lower compatibility than the powder 1, and the welding strength at the mixed portion of the powder 1 and the powder 2 is made significantly lower than the welding strength between the powders 1; Further, (5) a general-purpose electrophotographic toner powder is used as the powder 2, and (6) a material having a higher melting point than that of the powder 1 is used as the powder 2 for forming the pattern, and the powder 2 is heated. The heating temperature at the time of welding by pressure bonding is set to the melting temperature of the powder 1 or more and the melting temperature of the powder 2 or less, and the welding strength of the mixed portion of the powder 1 and the powder 2 is markedly higher than the welding strength of the powders 1 to each other. Lowering,
Furthermore, (7) an inorganic powder typified by ceramics powder is used as the powder 2, and (8) the average particle size of the powder 1 is 20 to 500 μm, and further (9) The average particle diameter of the powder 2 is 1/5 to 1/5 of the particle diameter of the powder 1.
00, further, (10) after forming the layer of powder 1, and then forming the pattern layer of powder 2 by transfer, and (11) after forming the pattern layer of powder 2 by transfer. Forming a layer of powder 2, and (12) making the bulk density of powder 2 smaller than that of powder 1.
Further, (13) as a method of thermocompression bonding, a pressure bonding body having a constant surface temperature satisfying (4) or (6) above the melting temperature of the powder 1 is bonded to the powder layer for a certain time. Further, (14) the surface layer in contact with the powder of the pressure-bonded body having a constant surface temperature is formed of a material that does not adhere to the molten powder, and (15) a pressure-bonded body having a constant surface temperature. A material that does not adhere to the molten powder between
Further, a film having a heat distortion temperature equal to or higher than the surface temperature thereof is arranged, and further, (16) as a method for thermocompression bonding, a constant temperature satisfying the above (4) or (6) above the melting temperature of the powder 1 After non-contact heating, pressure-bonding a pressure-sensitive body having a constant surface temperature for a certain time at a melting temperature of powder 1 or powder 2 whichever is lower, and (17) electrophotographic process on the film. Has the role of transferring toner from the photosensitive drum, and further, (18) the temperature of the layered portion is below the thermal deformation temperature of the powder 1,
Maintaining a constant temperature not higher than the melting temperature of the powder 2 whichever is lower, and (19) the thickness of one layer of the powder layer formed by the powder 1 and the powder 2 is 10 or less. 800 μm, further, (20) in the pattern portion of the powder 2, 5 to 80 parts by weight of the powder 2 is used for 100 parts by weight of the powder 1, and (21) powder 1 It is characterized by using a resin composite material containing a reinforcing material / filler such as glass fiber or an inorganic filler.
【0008】[0008]
【作用】安価な汎用熱可塑性樹脂粉体を用い、装置とし
てもコンピュータによる立体形状モデルの断面部のデジ
タル信号により印刷する汎用電子写真プロセスと、それ
を溶融し、加圧することにより内部に殆ど空隙が存在せ
ず、その材料物性を生かした立体形状の成形品を得る加
熱プレス機という安価で、且つ生産性に優れた装置を利
用する。また、立体形状を作製する部分を目的の樹脂粉
体同士で加熱圧着し、それ以外のサポート部分をその加
熱温度より低融点で脆い材料、またはより高融点で溶融
しない材料を介して加熱圧着するもので、従って、立体
形状部は目的の樹脂のみからなる高強度なものとなり、
またサポート部も加熱圧着されているため、殆ど空隙が
ないしっかりしたものとなる。このため、圧着後の厚さ
も殆ど均一にでき、層状に積み重なった方向に対する精
度もでる。[Function] A general-purpose electrophotographic process that uses inexpensive general-purpose thermoplastic resin powder and uses a computer to print a digital signal of a cross-section of a three-dimensional model, and a device that melts and pressurizes almost all voids inside The present invention utilizes a heating press machine that is inexpensive and has excellent productivity, which does not exist, and obtains a three-dimensional molded product that makes the most of the physical properties of the material. Further, the portion for producing a three-dimensional shape is heated and pressed by the intended resin powders, and the other support portions are heated and pressed through a material having a melting point lower than the heating temperature and brittle, or a material having a higher melting point and not melting. Therefore, the three-dimensional shape part is a high-strength one made of only the target resin,
Further, since the support portion is also thermocompression-bonded, it becomes a solid one with almost no voids. Therefore, the thickness after pressure bonding can be made almost uniform, and the accuracy in the stacking direction can be obtained.
【0009】[0009]
【実施例】図1(a)〜図1(f)は、本発明による立
体形状製造方法の一実施例を説明するための工程図で、
図中、1は粉体1、2は粉体2、3は感光体ドラム、4
はレーザー、5はフィルム、6は粉体1の容器、7は型
枠(シリンダー)、8はヒータ、9は積層ステージ、1
0は赤外線ヒータ、11は加圧板で、以下、各工程に従
って説明する。1 (a) to 1 (f) are process drawings for explaining an embodiment of a three-dimensional shape manufacturing method according to the present invention.
In the figure, 1 is powder 1, 2 is powder 2, 3 is photosensitive drum, 4
Is a laser, 5 is a film, 6 is a container of powder 1, 7 is a form (cylinder), 8 is a heater, 9 is a laminating stage, 1
Reference numeral 0 is an infrared heater and 11 is a pressure plate, which will be described below in accordance with each step.
【0010】図1(a)[電子写真プロセスでの断面部
以外のパターン化] まず、電子写真プロセスにより、デジタル信号化された
立体の断面情報を断面部でないところにトナーである粉
体2がくっつくように感光ドラム3にレーザー4で書き
込む。そして、その平均粒径5μm、かさ密度0.1g/
cm3、溶融温度110℃のスチレンアクリル樹脂を主成
分とする粉体2を感光体ドラム3に供給し、ステンレス
フィルムに絶縁を兼ねてテフロンをラミネートしたフィ
ルム5上に転写する。FIG. 1 (a) [Patterning other than the cross section in the electrophotographic process] First, by the electrophotographic process, three-dimensional cross-sectional information converted into a digital signal is converted into toner particles 2 in places other than the cross section. Write on the photosensitive drum 3 with a laser 4 so that they stick together. And the average particle size is 5 μm and the bulk density is 0.1 g /
A powder 2 containing cm 3 and a melting temperature of 110 ° C. and containing styrene acrylic resin as a main component is supplied to the photosensitive drum 3 and transferred onto a film 5 obtained by laminating Teflon on a stainless film also serving as insulation.
【0011】図1(b)[粉体1の供給] 一方、型枠7はヒータ8により温度が80℃に保持さ
れ、ステージ9上に層状に積み重なった立体形成部は、
まず、矢印Aにて示すように、粉体1の供給層厚分だけ
下方に積層ステージ9が一定距離移動する。この場合
は、移動距離は100μmである。粉体1に平均粒径1
00μm、かさ密度0.4g/cm3、ガラス転移温度14
5℃の冷凍粉枠したポリカーボネイトを用い、矢印Bに
て示すように、粉体1の容器6を移動させて250μm
厚の粉体1の層を形成する。FIG. 1 (b) [Supply of Powder 1] On the other hand, the temperature of the mold 7 is kept at 80 ° C. by the heater 8, and the three-dimensional forming portion stacked in layers on the stage 9 is
First, as shown by an arrow A, the stacking stage 9 moves downward by a distance corresponding to the thickness of the supply layer of the powder 1. In this case, the moving distance is 100 μm. Average particle size 1 for powder 1
00 μm, bulk density 0.4 g / cm 3 , glass transition temperature 14
250 μm by moving the container 6 of the powder 1 as shown by an arrow B using a polycarbonate powdered with 5 ° C. frozen powder
A layer of thick powder 1 is formed.
【0012】図1(c)[粉体1への粉末2の転写供
給] 次に、この粉体1の層に粉体2をフィルム5から転写す
る。FIG. 1 (c) [Transfer Supply of Powder 2 to Powder 1] Next, the powder 2 is transferred from the film 5 to the layer of the powder 1.
【0013】図1(d)[振動による均一化] この状態で、粉体2は粉体1より平均粒径が著しく小さ
いため、粉体1の粒間に入るが、粉体1の形状、粒径、
粒度分布、粉体2の形状、粒径、粒度分布、及び粉体1
と粉体2の樹脂の種類によっては、不十分な場合がある
ため、この場合は微小振動を加えてパターン部でのみ粉
体1と粉体2の均一混合をする。FIG. 1 (d) [Uniformization by vibration] In this state, since the powder 2 has a remarkably smaller average particle diameter than the powder 1, the powder 2 enters between the particles, but the shape of the powder 1 Particle size,
Particle size distribution, shape of powder 2, particle size, particle size distribution, and powder 1
In some cases, this may be insufficient depending on the type of resin of the powder 2, and in this case, minute vibration is applied to uniformly mix the powder 1 and the powder 2 only in the pattern portion.
【0014】図1(e)[前加熱による粉体1の溶融] その後、赤外線ヒータ10を操作して、表層部からほぼ
400μmのところまで250℃以上に層表面を一気に
加熱溶融させる。FIG. 1 (e) [Melting of powder 1 by preheating] After that, the infrared heater 10 is operated to heat and melt the surface of the layer at a temperature of 250 ° C. or more up to about 400 μm from the surface layer.
【0015】図1(f)[加圧固化] 前述のようにして溶融させた後、速やかに平面度0.0
1、温度50℃以下の加圧プレート11により加圧冷却
固化させる。このときの層厚はほぼ100μmと空隙ゼ
ロに近く、立体形状部では粉体1のみが溶融密着固化
し、サポート部では粉体1を、先に溶融した粉体2がく
るむかたちで溶融密着固化する。FIG. 1 (f) [Pressure-solidification] After melting as described above, the flatness is promptly set to 0.0.
1. Pressurize by pressure plate 11 at a temperature of 50 ° C. or less to solidify under pressure. At this time, the layer thickness is almost 100 μm, which is close to zero void, and only the powder 1 is melted and solidified in the three-dimensional shape part, and the powder 1 is melted and solidified in the support part in such a manner that the previously melted powder 2 is wrapped. To do.
【0016】上記(a)〜(f)の作業を繰り返して、
積層物を得、これを型枠であるシリンダーからはずし、
脆いスチレンアクリル樹脂がつなぎとなったサポート部
を破壊除去して、立体形状を得る。By repeating the above steps (a) to (f),
Obtain the laminate, remove this from the cylinder which is the formwork,
The support part, which is joined by the brittle styrene acrylic resin, is destroyed and removed to obtain a three-dimensional shape.
【0017】図2は、本発明の他の実施例を説明するた
めの全体構成図で、図中、図1に示した実施例と同様の
作用をする部分には、図1の場合と同一の参照番号が付
してある。而して、この図2に示した実施例は、粉体1
としてポリプロピレン、粉体2としてポリフェニレンサ
ルファイド、フィルムに粉体1と逆帯電させた厚さ10
0μmのポリイミドフィルム5を用い、感光ドラム3か
ら粉体2のパターンを転写後、帯電によって粉体1が離
脱するのを防ぎながら積層部に移動し、それを既に層形
成のため一定厚さで供給した粉体1上で、フィルム5の
粉体2が付着している側と反対側から230℃に表面が
加熱された加熱圧着プレート13を近づけ、フィルム5
を介して粉体1と粉体2を接触混合させるとともに、加
熱圧縮して粉体1のみを溶融させて高密度化し、その
後、加熱圧着プレート13を、続いてポリイミドフィル
ム5を取り除き、これを繰り返すことにより、立体形状
を得るようにしたものである。パターン部、すなわちサ
ポート部は固化していないポリフェニレンサルファイド
粉体2により連続的な固化層が存在しないため、立体形
状を取り出すと同時に容易に除去できる。FIG. 2 is an overall configuration diagram for explaining another embodiment of the present invention. In the figure, parts having the same operations as those of the embodiment shown in FIG. 1 are the same as those in the case of FIG. Reference number is attached. Thus, the embodiment shown in FIG.
As the powder, polyphenylene sulfide as the powder 2, and a film having a thickness of 10 oppositely charged to the powder 1
After transferring the pattern of the powder 2 from the photosensitive drum 3 using the polyimide film 5 of 0 μm, the powder 1 is moved to the laminated portion while preventing the powder 1 from being separated by charging, and it is already formed with a constant thickness to form a layer. On the supplied powder 1, the thermocompression bonding plate 13 whose surface is heated to 230 ° C. is brought closer to the film 5 from the side opposite to the side to which the powder 2 of the film 5 is attached.
The powder 1 and the powder 2 are contact mixed with each other through heating, and only the powder 1 is melted by heating and compression so as to have a high density, and then the thermocompression bonding plate 13 and subsequently the polyimide film 5 are removed. By repeating this, a three-dimensional shape is obtained. Since the pattern portion, that is, the support portion, does not have a continuous solidified layer due to the unsolidified polyphenylene sulfide powder 2, it is possible to easily remove the three-dimensional shape at the same time.
【0018】図3は、本発明の更に他の実施例を説明す
るための全体構成図で、この実施例は、前もってフィル
ム5上で粉体1をドクターブレードなどを利用して一定
層厚で供給し、そこに感光体ドラム3で粉体2を供給
後、積層ステージ部で、図2に示した実施例の加熱圧着
ブレード13に代って加熱圧着ローラ14を用いてフィ
ルム5を介して、該加熱圧着ローラ14で加熱圧着する
ようにしたものである。FIG. 3 is an overall constitutional view for explaining still another embodiment of the present invention. In this embodiment, the powder 1 is preliminarily formed on the film 5 with a constant layer thickness by using a doctor blade or the like. After being supplied, and the powder 2 is supplied thereto by the photosensitive drum 3, the thermocompression-bonding roller 14 is used instead of the thermocompression-bonding blade 13 of the embodiment shown in FIG. The thermocompression-bonding roller 14 is used for thermocompression bonding.
【0019】以上の本発明の各実施例について説明した
が、以下に、更に詳細に説明する。本発明が解決しよう
とする課題は、前述のように、汎用樹脂を中心とした多
種の材料にてその材料物性を生かした成形ができること
を中心として、複雑な形状が作製できること、精度が良
いこと、作製時間が短いこと、装置コストとランニング
コストが安いこと、さらには作業環境性に優れること、
すなわち汎用射出成形機と同等価格で同材質の材料を短
時間に、金型無しに成形しようとするものである。The embodiments of the present invention have been described above, but will be described in more detail below. As described above, the problem to be solved by the present invention is that a complex shape can be produced, and that precision is good, centering on the fact that molding can be performed by making use of the physical properties of various materials centered on general-purpose resins. , Short production time, low equipment cost and running cost, and excellent work environment,
That is, it is intended to mold a material of the same material at the same price as a general-purpose injection molding machine in a short time without using a mold.
【0020】そのため、本発明は、安価な汎用熱可塑性
樹脂粉体を用い、装置としてもコンピュータによる立体
形状モデルの断面部のデジタル信号により印刷する汎用
電子写真プロセスと、樹脂粉体を溶融し、加圧すること
により内部に殆ど空隙が存在せず、その材料物性を生か
した立体形状の成形品を得る加熱プレス機という安価で
且つ生産性に優れた装置を利用するものである。Therefore, according to the present invention, a general-purpose electrophotographic process of printing an inexpensive general-purpose thermoplastic resin powder by a digital signal of a cross-sectional portion of a three-dimensional model by a computer as an apparatus, and melting the resin powder, An inexpensive and highly productive apparatus, which is a hot press machine, is used to obtain a three-dimensional molded article that makes use of the physical properties of the material and has almost no voids inside by pressing.
【0021】また、本発明は、立体形状を作製する部分
を目的の樹脂粉体同士で加熱圧着し、それ以外のサポー
ト部分をその加熱温度より低融点で脆い材料、またはよ
り高融点で溶融しない材料を介して加熱圧着するもの
で、従って、立体形状部は目的の樹脂のみからなる高強
度なものとなり、また、サポート部も加熱圧着されてい
るため、殆ど空隙がないしっかりしたものとなる。この
ため、圧着後の厚さも殆ど均一にでき、層状に積み重な
った方向に対する精度もでる。当然に、熱可塑性樹脂粉
体は、冷凍粉砕等により粒径だけでなく粒度分布も調整
できるため、立体形状の物性だけでなく、精度、作製速
度も容易に変えることが可能である。Further, according to the present invention, a portion for producing a three-dimensional shape is heated and pressure-bonded with the intended resin powders, and the other support portions have a melting point lower than the heating temperature and are fragile or do not melt at a higher melting point. The three-dimensional shape portion is made of a desired resin and has high strength, and the support portion is also heat-pressed, so that the three-dimensional shape portion is solid with almost no voids. Therefore, the thickness after pressure bonding can be made almost uniform, and the accuracy in the stacking direction can be obtained. As a matter of course, since the thermoplastic resin powder can be adjusted not only in particle size but also in particle size distribution by freeze grinding or the like, it is possible to easily change not only the physical properties of the three-dimensional shape, but also the accuracy and the production speed.
【0022】本発明では、従来と違い、立体形状モデル
の断面部をパターンとして用いず、その反転した部分、
すなわち、立体形状モデルの断面部以外の部分をパター
ンとして用いるが、これは、目的の樹脂のみで立体形状
を得るためである。In the present invention, unlike the prior art, the cross-sectional portion of the three-dimensional model is not used as a pattern, but its inverted portion,
That is, a portion other than the cross-section portion of the three-dimensional shape model is used as a pattern, in order to obtain a three-dimensional shape with only the target resin.
【0023】また、粉体2のパターン化には電子写真プ
ロセスを用いる。而して、デジタル信号をレーザービー
ム走査により感光ドラムに書き込む電子写真プロセスを
用いると、10回/分以上のパターン層供給が可能とな
り、従来の方法がせいぜい1層/分であることを考える
と、著しい高速化が可能となる。An electrophotographic process is used for patterning the powder 2. Thus, when an electrophotographic process for writing a digital signal on a photosensitive drum by laser beam scanning is used, it is possible to supply a pattern layer 10 times / min or more, and considering that the conventional method is at most 1 layer / min. It is possible to significantly speed up.
【0024】サポート部は、粉体1のまわりに粉体2が
加熱圧着された状態である。この部分は立体形状形成過
程では精度面からある強度が必要だが、層状に積み重な
った後は立体形状部から分離するため、容易に壊れなけ
ればならない。それは、粉体2を加熱圧着温度で溶融
し、粉体1より低強度(脆い)または低相溶性にして、
溶融密着後、冷却固化しても容易に破壊分離したり、逆
に高融点で加熱温度においても溶融しない粉体により溶
着させなくして分離することである。前者では、粉体2
に通常複写機、ファクシミリ、レーザービームプリンタ
ー等に利用されている電子写真プロセスのトナーを利用
すれば良く、スチレン、スチレン−アクリル、ポリエス
テル、ポリプロピレン等の材料からなる。後者は、ポリ
イミド、芳香族ポリアミド、ポリフェニレンサルファイ
ド等の高融点の樹脂粉末、フェノール樹脂、エポキノ樹
脂等の熱硬化性樹脂の他に、シリカ、アルミナ、ジ塁コ
ニア、窒化珪素、炭酸カルシウム等のセラミック粉を代
表とする無機粉末が挙げられる。The support portion is in a state where the powder 2 is heated and pressed around the powder 1. This part requires certain strength in the process of forming a three-dimensional shape, but it must be easily broken because it separates from the three-dimensional part after being stacked in layers. This is because the powder 2 is melted at the heating and compression temperature to make it lower in strength (brittle) or less compatible than the powder 1,
After melt-adhesion, it is easy to break and separate even if cooled and solidified, or conversely, separated without being welded by a powder having a high melting point and not melting even at a heating temperature. In the former, powder 2
In addition, the toner of the electrophotographic process which is usually used in copying machines, facsimiles, laser beam printers, etc. may be used, and it is made of materials such as styrene, styrene-acryl, polyester, polypropylene and the like. The latter are high melting point resin powders such as polyimide, aromatic polyamide, and polyphenylene sulfide, thermosetting resins such as phenol resin and epoquino resin, as well as ceramics such as silica, alumina, zirconia, silicon nitride and calcium carbonate. Inorganic powders represented by powders can be used.
【0025】当然、粉体2は粉体1同士が密着しないよ
うにする役割であるから、その粒径、かさ密度、及び粉
体1に対する割合に制約を受ける。粉体2の平均粒径は
粉体1のそれに対して1/5〜1/500(好ましくは
1/10〜1/200)で、これ未満では粉体2の作製
が難しく、非常に高価になり、逆にこれを越えると、粉
体1間に介在するのが難しくなり、粉体1同士の溶着を
防ぐのが困難となるし、電子写真プロセスでトナーとし
てパターンに帯電させて供給することもできなくなる。Naturally, the powder 2 has a role of preventing the powders 1 from adhering to each other, so that the particle size, the bulk density, and the ratio to the powder 1 are restricted. The average particle size of the powder 2 is 1/5 to 1/500 (preferably 1/10 to 1/200) of that of the powder 1, and if it is less than this, it is difficult to prepare the powder 2 and it becomes very expensive. On the contrary, if it exceeds this, it becomes difficult to interpose between the powders 1 and it becomes difficult to prevent the fusion of the powders 1 with each other, and the toner is charged in a pattern as an electrophotographic process and supplied. Also can not be.
【0026】かさ密度は少量で粉体1同士の密着を防ぐ
必要があることから、粉体2より小さい方が良い。これ
により、少量で粉体1同士の密着を防ぐことができる。
サポート部における粉体1と粉体2の混合割合は、粉体
1が100重量部に対して粉体2が2〜80重量部で
(好ましくは5〜50重量部)、それ未満では粉体1同
士の溶着をまねく。それを越えるとパターン部が厚肉に
なり、均一な層厚が得られず、層状に積み重なった方向
の寸法精度が低下するし、層厚が厚い場合、電子写真プ
ロセスで供給できる量以上になってしまう。Since the bulk density is small and it is necessary to prevent the powders 1 from sticking to each other, the bulk density is preferably smaller than that of the powder 2. This makes it possible to prevent the powders 1 from adhering to each other with a small amount.
The mixing ratio of the powder 1 and the powder 2 in the support part is 2 to 80 parts by weight (preferably 5 to 50 parts by weight) of the powder 2 with respect to 100 parts by weight of the powder 1, and the powder is less than that. Induces welding of one to the other. Beyond that, the pattern part becomes thick, a uniform layer thickness cannot be obtained, the dimensional accuracy in the direction of stacking in layers decreases, and when the layer thickness is thick, it exceeds the amount that can be supplied in the electrophotographic process. Will end up.
【0027】粉体2で粉体1同士の溶着を防ぐ他の手段
としては: 粉体2が粉体1より溶融温度が低く、且つ加熱圧着温
度での溶融粘度が低い場合には、加熱圧着温度で粉体2
は溶融して毛管現象的に粉体1間に入り込むことができ
る。この場合には、粉体2の粒径やかさ密度を粉体1に
比べてさほど小さくしなくてもよいため、パターン層を
形成後、粉体1層を形成するのがよい。 粉体1に比して粉体2の粒径、かさ密度がかなり小さ
い場合は、粉体1でその粒径より厚い層を形成後、粉体
2のパターン層を形成すれば、微小な粉体2は粉体1間
に入り込むことができる。Other means for preventing the fusion of the powders 1 with each other in the powder 2 are: If the powder 2 has a lower melting temperature than the powder 1 and a low melt viscosity at the thermocompression bonding temperature, thermocompression bonding Powder at temperature 2
Can melt and enter between the powders 1 like a capillary phenomenon. In this case, the particle size and bulk density of the powder 2 do not have to be made so small as compared with the powder 1. Therefore, it is preferable to form the powder 1 layer after forming the pattern layer. When the particle size and bulk density of the powder 2 are considerably smaller than those of the powder 1, if a pattern layer of the powder 2 is formed after forming a layer thicker than the particle size of the powder 1, a fine powder can be obtained. The body 2 can penetrate between the powders 1.
【0028】粉体1の平均粒径は、20〜500μmで
(好ましくは40〜300μm)、これ未満では熱可塑
性樹脂での作製が難しく非常に高価になり、逆にこれを
越えると立体形状の精度が出せず、表面も荒れたものと
なる。従って、粉体層の一層の厚さは10〜800μm
(好ましくは30〜500μm)で、これ未満では積層
回数が増え、立体形状の作製時間が精度以上にかかって
しまうし、これを越えると非常に短時間で作製できる
が、精度の悪いものになってしまう。The average particle size of the powder 1 is 20 to 500 μm (preferably 40 to 300 μm). If the average particle size is less than this, it is difficult to prepare the thermoplastic resin and it becomes very expensive. The accuracy cannot be obtained and the surface becomes rough. Therefore, the thickness of the powder layer is 10 to 800 μm.
(Preferably 30 to 500 μm), if it is less than this, the number of times of lamination increases, and it takes more time to manufacture the three-dimensional shape, and if it exceeds this, it can be manufactured in a very short time, but the accuracy becomes poor. Will end up.
【0029】また、粉体1の種類としては、ポリエチレ
ン、ポリプロピレン、ポリアミド、ポリエステル、アク
リロニトリル−スチレン−ブタジェン、ポリ塩化ビニ
ル、ポリカーボネイト等の汎用熱可塑性樹脂のほかに、
ガラス繊維やタルク、マイカ、炭酸カルシウムに代表さ
れる無機フィラー等の強化材・充填材が入ったものを用
いれば、より高強度、高精度の立体形状を得ることがで
きる。Further, as the kind of the powder 1, in addition to general-purpose thermoplastic resins such as polyethylene, polypropylene, polyamide, polyester, acrylonitrile-styrene-butadiene, polyvinyl chloride and polycarbonate,
If a reinforcing material / filler such as an inorganic filler typified by glass fiber, talc, mica, or calcium carbonate is used, a three-dimensional shape with higher strength and higher accuracy can be obtained.
【0030】粉体を加熱圧着する方法としては、層の平
面性を保ち、粉体1を溶融圧着して、ボイドをできるだ
けなくし、樹脂材料の本来有する物性に近づける必要が
あるが、これには、平面度に優れた圧着面が得られ、電
気ヒータによってその表面温度が粉体1の溶融温度以上
になった圧着体を用いるのが最も高精度で低コストであ
る。As a method of thermocompression-bonding the powder, it is necessary to maintain the flatness of the layer and melt-compress the powder 1 so as to eliminate voids as much as possible to bring it closer to the original physical properties of the resin material. It is the most accurate and low cost to use a pressure-bonded body which has a pressure-bonded surface excellent in flatness and whose surface temperature is equal to or higher than the melting temperature of the powder 1 by an electric heater.
【0031】圧着体としては、圧着プレート、圧着ロー
ラが挙げられ、前者は平面で一定時間圧着するものであ
り、後者は、ローラ速度で一定時間を得るものである。
ただ、その表面温度が粉体1の溶融温度以上では、粉体
が溶融して圧着体に密着しやすいため、それを防ぐ必要
がある。その1方法として、粉体と接する表面にシリコ
ン、テフロン等の耐熱性で表面張力の低い剥離性に優れ
た材質の薄層を設ける。層が厚いと熱伝導が悪いため、
この薄層としては5〜500μmがよい。Examples of the pressure-bonding body include a pressure-bonding plate and a pressure-bonding roller. The former pressure-bonds on a flat surface for a fixed time, and the latter pressure-rolls for a fixed time.
However, if the surface temperature is equal to or higher than the melting temperature of the powder 1, the powder is likely to melt and adhere to the pressure-bonded body, so that it is necessary to prevent this. As one of the methods, a thin layer made of a material such as silicon or Teflon which is heat resistant and has a low surface tension and excellent peelability is provided on the surface in contact with the powder. If the layer is thick, heat conduction is poor, so
The thickness of this thin layer is preferably 5 to 500 μm.
【0032】また、圧着体と粉体間に加熱圧着温度では
変形しないフィルムを配し、そのフィルムを介して加熱
圧着しても良い。この場合、フィルムにテフロン等の粉
体が溶着しない材質を用いても良いし、ポリイミドのよ
うな耐熱フィルムを基体として用い、粉体が溶着しない
材質をコーティングしたり、溶着しないフィルムを層状
に積み重なったものを用いても良い。さらに好ましく
は、熱膨張の小さい、且つ長期使用で形状変化が生じに
くく、立体形状の精度が上がる金属フィルムを基体とし
て用いるのがよい。このフィルムに電子写真プロセスで
の感光ドラムまたはその転写ドラムからのトナーである
粉体2のパターンの転送の役割、すなわち紙の役割を持
たせれば、システムがより簡略化できる。It is also possible to dispose a film that is not deformed at the temperature of thermocompression bonding between the pressure-bonded body and the powder, and perform thermocompression bonding through the film. In this case, the film may be made of a material such as Teflon that does not cause the powder to adhere, or a heat-resistant film such as polyimide may be used as the substrate to coat the material that does not cause the powder to adhere, or the non-adhesive films may be stacked in layers. You may use the thing. More preferably, it is preferable to use a metal film having a small thermal expansion, a shape change unlikely to occur in long-term use, and a three-dimensional shape having high accuracy, as the substrate. If this film has a role of transferring the pattern of the powder 2 which is toner from the photosensitive drum or its transfer drum in the electrophotographic process, that is, a role of paper, the system can be further simplified.
【0033】また、この方法では、前もって粉体1の層
と粉体2のパターン層を形成してから加熱圧着する必要
があるが、フィルムを用いることにより、層状に積み重
なった部分には粉体1の層を形成しておくだけで、圧着
時にフィルム部の粉体2の層を混合加熱圧着が可能とな
る。また、圧着体を粉体1,2が溶融しない温度にし、
別の熱源で加熱溶融してから、圧着固化してもよい。こ
の場合の加熱手段としては、赤外線ランプが挙げられ
る。Further, in this method, it is necessary to form the layer of the powder 1 and the pattern layer of the powder 2 in advance and then perform the thermocompression bonding. However, by using a film, the powder is not formed in the layered portion. By forming only one layer, the layer of the powder 2 in the film portion can be mixed and heat-bonded at the time of pressure bonding. In addition, the pressure bonding body is set to a temperature at which the powders 1 and 2 do not melt,
It may be heated and melted by another heat source and then pressure-bonded and solidified. An infrared lamp can be used as the heating means in this case.
【0034】層状に積み重なった粉体層の温度を、粉体
1の熱変形温度以下か粉体2の溶融温度以下のどちらか
低い方の温度以下の一定温度に保持すれば、圧着時の熱
量が少なくて済むため、圧着時間が短くて済み、また圧
着部と既に圧着により層状に積み重なった部分との温度
差が小さいため、高精度の立体形状を得ることができ
る。さらに、粉体1と粉体2の均一混合、粉体1のまわ
りへの粉体2の均一付着をはかるため、加熱圧着前また
は加熱圧着中に振動を与えるのも有効である。If the temperature of the powder layers stacked in layers is maintained at a constant temperature below the thermal deformation temperature of powder 1 or below the melting temperature of powder 2, whichever is lower, the amount of heat during pressure bonding Therefore, the pressure bonding time is short, and the temperature difference between the pressure bonding portion and the portion already stacked in layers by pressure bonding is small, so that a highly accurate three-dimensional shape can be obtained. Further, in order to uniformly mix the powder 1 and the powder 2 and to evenly adhere the powder 2 around the powder 1, it is also effective to apply vibration before or during the thermocompression bonding.
【0035】[0035]
請求項1に対応する効果:色々な種類の熱可塑性樹脂か
らなる粉体のみで、緻密な立体形状が作製できるため、
従来の金型を用いた射出成形品と同等の物性、精度のも
のが、それ以上の形状自由度をもって、低装置コスト、
低ランニングコスト、短時間で得ることができる。 請求項2に対応する効果:目的の樹脂のみで強度等の物
性に優れた立体形状を得ることができる。 請求項3に対応する効果:電子写真プロセスを利用して
いるため、その転写速度が早く精度も向上できる。 請
求項4に対応する効果:粉体1と粉体2の混合部の溶着
強度を粉体1同士の溶着強度より著しく低くしているた
め、層状に積み重なった部分より立体形状を取り出すと
き容易にサポート部を破壊除去することができる。 請求項5に対応する効果:粉体2として汎用の電子写真
用トナー粉体を用いることができるため、安価で安定し
て原料入手が容易である。Effect corresponding to claim 1: Since a dense three-dimensional shape can be produced only with powders made of various kinds of thermoplastic resins,
It has the same physical properties and accuracy as the injection-molded products using conventional dies, but with a higher degree of freedom in shape, lower equipment cost,
It can be obtained at low running cost and in a short time. Effect corresponding to claim 2: It is possible to obtain a three-dimensional shape excellent in physical properties such as strength only with the target resin. Effect corresponding to claim 3: Since the electrophotographic process is used, the transfer speed is fast and the accuracy can be improved. Effect corresponding to claim 4: Since the welding strength of the mixed portion of the powder 1 and the powder 2 is made significantly lower than the welding strength of the powders 1 to each other, it is easy to take out a three-dimensional shape from a layered portion. The support part can be destroyed and removed. Effect corresponding to claim 5: Since a general-purpose electrophotographic toner powder can be used as the powder 2, the raw material is inexpensive, stable, and easily available.
【0036】請求項6に対応する効果:粉体2に粉体1
より高融点の材料を用い、粉体1と粉体2の混合部の溶
着強度を粉体1同士の溶着強度より著しく低くしたの
で、層状に積み重なった部分より立体形状を取り出すと
き容易にサポート部を除去することができる。 請求項7に対応する効果:粉体2としてセラミック粉を
代表とする無機粉体を用いることができるため、安価で
安定して原料入手が容易である。 請求項8に対応する効果:粉体1の平均粒径が20〜5
00μmであるため、安価な原料を用い高精度な成形品
を得ることができる。 請求項9に対応する効果:粉体2の平均粒径が粉体1の
それに対して1/5〜1/500であるため、パターン
部での粉体1同士の溶着を防いで容易にサポート部の除
去が可能となり、汎用トナーが利用できる。 請求項10に対応する効果:粉体1の層を形成後、粉体
2のパターン層を転写により形成することにより、微小
粉体2が粉体1同士の溶着を防いで容易にサポート部の
除去が可能となる。Effect corresponding to claim 6: Powder 2 to powder 1
A material having a higher melting point was used, and the welding strength of the mixed portion of the powder 1 and the powder 2 was made significantly lower than the welding strength of the powders 1 to each other. Therefore, when the solid shape is taken out from the layered portion, the support portion is easily formed. Can be removed. Effect corresponding to claim 7: Since an inorganic powder typified by ceramic powder can be used as the powder 2, it is inexpensive, stable, and easy to obtain the raw material. Effect corresponding to claim 8: The average particle size of the powder 1 is 20 to 5
Since it is 00 μm, it is possible to obtain a highly accurate molded product using an inexpensive raw material. Effect corresponding to claim 9: Since the average particle size of the powder 2 is 1/5 to 1/500 of that of the powder 1, it is possible to prevent the powders 1 from being welded to each other in the pattern portion and easily support them. Part of the toner can be removed and general-purpose toner can be used. Effect corresponding to claim 10: By forming a layer of powder 1 and then forming a pattern layer of powder 2 by transfer, the fine powder 2 prevents the powders 1 from being welded to each other, and the support portion is easily formed. It can be removed.
【0037】請求項11に対応する効果:粉体2のパタ
ーン層を転写により形成後、粉体2の層を形成すること
により、粒径が粉体2が粉体1に比べてさほど小さくな
くとも粉体1同士の溶着を防いで容易にサポート部の除
去が可能となる。 請求項12に対応する効果:粉体2のかさ密度を粉体1
のかさ密度より小さくすることにより、粉体1同士の溶
着を防いで容易にサポート部の除去が可能となる。 請求項13に対応する効果:加熱圧着する方法として、
粉体層に粉体1の溶融温度以上で請求項4又は6を満た
す一定の表面温度を有する圧着体を一定時間圧着するこ
とにより、安価な方法で一定層厚の層状に積み重なった
立体形状が短時間に作製することができる。 請求項14に対応する効果:一定の表面温度を有する圧
着体の粉体と接する表面層を、溶融粉体と密着しない材
質で形成することにより、圧着時に溶着部が体に付着せ
ず、高精度な成形品を得ることができる。 請求項15に対応する効果:一定の表面温度を有する圧
着体と粉体との間に、溶融粉体と密着しない材質で且つ
その表面温度以上の熱変形温度を有するフィルムを配置
しているため、圧着時に溶着部が体に付着せず、高精度
な成形品を得ることができる。Effect corresponding to claim 11: By forming the pattern layer of the powder 2 by transfer and then forming the layer of the powder 2, the particle size of the powder 2 is not much smaller than that of the powder 1. In addition, the powder 1 is prevented from being welded to each other, and the support portion can be easily removed. Effect corresponding to claim 12: Bulk density of powder 2 is changed to powder 1
By making the powder density smaller than the bulk density, it is possible to prevent the powders 1 from being welded to each other and easily remove the support portion. Effect corresponding to claim 13: As a method for thermocompression bonding,
By pressing a pressure-bonding body having a constant surface temperature satisfying claim 4 or 6 above the melting temperature of the powder 1 for a predetermined time on the powder layer, a three-dimensional shape stacked in a layer with a constant layer thickness by an inexpensive method is obtained. It can be manufactured in a short time. Effect corresponding to claim 14: By forming the surface layer in contact with the powder of the pressure-bonded body having a constant surface temperature with a material that does not adhere to the molten powder, the welded portion does not adhere to the body during pressure bonding, and An accurate molded product can be obtained. Effect corresponding to claim 15: Since a film which is a material that does not adhere to the molten powder and has a heat distortion temperature equal to or higher than the surface temperature is arranged between the pressure-bonded body having a constant surface temperature and the powder. The welded portion does not adhere to the body during pressure bonding, and a highly accurate molded product can be obtained.
【0038】請求項16に対応する効果:加熱方法とし
て非接触加熱した後、圧着体で一定時間圧着しているの
で、圧着と同時に固化でき、時間短縮がはかれるととも
に離型もスムーズとなる。 請求項17に対応する効果:フィルムに電子写真プロセ
スの感光ドラムからのトナーの転送の役割をもたせたの
で、装置を安価且つコンパクトにでき、作製時間の短縮
がはかれる。 請求項18に対応する効果:層状に積み重なった部分の
温度を、粉体1の熱変形温度以下か粉体2の溶融温度以
下のどちらか低い方の温度以下の一定温度に保持してい
るので、圧着時間を短縮できるとともに、高精度の立体
形状を得ることができる。 請求項19に対応する効果:粉体1と粉体2で形成した
粉体層の一層の厚さが10〜800μmであるので、高
精度なものが短時間で得ることができる。 請求項20に対応する効果:粉体2のパターン部におい
て、粉体1が100重量部に対して粉体2を5〜80重
量部用いるので、サポート部の分離が容易となり、高精
度な立体形状を得ることができる。 請求項21に対応する効果:粉体1にガラス繊維や無機
フィラー等の強化材・充填材が入った樹脂複合材料を用
いることにより、さらに高精度や高強度の立体形状を得
ることができる。Effect corresponding to claim 16: As a heating method, non-contact heating is followed by pressure bonding with a pressure bonding body for a certain period of time, so that it can be solidified at the same time as pressure bonding, time can be shortened, and mold release becomes smooth. Effect corresponding to claim 17: Since the film has a role of transferring the toner from the photosensitive drum in the electrophotographic process, the apparatus can be made inexpensive and compact, and the manufacturing time can be shortened. Effect corresponding to claim 18: Since the temperature of the layered portion is maintained at a constant temperature which is lower than the thermal deformation temperature of the powder 1 or lower than the melting temperature of the powder 2, whichever is lower. It is possible to shorten the pressure bonding time and obtain a highly accurate three-dimensional shape. Effect corresponding to claim 19: Since the thickness of the powder layer formed of the powder 1 and the powder 2 is 10 to 800 μm, a highly accurate product can be obtained in a short time. Effect corresponding to claim 20: In the pattern portion of the powder 2, since 5 to 80 parts by weight of the powder 2 is used with respect to 100 parts by weight of the powder 1, it becomes easy to separate the support portion, and a highly accurate three-dimensional shape is obtained. The shape can be obtained. Effect corresponding to claim 21: By using the resin composite material in which the reinforcing material / filler such as glass fiber or inorganic filler is contained in the powder 1, it is possible to obtain a three-dimensional shape with higher accuracy and higher strength.
【図1】 本発明の一実施例を説明するための工程図で
ある。FIG. 1 is a process chart for explaining an example of the present invention.
【図2】 本発明の他の実施例を示す全体構成図であ
る。FIG. 2 is an overall configuration diagram showing another embodiment of the present invention.
【図3】 本発明の更に他の実施例を示す全体構成図で
ある。FIG. 3 is an overall configuration diagram showing still another embodiment of the present invention.
1…粉体1、2…粉体2、3…感光ドラム、4…レーザ
ー、5…フィルム、6…粉体1の供給層、7…型枠、8
…ヒータ、9…積層ステージ、10…赤外線ヒータ、1
1…加圧板、13…加熱圧縮プレート、14…加熱圧縮
ローラ。DESCRIPTION OF SYMBOLS 1 ... Powder 1, 2 ... Powder 2, 3 ... Photosensitive drum, 4 ... Laser, 5 ... Film, 6 ... Supply layer of powder 1, 7 ... Formwork, 8
... Heater, 9 ... Stacking stage, 10 ... Infrared heater, 1
DESCRIPTION OF SYMBOLS 1 ... Pressure plate, 13 ... Heating compression plate, 14 ... Heating compression roller.
Claims (21)
1より粒径の小さい異材質のパターンを形成する粉体2
により1層の粉体層を形成し、該粉体層を加熱圧着する
とともに、パターンを変化させながら前記粉体層を層状
に積み重ねた後、パターン化された粉体層の部分を取り
除くことを特徴とする立体形状の製造方法。1. A powder 1 made of a thermoplastic resin, and a powder 2 forming a pattern of a different material having a smaller particle size than the powder 1.
To form one powder layer by means of heat-pressing the powder layer and stacking the powder layers in layers while changing the pattern, and then removing the patterned powder layer portion. A method for producing a characteristic three-dimensional shape.
ターンとして用いることを特徴とする請求項1記載の立
体形状の製造方法。2. The method for producing a three-dimensional shape according to claim 1, wherein a portion other than the cross-sectional portion of the three-dimensional shape model is used as a pattern.
ロセスを用いて、前記粉体1に供給することを特徴とす
る請求項1記載の立体形状の製造方法。3. The method for producing a three-dimensional shape according to claim 1, wherein the powder 2 forming a pattern is supplied to the powder 1 by using an electrophotographic process.
温度で溶融し、前記粉体1より低強度または低相溶性の
材料を用い、粉体1と粉体2の混合部の溶着強度を粉体
1同士の溶着強度より著しく低くしたことを特徴とする
請求項1記載の立体形状の製造方法。4. The welding strength of the mixed portion of the powder 1 and the powder 2 is obtained by melting the powder 2 forming the pattern at a heating and compression temperature and using a material having a lower strength or a lower compatibility than the powder 1. The method for producing a three-dimensional shape according to claim 1, wherein the welding strength is significantly lower than the welding strength between the powders 1.
粉体を用いることを特徴とする請求項4記載の立体形状
の製造方法。5. The method for producing a three-dimensional shape according to claim 4, wherein a general-purpose electrophotographic toner powder is used as the powder 2.
り高融点の材料を用い、加熱圧着で溶着するときの加熱
温度を、粉体1の溶融温度以上で粉体2の溶融温度以下
とし、粉体1と粉体2の混合部の溶着強度を粉体1同士
の溶着強度より著しく低くしたことを特徴とする請求項
1記載の立体形状の製造方法。6. A material having a melting point higher than that of the powder 1 is used for the powder 2 forming the pattern, and the heating temperature for welding by thermocompression bonding is not less than the melting temperature of the powder 1 and the melting temperature of the powder 2. The method for producing a three-dimensional shape according to claim 1, wherein the welding strength of the mixed portion of the powder 1 and the powder 2 is made significantly lower than the welding strength of the powders 1 to each other.
る無機粉体を用いることを特徴とする請求項6記載の立
体形状の製造方法。7. The method for producing a three-dimensional shape according to claim 6, wherein an inorganic powder represented by ceramics powder is used as the powder 2.
あることを特徴とする請求項1記載の立体形状の製造方
法。8. The method for producing a three-dimensional shape according to claim 1, wherein the powder 1 has an average particle diameter of 20 to 500 μm.
て1/5〜1/500であることを特徴とする請求項1
記載の立体形状の製造方法。9. The average particle diameter of the powder 2 is 1/5 to 1/500 of the particle diameter of the powder 1,
A method for producing the three-dimensional shape described.
ン層を転写により形成することを特徴とする請求項1記
載の立体形状の製造方法。10. The method for producing a three-dimensional shape according to claim 1, wherein after forming the layer of the powder 1, the pattern layer of the powder 2 is formed by transfer.
後、粉体2の層を形成することを特徴とする請求項1記
載の立体形状の製造方法。11. The method for producing a three-dimensional shape according to claim 1, wherein the layer of the powder 2 is formed after the pattern layer of the powder 2 is formed by transfer.
より小さくしたことを特徴とする請求項1記載の立体形
状の製造方法。12. The method for producing a three-dimensional shape according to claim 1, wherein the bulk density of the powder 2 is smaller than that of the powder 1.
体1の溶融温度以上で、請求項4又は6を満たす一定の
表面温度を有する圧着体を一定時間圧着することを特徴
とする請求項1記載の立体形状の製造方法。13. The method for thermocompression bonding is characterized in that a pressure-bonded body having a constant surface temperature satisfying claim 4 or 6 is bonded to the powder layer at a melting temperature of the powder 1 or higher for a predetermined time. Item 3. A method for producing a three-dimensional shape according to item 1.
と接する表面層を、溶融粉体と密着性しない材質で形成
したことを特徴とする請求項13又は16記載の立体形
状の製造方法。14. The method for producing a three-dimensional shape according to claim 13, wherein the surface layer in contact with the powder of the pressure-bonded body having a constant surface temperature is formed of a material that does not adhere to the molten powder. .
との間に溶融粉体と密着しない材質で、且つその表面温
度以上の熱変形温度を有するフィルムを配置したことを
特徴とする請求項13記載の立体形状の製造方法。15. A film, which is made of a material that does not adhere to the molten powder and has a heat distortion temperature equal to or higher than the surface temperature, is arranged between the pressure-bonded body having a constant surface temperature and the powder. Item 13. A method for producing a three-dimensional shape according to Item 13.
融温度以上で請求項4又は6を満たす一定温度に非接触
加熱した後、粉体1か粉体2のどちらか低い方の溶融温
度以下で、一定の表面温度を有する圧着体を一定時間圧
着することを特徴とする請求項1記載の立体形状の製造
方法。16. The method of thermocompression bonding, which comprises non-contact heating to a constant temperature satisfying claim 4 or 6 at a melting temperature of powder 1 or higher, and then melting temperature of powder 1 or powder 2 whichever is lower. The method for producing a three-dimensional shape according to claim 1, wherein a pressure-bonded body having a constant surface temperature is pressure-bonded for a predetermined time.
ラムからのトナーの転送の役割をもたせたことを特徴と
する請求項15記載の立体形状の製造方法。17. The method for producing a three-dimensional shape according to claim 15, wherein the film has a role of transferring toner from the photosensitive drum in the electrophotographic process.
体1の熱変形温度以下か、粉体2の溶融温度以下のどち
らか低い方の温度以下の一定温度に保持することを特徴
とする請求項15記載の立体形状の製造方法。18. The temperature of the layered portion is maintained at a constant temperature below the thermal deformation temperature of the powder 1 or below the melting temperature of the powder 2, whichever is lower. The method for manufacturing a three-dimensional shape according to claim 15.
層の厚さが10〜800μmであることを特徴とする請
求項1記載の立体形状の製造方法。19. The method for producing a three-dimensional shape according to claim 1, wherein the powder layer formed of the powder 1 and the powder 2 has a thickness of 10 to 800 μm.
が100重量部に対して粉体2を5〜80重量部用いる
ことを特徴とする請求項1記載の立体形状の製造方法。20. The powder 1 in the pattern portion of the powder 2
5. The method for producing a three-dimensional shape according to claim 1, wherein the powder 2 is used in an amount of 5 to 80 parts by weight with respect to 100 parts by weight.
の強化材・充填材が入った樹脂複合材料を用いることを
特徴とする請求項1記載の立体形状の製造方法。21. The method for producing a three-dimensional shape according to claim 1, wherein the powder 1 is a resin composite material containing a reinforcing material / filler such as glass fiber or an inorganic filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7090531A JPH08281808A (en) | 1995-04-17 | 1995-04-17 | Manufacture of stereoscopic shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7090531A JPH08281808A (en) | 1995-04-17 | 1995-04-17 | Manufacture of stereoscopic shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08281808A true JPH08281808A (en) | 1996-10-29 |
Family
ID=14001002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7090531A Pending JPH08281808A (en) | 1995-04-17 | 1995-04-17 | Manufacture of stereoscopic shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08281808A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0957857A (en) * | 1995-08-25 | 1997-03-04 | Roland D G Kk | Three dimensionally molding method and apparatus used therefor |
JP2004532753A (en) * | 2001-05-11 | 2004-10-28 | ストラタシス・インコーポレイテッド | Materials and methods for three-dimensional modeling |
WO2011065920A1 (en) * | 2009-11-26 | 2011-06-03 | Yu En Tan | Process for building three-dimensional objects |
WO2013044047A1 (en) * | 2011-09-23 | 2013-03-28 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US8488994B2 (en) | 2011-09-23 | 2013-07-16 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with transfer-medium service loops |
US20130186549A1 (en) * | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US20130186558A1 (en) * | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion with heat capacitor belt for additive manufacturing |
WO2013190817A1 (en) * | 2012-06-19 | 2013-12-27 | Canon Kabushiki Kaisha | Manufacturing method of structure and manufacturing apparatus |
WO2014092205A1 (en) * | 2012-12-13 | 2014-06-19 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
US8879957B2 (en) | 2011-09-23 | 2014-11-04 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with reciprocating operation |
WO2014203517A1 (en) * | 2013-06-18 | 2014-12-24 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
US9023566B2 (en) | 2013-07-17 | 2015-05-05 | Stratasys, Inc. | ABS part material for electrophotography-based additive manufacturing |
US9029058B2 (en) | 2013-07-17 | 2015-05-12 | Stratasys, Inc. | Soluble support material for electrophotography-based additive manufacturing |
US9144940B2 (en) | 2013-07-17 | 2015-09-29 | Stratasys, Inc. | Method for printing 3D parts and support structures with electrophotography-based additive manufacturing |
JP2016026928A (en) * | 2014-07-03 | 2016-02-18 | キヤノン株式会社 | Three-dimensional object modeling apparatus, recording apparatus, transfer method, pressing member for transfer, and transfer body |
US9278482B2 (en) | 2012-05-14 | 2016-03-08 | Ricoh Company, Ltd. | Method and apparatus for fabricating three-dimensional object |
US9643357B2 (en) | 2014-03-18 | 2017-05-09 | Stratasys, Inc. | Electrophotography-based additive manufacturing with powder density detection and utilization |
US9688027B2 (en) | 2014-04-01 | 2017-06-27 | Stratasys, Inc. | Electrophotography-based additive manufacturing with overlay control |
US9770869B2 (en) | 2014-03-18 | 2017-09-26 | Stratasys, Inc. | Additive manufacturing with virtual planarization control |
JP2017217910A (en) * | 2016-06-07 | 2017-12-14 | ゼロックス コーポレイションXerox Corporation | Electrostatic 3-d printer using layer and mechanical planer |
US9868255B2 (en) | 2014-03-18 | 2018-01-16 | Stratasys, Inc. | Electrophotography-based additive manufacturing with pre-sintering |
US9919479B2 (en) | 2014-04-01 | 2018-03-20 | Stratasys, Inc. | Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system |
US10011071B2 (en) | 2014-03-18 | 2018-07-03 | Evolve Additive Solutions, Inc. | Additive manufacturing using density feedback control |
US10144175B2 (en) | 2014-03-18 | 2018-12-04 | Evolve Additive Solutions, Inc. | Electrophotography-based additive manufacturing with solvent-assisted planarization |
US10166718B2 (en) | 2015-06-12 | 2019-01-01 | Ricoh Company, Ltd. | Apparatus for fabricating three-dimensional object |
US10913259B2 (en) | 2015-11-20 | 2021-02-09 | Ricoh Company, Ltd. | Three-dimensional shaping apparatus and three-dimensional shaping system |
-
1995
- 1995-04-17 JP JP7090531A patent/JPH08281808A/en active Pending
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0957857A (en) * | 1995-08-25 | 1997-03-04 | Roland D G Kk | Three dimensionally molding method and apparatus used therefor |
JP2004532753A (en) * | 2001-05-11 | 2004-10-28 | ストラタシス・インコーポレイテッド | Materials and methods for three-dimensional modeling |
WO2011065920A1 (en) * | 2009-11-26 | 2011-06-03 | Yu En Tan | Process for building three-dimensional objects |
US8718522B2 (en) | 2011-09-23 | 2014-05-06 | Stratasys, Inc. | Layer transfusion with part heating for additive manufacturing |
US11241824B2 (en) | 2011-09-23 | 2022-02-08 | Evolve Additive Solutions, Inc. | Layer transfusion for heat capacitor belt for additive manufacturing |
US20130075022A1 (en) * | 2011-09-23 | 2013-03-28 | Stratasys, Inc. | Layer Transfusion with Transfixing for Additive Manufacturing |
US8488994B2 (en) | 2011-09-23 | 2013-07-16 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with transfer-medium service loops |
US20130186549A1 (en) * | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US20130186558A1 (en) * | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion with heat capacitor belt for additive manufacturing |
US9423756B2 (en) | 2011-09-23 | 2016-08-23 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with reciprocating operation |
US9141015B2 (en) | 2011-09-23 | 2015-09-22 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with transfer-medium service loops |
WO2013044047A1 (en) * | 2011-09-23 | 2013-03-28 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US20130075013A1 (en) * | 2011-09-23 | 2013-03-28 | Stratasys, Inc. | Layer Transfusion with Rotatable Belt for Additive Manufacturing |
US8879957B2 (en) | 2011-09-23 | 2014-11-04 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with reciprocating operation |
JP2014533210A (en) * | 2011-09-23 | 2014-12-11 | ストラタシス,インコーポレイテッド | Layer melt transfer for additive manufacturing. |
US9904223B2 (en) * | 2011-09-23 | 2018-02-27 | Stratasys, Inc. | Layer transfusion with transfixing for additive manufacturing |
US9885987B2 (en) * | 2011-09-23 | 2018-02-06 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US9720363B2 (en) * | 2011-09-23 | 2017-08-01 | Stratasys, Inc. | Layer transfusion with rotatable belt for additive manufacturing |
US9278482B2 (en) | 2012-05-14 | 2016-03-08 | Ricoh Company, Ltd. | Method and apparatus for fabricating three-dimensional object |
US9636897B2 (en) | 2012-06-19 | 2017-05-02 | Canon Kabushiki Kaisha | Manufacturing method of structure and manufacturing apparatus |
WO2013190817A1 (en) * | 2012-06-19 | 2013-12-27 | Canon Kabushiki Kaisha | Manufacturing method of structure and manufacturing apparatus |
WO2014092205A1 (en) * | 2012-12-13 | 2014-06-19 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
JP2014133414A (en) * | 2012-12-13 | 2014-07-24 | Canon Inc | Structure manufacturing method and manufacturing apparatus |
US9604437B2 (en) | 2012-12-13 | 2017-03-28 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
WO2014203517A1 (en) * | 2013-06-18 | 2014-12-24 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
CN105307841A (en) * | 2013-06-18 | 2016-02-03 | 佳能株式会社 | Method for manufacturing structural body and manufacturing apparatus therefor |
US10279546B2 (en) | 2013-06-18 | 2019-05-07 | Canon Kabushiki Kaisha | Method for manufacturing structural body and manufacturing apparatus therefor |
US10065371B2 (en) | 2013-07-17 | 2018-09-04 | Evolve Additive Solutions, Inc. | Method for printing 3D parts and support structures with electrophotography-based additive manufacturing |
US9933718B2 (en) | 2013-07-17 | 2018-04-03 | Stratasys, Inc. | Part material for electrophotography-based additive manufacturing |
US10018937B2 (en) | 2013-07-17 | 2018-07-10 | Evolve Additive Solutions, Inc. | Soluble support material for electrophotography-based additive manufacturing |
US9029058B2 (en) | 2013-07-17 | 2015-05-12 | Stratasys, Inc. | Soluble support material for electrophotography-based additive manufacturing |
US9557661B2 (en) | 2013-07-17 | 2017-01-31 | Stratasys, Inc. | Soluble support material for electrophotography-based additive manufacturing |
US9482974B2 (en) | 2013-07-17 | 2016-11-01 | Stratasys, Inc. | Part material for electrophotography-based additive manufacturing |
US9144940B2 (en) | 2013-07-17 | 2015-09-29 | Stratasys, Inc. | Method for printing 3D parts and support structures with electrophotography-based additive manufacturing |
US9023566B2 (en) | 2013-07-17 | 2015-05-05 | Stratasys, Inc. | ABS part material for electrophotography-based additive manufacturing |
US9868255B2 (en) | 2014-03-18 | 2018-01-16 | Stratasys, Inc. | Electrophotography-based additive manufacturing with pre-sintering |
US9770869B2 (en) | 2014-03-18 | 2017-09-26 | Stratasys, Inc. | Additive manufacturing with virtual planarization control |
US10011071B2 (en) | 2014-03-18 | 2018-07-03 | Evolve Additive Solutions, Inc. | Additive manufacturing using density feedback control |
US9643357B2 (en) | 2014-03-18 | 2017-05-09 | Stratasys, Inc. | Electrophotography-based additive manufacturing with powder density detection and utilization |
US10144175B2 (en) | 2014-03-18 | 2018-12-04 | Evolve Additive Solutions, Inc. | Electrophotography-based additive manufacturing with solvent-assisted planarization |
US9919479B2 (en) | 2014-04-01 | 2018-03-20 | Stratasys, Inc. | Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system |
US9688027B2 (en) | 2014-04-01 | 2017-06-27 | Stratasys, Inc. | Electrophotography-based additive manufacturing with overlay control |
JP2016026928A (en) * | 2014-07-03 | 2016-02-18 | キヤノン株式会社 | Three-dimensional object modeling apparatus, recording apparatus, transfer method, pressing member for transfer, and transfer body |
US10166718B2 (en) | 2015-06-12 | 2019-01-01 | Ricoh Company, Ltd. | Apparatus for fabricating three-dimensional object |
US10913259B2 (en) | 2015-11-20 | 2021-02-09 | Ricoh Company, Ltd. | Three-dimensional shaping apparatus and three-dimensional shaping system |
JP2017217910A (en) * | 2016-06-07 | 2017-12-14 | ゼロックス コーポレイションXerox Corporation | Electrostatic 3-d printer using layer and mechanical planer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08281808A (en) | Manufacture of stereoscopic shape | |
JP6253273B2 (en) | Structure manufacturing method and manufacturing apparatus | |
JP5855755B2 (en) | Layer melt transfer for additive manufacturing. | |
US5078821A (en) | Method and apparatus for producing composites of materials exhibiting thermoplastic properties | |
KR970704573A (en) | Syntactic foam sheet material | |
WO1995018010A1 (en) | Laminate molding method and laminate molding apparatus | |
GB2297516A (en) | Production of 3-D prototypes from computer generated models | |
WO2008098030A1 (en) | Process and apparatus for embossing a film surface | |
Özden et al. | Additive manufacturing of ceramics from thermoplastic feedstocks | |
JPH0857967A (en) | Three-dimensional shaping method | |
JPH09272153A (en) | Manufacture of three-dimensional article | |
US6207004B1 (en) | Method for producing thin IC cards and construction thereof | |
JP2005059324A (en) | 3D additive manufacturing equipment | |
JP2004299382A (en) | Plastic laminated body, its manufacturing process and rear projection type image displaying device | |
US20050220983A1 (en) | Method of processing a stack of coatings and apparatus for processing a stack of coatings | |
US6273326B1 (en) | Method and device for producing a metallic or ceramic body | |
JPH1086224A (en) | Method of forming three-dimensional object | |
WO1994001274A1 (en) | Method of molding interior finishing material of cardboard | |
JPH10193036A (en) | Manufacture of mold | |
JP2626305B2 (en) | How to make a fly-eye lens plate stamper | |
JPH11123766A (en) | Additive manufacturing process and additive manufacturing device | |
JPH04270633A (en) | Method for microtransferring | |
EP1507645B1 (en) | A method of registering and bonding coatings to form a part, apparatus for manufacturing a part | |
JPH0976046A (en) | Method for molding shell mold | |
JP2001310340A (en) | Roll forming mold |