JPH08280646A - Magnetic resonance imaging apparatus - Google Patents
Magnetic resonance imaging apparatusInfo
- Publication number
- JPH08280646A JPH08280646A JP7117724A JP11772495A JPH08280646A JP H08280646 A JPH08280646 A JP H08280646A JP 7117724 A JP7117724 A JP 7117724A JP 11772495 A JP11772495 A JP 11772495A JP H08280646 A JPH08280646 A JP H08280646A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- signal
- coil
- detection
- magnetic resonance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 30
- 238000001514 detection method Methods 0.000 claims abstract description 104
- 230000035945 sensitivity Effects 0.000 claims abstract description 66
- 238000012545 processing Methods 0.000 claims abstract description 50
- 238000005481 NMR spectroscopy Methods 0.000 claims description 48
- 238000004422 calculation algorithm Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 8
- 238000012937 correction Methods 0.000 abstract description 33
- 238000007689 inspection Methods 0.000 abstract description 28
- 230000003321 amplification Effects 0.000 abstract description 5
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気共鳴イメージング装
置(以下、MRI装置という)に関し、特に定められた
検査領域で均一な信号強度の検査結果が得られるように
好適な補償処理を備えたMRI装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as "MRI apparatus"), and in particular, an MRI apparatus equipped with a compensation process suitable for obtaining an inspection result with a uniform signal intensity in a predetermined inspection area. Regarding the device.
【0002】[0002]
【従来技術】MRI装置は、核磁気共鳴(以下、NMR
という)現象を利用して被検体である人体の内部組織の
断層像や局所的なスペクトルを測定し、被検体を無侵襲
的に検査する装置である。標準的なMRI装置は図6に
示すように均一な磁界を発生する磁石601と、直交す
る3軸方向にそれぞれ傾斜磁場を発生する3つの傾斜磁
場コイル602と、それらコイルを駆動する傾斜磁場電
源603〜605と、検査部位の原子核スピンを励起す
る高周波磁界を発生する照射用高周波コイル606と、
そのコイルを駆動する高周波送信器607と、励起後の
核スピンからのNMR信号を電気信号として検出する検
出用の高周波コイル608と、そのコイルに接続された
信号増幅回路609と、NMR信号から被験者の像を生
成するための信号処理を行うとともに傾斜磁場コイル6
02及び高周波コイル606の駆動並びに信号検出のタ
イミングを予め定められたシーケンスに従って制御する
ための計算機610と、生成された像を表示するモニタ
ーディスプレイ611と、被検体1を計測位置に移動さ
せる患者テーブル612とを備えている。これら装置は
検出用高周波コイル608に電磁波ノイズが混入して検
査結果が劣化しないようにするため、電磁遮蔽された検
査室に磁石601と患者テーブル612が配置され、室
外から操作するために制御系と操作卓613は検査室の
外に置かれている。2. Description of the Related Art An MRI apparatus is a nuclear magnetic resonance (hereinafter, referred to as NMR
It is a device that non-invasively inspects the subject by measuring the tomographic image and the local spectrum of the internal tissue of the human body, which is the subject. As shown in FIG. 6, a standard MRI apparatus includes a magnet 601 that generates a uniform magnetic field, three gradient magnetic field coils 602 that generate gradient magnetic fields in three orthogonal directions, and a gradient magnetic field power supply that drives these coils. 603 to 605, an irradiation high-frequency coil 606 that generates a high-frequency magnetic field that excites nuclear spins at the inspection site,
A high-frequency transmitter 607 that drives the coil, a high-frequency coil 608 for detection that detects an NMR signal from the excited nuclear spin as an electric signal, a signal amplification circuit 609 connected to the coil, and a subject from the NMR signal. Signal processing for generating an image of
02 and the driving of the high frequency coil 606 and a computer 610 for controlling the timing of signal detection according to a predetermined sequence, a monitor display 611 for displaying the generated image, and a patient table for moving the subject 1 to the measurement position. 612 and. In these devices, in order to prevent electromagnetic noise from being mixed into the detection high-frequency coil 608 and deterioration of inspection results, a magnet 601 and a patient table 612 are arranged in an electromagnetically shielded examination room, and a control system for operating from the outside is provided. The operator console 613 is placed outside the examination room.
【0003】このようなMRI装置では、診断装置とし
て1)検出されたNMR信号の強度が実際の検査部位の
位置と核スピンの状態を正確に反映していること、2)
検査結果が診断に有益な情報を有していること、即ちN
MR信号のS/Nが高いことが、重要な項目として挙げ
られる。 1)の項目については、静磁場磁石、傾斜磁場コイル及
び照射用の高周波コイルが、その中心付近で最適な特性
を示し、かつ、目的とする検査領域において最適の特性
を有するように充分な大きさであることが望まれる。し
かし装置実現のためには大きさに制限があり、このた
め、発生される磁場に歪が生じる。これら磁場の歪を補
正して検査部位領域全体に均一な検査結果を生成するた
めに、NMR信号に種々の補正処理を加えている。例え
ば、特開昭59−190643号公報に記載された技術
では、静磁場の均一度の悪さと、傾斜磁場の直線性歪に
より生成されるNMR画像が本来の検査部位の実体と位
置の上で対応しない問題を計算処理で補正している。ま
た、特開平1−308537号公報には、高周波磁界の
空間的不均一の影響を除去した上でNMR画像を得るM
RI装置が提案されている。In such an MRI apparatus, as a diagnostic apparatus, 1) the intensity of the detected NMR signal accurately reflects the actual position of the examination site and the state of nuclear spin, 2).
The test result has useful information for diagnosis, that is, N
A high S / N ratio of the MR signal is an important item. As for the item 1), the static magnetic field magnet, the gradient magnetic field coil, and the irradiation high-frequency coil exhibit optimal characteristics near the center thereof, and are sufficiently large so as to have optimal characteristics in the target inspection region. Is desired. However, the size of the device is limited to realize the device, and thus the generated magnetic field is distorted. In order to correct the distortion of the magnetic field and generate a uniform inspection result in the entire inspection region, various correction processes are added to the NMR signal. For example, in the technique disclosed in Japanese Patent Application Laid-Open No. 59-190643, the NMR image generated by the poor uniformity of the static magnetic field and the linear distortion of the gradient magnetic field is different from the actual body and position of the examination site. The problem that does not correspond is corrected by the calculation process. Further, in Japanese Patent Laid-Open No. 1-308537, an NMR image is obtained after removing the influence of spatial nonuniformity of a high frequency magnetic field.
RI equipment has been proposed.
【0004】上記2)の項目、即ちS/N向上について
は、1つには静磁場の強度を増加することでNMR信号
の強度向上が計られている。一方、検出コイル側の改善
として、検出コイルへのNMR信号の誘起電圧を向上す
るため、核磁気モーメントと検出コイルを近接する方法
が採用されている。例えば、円筒形の検出コイルはその
内部に配置される被検体の形状にできるだけ近付けるた
め被検体の部位毎に検出コイルが用いられている。即
ち、頭部用と体幹部用にそれぞれ個別の検出コイルを備
えたMRI装置が開発され、更に、体幹部用は被検体の
断面形状に合わせて、楕円体の断面形状を有するコイル
も開発されている。また特定部位からのスペクトルを計
測するために開発された表面コイルにより、より高感度
に局所的なスペクトル計測やイメージングデータが取得
できるようになった。以上述べたように、MRI装置に
は検査部位ごとに、或いは検査目的別に検出コイルを準
備することが一般的となっている。このように複数の検
出コイルを備えたMRI装置において、各部位の検査に
あたって、それぞれの検出コイルによりS/Nの良好な
検査データを煩雑な操作をすることなく得るための技術
や(特公平2−25492号公報)、コイルへの過剰電
力供給による事故を防ぐために検出コイルの識別信号を
計算機に入力し、複数の検出コイルから現在用いている
検出コイルを正確に認識・記録する技術(特開平6−2
01809号公報や実公平6−36802号公報)が提
案されている。Regarding the item 2), that is, the improvement of the S / N, the intensity of the NMR signal is improved by increasing the intensity of the static magnetic field. On the other hand, as an improvement on the detection coil side, in order to improve the induced voltage of the NMR signal to the detection coil, a method of bringing the nuclear magnetic moment and the detection coil close to each other is adopted. For example, in the case of a cylindrical detection coil, a detection coil is used for each part of the subject in order to make it as close as possible to the shape of the subject placed inside. That is, an MRI apparatus having separate detection coils for the head and the torso has been developed, and for the torso, a coil having an ellipsoidal cross-sectional shape has been developed to match the cross-sectional shape of the subject. ing. In addition, the surface coil developed to measure the spectrum from a specific site has made it possible to obtain local spectrum measurement and imaging data with higher sensitivity. As described above, in the MRI apparatus, it is common to prepare a detection coil for each examination site or for each examination purpose. In the MRI apparatus having a plurality of detection coils as described above, a technique for obtaining inspection data having a good S / N by each detection coil without complicated operations when inspecting each part (Japanese Patent Publication No. No. 25492), a technique for inputting an identification signal of a detection coil to a computer in order to prevent an accident due to excessive power supply to the coil, and accurately recognizing / recording the detection coil currently used from a plurality of detection coils (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). 6-2
No. 01809 and Japanese Utility Model Publication No. 6-36802) have been proposed.
【0005】[0005]
【発明が解決しようとする課題】ところで、上記従来技
術はNMR信号の検出感度を向上することができたこと
で、飛躍的にMRI装置の診断能力を向上させることが
できたが、反面、検査領域内における信号データの強度
の均一性に付いては多少犠牲にせざるを得ないという問
題があった。これは、検出コイルと検査部位の距離を近
づけることにより起こる問題である。一般に検出コイル
の検出感度の空間分布はコイルに電流を流したときに発
生する磁束空間分布と等価であり、コイルの近傍におい
て磁束が集中することが明らかなように、検出コイルに
近接した被検体の部位は他の部位に比べ高感度で計測さ
れる。表面タイプのコイルの場合はこの傾向が特に顕著
で、検出コイル近傍は高感度で計測され、検出コイルか
ら離れるに従い急激に検出感度が低下することになる。
このような表面コイルの特性は、診断において不都合を
生じる場合がある。例えば、コイル近傍に存在する皮下
脂肪のNMR信号が特別に高い強度を呈することによ
り、その近傍の信号が判断困難となる。あるいは、画像
診断において、画像濃淡で病変部位を特定する場合など
は、これら検出コイルの感度の空間分布特性の劣化は重
大な問題となる。しかし、従来の技術では検出コイルの
感度向上に力点がおかれ、その感度の空間分布の改善は
二の次ぎとなっていた。By the way, the above-mentioned prior art was able to dramatically improve the diagnostic ability of the MRI apparatus by being able to improve the detection sensitivity of the NMR signal. There was a problem that the uniformity of the intensity of the signal data in the area had to be sacrificed to some extent. This is a problem caused by reducing the distance between the detection coil and the inspection site. Generally, the spatial distribution of the detection sensitivity of the detection coil is equivalent to the magnetic flux spatial distribution generated when a current is passed through the coil, and it is clear that the magnetic flux concentrates near the coil. The area of is measured with higher sensitivity than other areas. This tendency is particularly remarkable in the case of the surface type coil, and the vicinity of the detection coil is measured with high sensitivity, and the detection sensitivity sharply decreases as the distance from the detection coil increases.
Such a characteristic of the surface coil may cause inconvenience in diagnosis. For example, the NMR signal of subcutaneous fat existing in the vicinity of the coil has a particularly high intensity, which makes it difficult to determine the signal in the vicinity thereof. Alternatively, in image diagnosis, when a lesion site is specified by image density, deterioration of the spatial distribution characteristic of the sensitivity of these detection coils becomes a serious problem. However, in the conventional technique, emphasis is placed on improving the sensitivity of the detection coil, and the improvement of the spatial distribution of the sensitivity is second only.
【0006】検出コイルの感度分布の不均一による画像
の劣化を解決するため予め検出コイルの感度分布を求め
ておき、それによってNMR信号を補正することは可能
であるが、検出コイルの感度分布は個々の検出コイルに
よっても検出コイルの種類によっても異なり、用いる検
出コイルの感度分布をその都度求めておくことは繁瑣に
堪えない。特に複数の検出コイルを備えたMRI装置の
場合には、各検出コイルについて感度分布を求めておく
と共に、用いた検出コイルによって対応する感度分布補
正を行わなければないことになる。また感度分布は、被
検体や撮影条件によっても異なる場合があり、このよう
な場合には予め求めた感度分布によっても正確な補正が
できないという問題がある。In order to solve the deterioration of the image due to the non-uniformity of the sensitivity distribution of the detection coil, it is possible to obtain the sensitivity distribution of the detection coil in advance and correct the NMR signal by this, but the sensitivity distribution of the detection coil is Since it depends on the individual detection coil and the type of the detection coil, it is unreasonable to obtain the sensitivity distribution of the detection coil to be used each time. In particular, in the case of an MRI apparatus including a plurality of detection coils, it is necessary to obtain the sensitivity distribution for each detection coil and to perform the corresponding sensitivity distribution correction depending on the detection coil used. In addition, the sensitivity distribution may vary depending on the subject and the imaging conditions, and in such a case, there is a problem in that accurate correction cannot be performed even with the sensitivity distribution obtained in advance.
【0007】従って本発明の目的は、検出コイルの感度
分布の特性を補正して、本来の核スピンの信号強度に対
応した正確な検査結果を得ることであり、特に複数の検
出コイルに対して各々の感度分布特性に対応した補正を
自動的に行うことのできるMRI装置を提供することで
ある。Therefore, an object of the present invention is to correct the characteristic of the sensitivity distribution of the detection coil to obtain an accurate inspection result corresponding to the original nuclear spin signal intensity, and particularly for a plurality of detection coils. An object of the present invention is to provide an MRI apparatus capable of automatically performing correction corresponding to each sensitivity distribution characteristic.
【0008】[0008]
【課題を解決するための手段】これらの目的を達成する
本発明のMRI装置は、被検体の置かれる計測空間に均
一な静磁場と位置により強度の異なる傾斜磁場と高周波
磁場とをそれぞれ発生させる磁場発生手段と、被検体の
検査部位から発生する核磁気共鳴信号を検出する検出手
段と、検出された核磁気共鳴信号を信号処理する計算機
と、該計算機の計算結果を表示する表示手段と、磁場発
生手段及び検出手段を駆動制御する制御手段とを備えた
MRI装置において、計算機は検出手段の種類を認識す
る機能を備え、検出手段の種類に対応して、信号処理の
処理内容を変更するように構成したものである。本発明
のMRI装置の別な態様において、検出手段は被検体の
検査部位ごとに配置される少なくとも2以上の検出手段
を備え、計算機はこれら2以上の検出手段のうち駆動中
の検出手段を認識する機能を備え、駆動中の検出手段の
特性に対応して、信号処理の処理内容を変更するように
したものである。The MRI apparatus of the present invention which achieves these objects generates a uniform static magnetic field and a gradient magnetic field and a high frequency magnetic field having different strengths depending on the position in a measurement space in which a subject is placed. Magnetic field generation means, detection means for detecting the nuclear magnetic resonance signal generated from the examination site of the subject, a computer for signal processing the detected nuclear magnetic resonance signal, and a display means for displaying the calculation result of the computer, In an MRI apparatus provided with a magnetic field generation means and a control means for driving and controlling the detection means, the computer has a function of recognizing the type of the detection means, and changes the processing content of the signal processing according to the type of the detection means. It is configured as follows. In another aspect of the MRI apparatus of the present invention, the detecting means includes at least two or more detecting means arranged for each examination site of the subject, and the computer recognizes the detecting means being driven among these two or more detecting means. It has a function to do so, and changes the processing content of the signal processing according to the characteristics of the detecting means during driving.
【0009】計算機で行う信号処理は、検出手段感度分
布が均等になるように検出手段の特性に対応して信号に
補正を加える処理を含み、特に検出手段により検出され
た核磁気共鳴信号に基づき該検出手段の感度分布特性を
求めるアルゴリズムと、検出手段により検出された核磁
気共鳴信号を求められた感度分布特性に基づき補正する
アルゴリズムとを含むものである。The signal processing performed by the computer includes processing for correcting the signal corresponding to the characteristics of the detecting means so that the sensitivity distribution of the detecting means becomes uniform, and in particular, based on the nuclear magnetic resonance signal detected by the detecting means. It includes an algorithm for obtaining the sensitivity distribution characteristic of the detecting means and an algorithm for correcting the nuclear magnetic resonance signal detected by the detecting means based on the obtained sensitivity distribution characteristic.
【0010】[0010]
【作用】被検体の検査部位には予めその部位形状や検査
の目的に好適な検出手段である高周波コイルが装着さ
れ、その検査部位が磁場発生手段である磁石、傾斜磁場
コイル及び照射用の高周波コイルの中心に位置するよう
に配置される。制御手段により目的の撮影シーケンスに
合わせて磁場発生手段が動作し、検査部位からのNMR
信号は近傍に装着された検出用の高周波コイルに電気信
号として検出される。検出されたNMR信号は計算機に
送られ画像を生成するための計算処理が行われる。この
際、計算機は用いられている検出用高周波コイルの種類
を認識し、それに応じて例えば検出用高周波コイルの感
度分布の特性を補正する処理を選択し或いは補正処理を
しない選択をする。また複数配列した高周波コイルを部
分的に選択駆動する場合や複数の高周波コイルのいずれ
かを駆動する場合には、駆動中である高周波コイルを認
識し、駆動中の高周波コイルの感度分布の特性に合わせ
た補正処理を行う。これにより用いている高周波コイル
の感度分布を自動的に補正し、正確な検査結果を得るこ
とができる。A high-frequency coil, which is a detection means suitable for the shape of the site and the purpose of the inspection, is previously attached to the inspection site of the subject, and the inspection site has a magnet as the magnetic field generating means, a gradient magnetic field coil, and a high-frequency wave for irradiation. It is arranged so as to be located at the center of the coil. The magnetic field generating means is operated by the control means in accordance with the target imaging sequence, and the
The signal is detected as an electric signal by a high frequency coil for detection mounted in the vicinity. The detected NMR signal is sent to a computer and subjected to calculation processing for generating an image. At this time, the computer recognizes the type of the high-frequency coil for detection used, and accordingly selects, for example, a process for correcting the characteristic of the sensitivity distribution of the high-frequency coil for detection or no correction process. Also, when partially driving a plurality of high-frequency coils or when driving one of the multiple high-frequency coils, the high-frequency coil that is being driven is recognized and the sensitivity distribution characteristics of the high-frequency coil that is being driven are identified. A combined correction process is performed. As a result, it is possible to automatically correct the sensitivity distribution of the high frequency coil used and obtain an accurate inspection result.
【0011】特に用いている高周波コイルの感度分布
を、実際に計測したデータ(NMR信号)から求めるこ
とにより、予め高周波コイルの感度分布を求めておかな
くても用いられた高周波コイルの特性に対応して正確な
感度分布補正が可能となる。By obtaining the sensitivity distribution of the used high frequency coil from the actually measured data (NMR signal), it is possible to correspond to the characteristics of the used high frequency coil without obtaining the sensitivity distribution of the high frequency coil in advance. As a result, accurate sensitivity distribution correction is possible.
【0012】[0012]
【実施例】以下に、本発明の好適な実施例を図面を参照
して説明する。図1は、本発明が適用されるMRI装置
の一実施例を示す概略構成図である。このMRI装置
は、被検体1の置かれる空間に均一な静磁場を発生する
超電導磁石2と、この磁石2内の測定空間に配置され、
静磁場に重畳される傾斜磁場を発生させる3軸方向の傾
斜磁場コイル3と、高周波磁場を発生させる高周波コイ
ル4と、3軸の傾斜磁場コイル3をそれぞれ駆動する駆
動電源x5、駆動電源y6、駆動電源z7と、高周波コ
イル4の駆動電源(送信回路)8と、測定空間内に被検
者1の検査部位を挿入する患者テーブル9と、検査部位
のNMR信号を検出する高周波コイル(以下、検出コイ
ルという)10と、増幅回路12と、増幅されたNMR
信号を演算処理する電子計算機13と、その操作卓14
と、電子計算機13の計算結果を表示する表示モニター
15とを備えており、超電導磁石2、傾斜磁場コイル
3、高周波コイル4と検出コイル10及び患者テーブル
9は電磁遮蔽された検査室(図には示してない)内に設
置されている。さらにこのMRI装置は検出コイル10
と増幅器12との間にコネクション回路11が設けら
れ、コネクション回路11は後述するように検出用の検
出コイル10を特定する信号を発生するとともにNMR
信号を増幅回路12に接続する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an MRI apparatus to which the present invention is applied. This MRI apparatus is arranged in a superconducting magnet 2 that generates a uniform static magnetic field in the space where the subject 1 is placed, and in a measurement space inside this magnet 2.
A three-axis gradient magnetic field coil 3 for generating a gradient magnetic field superimposed on the static magnetic field, a high-frequency coil 4 for generating a high-frequency magnetic field, and a driving power supply x5, a driving power supply y6 for driving the three-axis gradient magnetic field coil 3, respectively. A driving power supply z7, a driving power supply (transmission circuit) 8 for the high frequency coil 4, a patient table 9 into which the examination site of the subject 1 is inserted in the measurement space, and a high frequency coil for detecting an NMR signal of the examination site (hereinafter, (Detection coil) 10, amplification circuit 12, and amplified NMR
An electronic computer 13 for processing signals and its console 14
And a display monitor 15 for displaying the calculation result of the electronic computer 13, the superconducting magnet 2, the gradient magnetic field coil 3, the high frequency coil 4, the detection coil 10 and the patient table 9 are electromagnetically shielded in the examination room (in the figure). Is not shown). Further, this MRI apparatus has a detection coil 10
A connection circuit 11 is provided between the amplifier 12 and the amplifier 12, and the connection circuit 11 generates a signal for specifying the detection coil 10 for detection as described later, and at the same time, NMR.
The signal is connected to the amplifier circuit 12.
【0013】図2はコネクション回路11の詳細な回路
図である。検出コイル10はその種類を判別可能にする
ためのコネクタ201を備え、コネクション回路11は
検出コイル10のコネクタ201に接続されるコネクタ
202と、コネクタ202の各端子が接続されるインバ
ータ回路204a〜204dと、コネクタ202とイン
バータ回路204との間に挿入される抵抗205、20
6と、検出コイルからのNMR信号を増幅回路12に入
力するための同軸ケーブル203とを備えている。イン
バータ回路204a〜204dの出力は、計算機13に
入力される。FIG. 2 is a detailed circuit diagram of the connection circuit 11. The detection coil 10 includes a connector 201 for making it possible to determine its type, and the connection circuit 11 has a connector 202 connected to the connector 201 of the detection coil 10 and inverter circuits 204a to 204d to which each terminal of the connector 202 is connected. And resistors 205, 20 inserted between the connector 202 and the inverter circuit 204.
6 and a coaxial cable 203 for inputting the NMR signal from the detection coil to the amplifier circuit 12. The outputs of the inverter circuits 204a to 204d are input to the computer 13.
【0014】検出コイル10のコネクタ201及びコネ
クタ202は、例えば4つのビットを表すための端子T
1〜T4と接地電位Gに接続される端子TGとから成
り、コネクタ201における端子TGと他の端子との接
続状態によって検出コイル10の種類を表す4ビットの
識別信号が決められる。The connectors 201 and 202 of the detection coil 10 have terminals T for representing, for example, 4 bits.
1 to T4 and a terminal TG connected to the ground potential G, and a 4-bit identification signal representing the type of the detection coil 10 is determined by the connection state of the terminal TG in the connector 201 and other terminals.
【0015】例えば図に示す頸椎用コイルの場合は第1
ビットと第2ビットが接地電位Gに接続されることにな
り、”L”レベルとなる。第3ビットと第4ビットは電
圧Vccを抵抗205と抵抗206で分配した電位のま
まなので、”H”レベルである。すなわちインバータ回
路204a〜204dには2進数で”1100”の信号
が入力される。各々の信号はインバータ回路204a〜
dで反転され”0011”となって電子計算機13に読
み込まれる。このように実施例に示すMRI装置では、
各高周波コイルについて、頭部用の高周波コイルは1番
(2進数では”0001”)腹部用の高周波コイルは2
番(2進数では”0010”)、頸椎用の高周波コイル
は3番(2進数では”0011”)、脊椎用の高周波コ
イルは4番(2進数では”0100”)、膝関節用高周
波コイルは5番(2進数では”0101”)と識別信号
が振り付けられている。電子計算機13は、これら識別
信号によりどの検出コイルが用いられいるかを判読でき
ることになる。For example, in the case of the cervical spine coil shown in the drawing, the first
Since the bit and the second bit are connected to the ground potential G, the level becomes "L". The third bit and the fourth bit are at the “H” level because they remain the potentials obtained by dividing the voltage Vcc by the resistors 205 and 206. That is, a binary "1100" signal is input to the inverter circuits 204a to 204d. Each signal is the inverter circuit 204a-
It is inverted at d and becomes "0011", which is read by the computer 13. Thus, in the MRI apparatus shown in the embodiment,
For each high-frequency coil, the first high-frequency coil for the head (“0001” in binary) and the second high-frequency coil for the abdomen are 2
Number (binary number "0010"), cervical spine high frequency coil number 3 (binary number "0011"), spine high frequency coil number 4 (binary number "0100"), knee joint high frequency coil The identification signal is assigned as No. 5 (“0101” in binary). The electronic computer 13 can read which detection coil is used by these identification signals.
【0016】次にこのように構成されるMRI装置の動
作について説明する。図1において、被検者1の頸椎を
検査するため頸部専用の検出コイル10を装着した状態
で、検査部位が超電導磁石2の中心に配置されていると
する。オペレータ(図には書いてない)が操作卓14上
で操作することにより、電子計算機13の制御により、
検査目的に合った撮影シーケンスが起動する。一例とし
て、図3に示すスピンエコー法と呼ばれる撮影シーケン
スでは、期間Aにおいて、傾斜磁場xを3mT/mの強
度で印加した状態で、90゜の高周波磁場パルスを印加
する。ここで高周波磁場パルスはその帯域成分が1kH
zとなるようにガウシャン波形にて振幅変調されてい
る。この傾斜磁場と高周波磁場の組み合わせにより、被
検者1の頸椎部分が体軸(z軸と一致する)に沿った1
cm厚のスライス面の核スピンが共鳴励起する。期間Bで
は、傾斜磁場yとzを印加する。この傾斜磁場の印加に
より、期間Aで共鳴励起された核スピンの歳差運動はy
軸とz軸に沿って、その傾斜磁場の強度と印加時間に比
例した位相差が生じる。期間Cでは、再び傾斜磁場xを
3mT/mの強度で印加した状態で180゜強度の高周
波磁場を印加する。この傾斜磁場と高周波磁場の組み合
わせにより、同じスライス面内の核スピンはその歳差運
動の位相を反転することになり、90゜高周波磁場の印
加と180゜高周波磁場の印加との間と同じ時間経過後
の時点(ポイント)FでスピンエコーとしてNMR信号
を呈する。これは、期間Aにおける核スピンの共鳴励起
後、印加した傾斜磁場以外の磁場歪により拡散した核ス
ピンの歳差運動の位相を整合する効果がある。ポイント
Fを含む期間Dでは、傾斜磁場zを印加しながらNMR
信号を計測する。計測は傾斜磁場zの強度と撮影領域の
大きさに対応したサンプリングレートで256(一例と
して)点行われる。傾斜磁場zは期間Bの印加量と期間
DのポイントF迄の印加量が等しくなるように設定され
る。これにより、傾斜磁場zによる核スピンの歳差運動
の位相誤差もポイントFでキャンセルされるので、最大
強度のNMR信号が検出可能となるとともに、z軸の座
標中心に対応した位置情報をNMR信号にエンコードさ
せることになる。所定の待ち時間(期間E)後、期間B
で印加する傾斜磁場yの印加量を変化させて、期間Aか
ら期間Eまでの工程を繰り返しNMR信号を計測する。
この繰り返しを例えば256回行うことで、yz面の2
56×256マトリクス状のNMR信号が得られる。Next, the operation of the MRI apparatus configured as described above will be described. In FIG. 1, it is assumed that the inspection site is arranged at the center of the superconducting magnet 2 in a state in which the detection coil 10 dedicated to the cervical region is attached to inspect the cervical spine of the subject 1. An operator (not shown in the drawing) operates on the console 14 to control the electronic computer 13,
The shooting sequence that suits the purpose of inspection is activated. As an example, in the imaging sequence called the spin echo method shown in FIG. 3, in the period A, a 90 ° high-frequency magnetic field pulse is applied while the gradient magnetic field x is applied at an intensity of 3 mT / m. Here, the high frequency magnetic field pulse has a band component of 1 kHz.
Amplitude modulation is performed with a Gaussian waveform so as to be z. Due to the combination of the gradient magnetic field and the high-frequency magnetic field, the cervical vertebrae of the subject 1 extends along the body axis (matches the z axis)
Resonant excitation of nuclear spins on a cm-thick slice plane. In the period B, the gradient magnetic fields y and z are applied. By applying this gradient magnetic field, the precession motion of the nuclear spin resonantly excited in the period A is y.
Along the axis and the z axis, a phase difference proportional to the strength of the gradient magnetic field and the application time occurs. In the period C, the high frequency magnetic field of 180 ° is applied while the gradient magnetic field x is applied with the intensity of 3 mT / m again. Due to the combination of this gradient magnetic field and the high frequency magnetic field, the nuclear spins in the same slice plane invert the phase of their precession motion, and the same time is applied between the 90 ° high frequency magnetic field application and the 180 ° high frequency magnetic field application. At a time point (point) F after the passage, an NMR signal is presented as a spin echo. This has an effect of matching the phase of the precession motion of the nuclear spin diffused by the magnetic field distortion other than the applied gradient magnetic field after the resonant excitation of the nuclear spin in the period A. In the period D including the point F, the NMR is applied while applying the gradient magnetic field z.
Measure the signal. The measurement is performed at 256 (as an example) points at a sampling rate corresponding to the strength of the gradient magnetic field z and the size of the imaging region. The gradient magnetic field z is set so that the applied amount in the period B is equal to the applied amount up to the point F in the period D. As a result, the phase error of the precession motion of the nuclear spin due to the gradient magnetic field z is also canceled at the point F, so that the maximum intensity NMR signal can be detected and the position information corresponding to the z-axis coordinate center can be obtained. Will be encoded. After a predetermined waiting time (period E), period B
By changing the applied amount of the gradient magnetic field y applied in, the process from the period A to the period E is repeated and the NMR signal is measured.
By repeating this process 256 times, for example, the yz plane 2
A 56 × 256 matrix NMR signal is obtained.
【0017】このNMR信号はコネクション回路11の
同軸ケーブル203を介して、増幅回路12に入力さ
れ、ここで増幅・検波・デジタル変換が行われ、電子計
算機13に入力される。電子計算機13は、画像を生成
するためにNMR信号を信号処理するのであるが、コネ
クション回路11から検出コイル10の識別信号によっ
て、この計算処理に検出コイルの感度の空間分布の特性
を補正する処理を含ませるか否かを判断する。例えば円
筒コイルのように感度分布が均一なものについては補正
処理を行わずに、頸椎用検出コイル等の表面コイルの場
合は感度分布の変化が大きいものについては補正処理を
行う。また円筒コイルであっても断面が楕円形などの変
形した円筒コイルでは補正処理を行う。This NMR signal is input to the amplifier circuit 12 via the coaxial cable 203 of the connection circuit 11, where amplification, detection, and digital conversion are performed, and the NMR signal is input to the electronic computer 13. The electronic computer 13 performs signal processing of the NMR signal to generate an image, and processing for correcting the characteristic of the spatial distribution of sensitivity of the detection coil in this calculation processing by the identification signal of the detection coil 10 from the connection circuit 11. It is determined whether or not to include. For example, the correction process is not performed for a coil having a uniform sensitivity distribution such as a cylindrical coil, and the correction process is performed for a coil having a large change in the sensitivity distribution in the case of a surface coil such as a cervical spine detection coil. Further, even in the case of a cylindrical coil, the correction process is performed for a deformed cylindrical coil whose cross section is elliptical.
【0018】図1の実施例では、頸椎専用の検出コイル
10を示す識別信号が予め電子計算機13に入力されて
いるので、計算アルゴリズムには検出コイル10の感度
の空間分布の補正が組み入れられる。感度補正は、予め
頸椎用検出コイルについてファントム等を用いて求めて
おいた感度分布に基づき行うことも可能であるが、好適
には計測したNMR信号を用いて感度分布を求め、補正
をする。これにより実際に用いている検出コイルそのも
のについて、その撮影条件における感度補正が可能とな
る。In the embodiment of FIG. 1, since the identification signal indicating the detection coil 10 dedicated to the cervical spine is input to the electronic computer 13 in advance, correction of the spatial distribution of the sensitivity of the detection coil 10 is incorporated in the calculation algorithm. Sensitivity correction can also be performed based on the sensitivity distribution previously obtained by using a phantom or the like for the cervical spine detection coil, but preferably the sensitivity distribution is obtained and corrected using the measured NMR signal. As a result, the sensitivity of the actual detection coil itself can be corrected under the shooting conditions.
【0019】図4に、本発明の好適な補正アルゴリズム
の一例を示す。これは2次元のNMR信号のデータより
被検者1の検査部位の断層像を再構成するアルゴリズム
に検出コイルの感度の空間分布補正アルゴリズムを組み
込んだものである。画像再構成アルゴリズムでは、常法
により256×256マトリクスのNMR信号401に
2次元フーリェ変換処理402を行い、検査部分に対応
した断層画像の補正処理前のフーリェ変換データ403
を得る。この後、絶対値処理や最大値振幅を一定にする
正規化処理405が行われる。一方、補正アルゴリズム
はNMR信号の低周波成分のデータを用いることにより
検出コイルの感度分布を得る。即ち、まず256×25
6マトリクスのNMR信号401の中心付近の16×1
6のマトリクスデータのみを抽出処理する(406)。
次いで残りの部分に値がゼロのデータで置換した新しい
256×256マトリクスデータ(低周波成分データ)
407を作成する。この低周波成分の抽出は、例えばバ
ターワース型フィルタやガウスフィルタ等の低域通過フ
ィルタを用いることにより実現でき、フィルタのパラメ
ータを適当に決めることにより検出コイルの感度分布を
よく反映した感度分布を求めることができる。このマト
リクスデータ407を同じように2次元フーリェ変換処
理をして(408)低周波成分のフーリェ変換データ4
09を作成、絶対値処理と正規化処理を施す(41
0)。この演算処理により得られたデータ(感度分布画
像)411は検査部位の組織の内部構造のディテールを
示すのではなく、検査領域の単純な検出感度分布を示す
画像となる。これは、2次元フーリェ変換法では被検体
の検査部位の詳細情報は256×256マトリクスデー
タ401の中心ではなく周辺部分に存在し、中心部分は
大まかな濃淡の分布を示すことによる。FIG. 4 shows an example of a suitable correction algorithm of the present invention. This is one in which a spatial distribution correction algorithm for the sensitivity of the detection coil is incorporated into an algorithm for reconstructing a tomographic image of the examination site of the subject 1 from the two-dimensional NMR signal data. In the image reconstruction algorithm, the two-dimensional Fourier transform processing 402 is performed on the NMR signal 401 of the 256 × 256 matrix by a conventional method, and the Fourier transform data 403 before the correction processing of the tomographic image corresponding to the inspection portion is performed.
Get. After that, the absolute value processing and the normalization processing 405 that makes the maximum amplitude constant are performed. On the other hand, the correction algorithm obtains the sensitivity distribution of the detection coil by using the low frequency component data of the NMR signal. That is, first, 256 × 25
16 × 1 near the center of 6 matrix NMR signal 401
Only the matrix data of No. 6 is extracted (406).
Next, new 256 x 256 matrix data (low frequency component data) in which the remaining part is replaced with data with zero value
Create 407. This low-frequency component extraction can be realized by using a low-pass filter such as a Butterworth type filter or a Gaussian filter, and a sensitivity distribution that well reflects the sensitivity distribution of the detection coil is obtained by appropriately determining the filter parameters. be able to. The matrix data 407 is similarly subjected to the two-dimensional Fourier transform processing (408), and the Fourier transform data 4 of the low frequency component is obtained.
09, and performs absolute value processing and normalization processing (41
0). The data (sensitivity distribution image) 411 obtained by this arithmetic processing does not show the details of the internal structure of the tissue of the examination site, but becomes an image showing a simple detection sensitivity distribution of the examination region. This is because in the two-dimensional Fourier transform method, the detailed information of the examination site of the subject exists not in the center of the 256 × 256 matrix data 401 but in the peripheral part, and the central part shows a rough distribution of shading.
【0020】このように得られた画像データの感度分布
画像411の逆数処理412をした補正データ413を
絶対値画像データ404の各マトリクスデータの値に掛
け合わせ処理し(414)、再び正規化処理415を行
うことで、検出コイルの感度分布の特性を補正して、検
査部位の本来の核スピンの信号強度に対応した正確な検
査結果の補正画像データ416が得られる。The correction data 413 obtained by reciprocal processing 412 of the sensitivity distribution image 411 of the image data thus obtained is multiplied by the value of each matrix data of the absolute value image data 404 (414), and the normalization processing is performed again. By performing 415, the characteristic of the sensitivity distribution of the detection coil is corrected, and the corrected image data 416 of the accurate inspection result corresponding to the original nuclear spin signal intensity of the inspection region is obtained.
【0021】この逆数処理412における補正関数F
(s)413は、通常F(s)=1/s(sは感度を表
す位置の関数である)であるが、感度が非常に低い部分
は有効な診断情報が殆ど含まれない領域であって逆数処
理することによりかえってノイズが目立ち、画像診断上
好ましくない場合がある。このような不都合を回避する
ため高感度領域ではF(s)として1/sを用い、低感
度の所定の位置を最大値としてそれより低感度領域では
感度の増加関数とするような補正関数とすることが好ま
しい。このような特性の補正関数の具体例としてはCorrection function F in the reciprocal process 412
(S) 413 is usually F (s) = 1 / s (s is a function of the position indicating the sensitivity), but the very low sensitivity part is a region that contains almost no effective diagnostic information. By performing the reciprocal processing, noise may be conspicuous, which is not preferable for image diagnosis. In order to avoid such an inconvenience, 1 / s is used as F (s) in the high sensitivity region, and a correction function that uses a predetermined position of low sensitivity as a maximum value and an increase function of sensitivity in the lower sensitivity region is used. Preferably. As a concrete example of the correction function of such a characteristic,
【0022】[0022]
【数1】 [Equation 1]
【0023】[0023]
【数2】 [Equation 2]
【0024】[0024]
【数3】 などが挙げられる。尚、式中a、bは所定の定数であ
る。(Equation 3) And the like. In the formula, a and b are predetermined constants.
【0025】これにより頸椎専用の検出コイル10の感
度分布が補正された画像が再構成され、表示モニター1
5に表示される。As a result, an image in which the sensitivity distribution of the detection coil 10 dedicated to the cervical spine is corrected is reconstructed, and the display monitor 1
5 is displayed.
【0026】次に、上記MRI装置で他の被検者の頭部
を検査する場合について述べる。被検者の頭に円筒状の
頭部専用検出コイルを装着して、磁石の中心に位置する
様に患者テーブルを操作する。オペレータが検査目的に
合った撮影シーケンスを操作卓を操作することで起動す
る。先の頸椎の検査の場合と同様に256×256マト
リクスのNMR信号が計測される。計測終了後、電子計
算機13はNMR信号を演算処理して断層像を構成する
が、この場合、電子計算機13には先の頸椎の処理と異
なり、検出コイルの識別信号として”0001”でが入
力されていることから、図4に示すアルゴリズムのうち
空間分布の補正処理は行わずに、256×256マトリ
クスのNMR信号401に2次元フーリェ変換処理40
2を施し、頭部の検査部分に対応した断層画像の補正処
理前のフーリェ変換データ403を得る。これは、頭部
用の円筒形の検出コイルはその円筒の内部において、ほ
ぼ均等な検出感度分布を示すことによる。Next, a case where the head of another subject is inspected by the MRI apparatus will be described. A cylindrical head-only detection coil is attached to the head of the subject, and the patient table is operated so as to be positioned at the center of the magnet. The operator activates a shooting sequence suitable for the inspection purpose by operating the console. As in the case of the examination of the cervical vertebrae described above, NMR signals of a 256 × 256 matrix are measured. After the measurement is completed, the electronic computer 13 processes the NMR signal to form a tomographic image. In this case, unlike the previous cervical spine processing, "0001" is input to the electronic computer as the identification signal of the detection coil. Therefore, the spatial distribution correction process of the algorithm shown in FIG. 4 is not performed, and the two-dimensional Fourier transform process 40 is performed on the 256 × 256 matrix NMR signal 401.
2, the Fourier transform data 403 before the correction processing of the tomographic image corresponding to the inspection portion of the head is obtained. This is because the cylindrical detection coil for the head exhibits a substantially uniform detection sensitivity distribution inside the cylinder.
【0027】このように本実施例によれば、検査部位に
最適な検出コイルを選択し装置に接続することにより、
電子計算機13は識別信号に基づき検出コイルの種類を
判別し、接続されたコイルに応じて必要な処理アルゴリ
ズムを選択する。これにより円筒コイルのように感度補
正が不要の場合は必要な処理のみを行うことで高速に画
像処理ができる。また検出コイルの特性データを予め測
定しておく必要がなく、補正データを本来の計測データ
より作成するので、正確な補正が可能になる。かつ、検
出コイルの種類に関係なく補正が可能である。以上の実
施例では検出コイルの識別信号を電子計算機が判断して
処理内容を変更する場合について説明したが、検出コイ
ルの識別をオペレータの操作卓からの入力によって行っ
てもよい。このような実施例を図5の操作フロー図を参
照して説明する。As described above, according to this embodiment, by selecting the most suitable detection coil for the inspection site and connecting it to the apparatus,
The electronic computer 13 determines the type of the detection coil based on the identification signal, and selects a necessary processing algorithm according to the connected coil. As a result, when sensitivity correction is not necessary like a cylindrical coil, high-speed image processing can be performed by performing only necessary processing. Further, since it is not necessary to measure the characteristic data of the detection coil in advance and the correction data is created from the original measurement data, accurate correction is possible. Moreover, the correction can be performed regardless of the type of the detection coil. In the above embodiments, the case where the computer determines the identification signal of the detection coil and changes the processing content has been described, but the identification of the detection coil may be performed by input from the operator's console. Such an embodiment will be described with reference to the operation flow chart of FIG.
【0028】オペレータは被検体の検査内容と検査部位
を考慮して検出コイルを選択、被検者の検査部位にセッ
トする(501)。このセット作業は患者テーブル上で
行い、患者テーブルを移動させて被検体の検査部位と検
出コイルを超電導磁石の中心に位置させる。次に、オペ
レータは操作卓のキーを操作して、被検者の名前や登録
番号の入力と同時に装着した検出コイルの情報を入力す
る(502)。この入力は、操作卓の操作画面に合わせ
て必要項目を入力するか、メニュー画面として表示され
た選択肢から所定のコイルを選ぶ操作により行われる。
更に、検査内容に合致した撮影シーケンスを選択して、
第一の実施例と同じようにNMR信号を計測する(50
3)。次に、電子計算機は処理プログラムに従ってNM
R信号データの演算処理を開始するに先立って、操作卓
から入力した検出コイルの識別情報により、通常の像再
構成信号処理505を行うのか、検出コイルの特性を補
正する処理を含んだ像再構成信号処理506を選択する
かを判断する(504)。これら像再構成信号処理50
5及び補正処理を含む像再構成信号処理506は図4に
示したアルゴリズムによることができ、このように処理
されたデータは撮影条件や対象等の情報を収集するデー
タ管理プログラム507によって管理される。この情報
には補正処理の有無も入力される。以上で検査が終了す
る。The operator selects the detection coil in consideration of the examination content and examination site of the subject and sets it on the examination site of the subject (501). This setting operation is performed on the patient table, and the patient table is moved to position the examination site of the subject and the detection coil at the center of the superconducting magnet. Next, the operator operates the keys on the operation console to input the information of the attached detection coil at the same time as inputting the name and registration number of the subject (502). This input is performed by inputting necessary items in accordance with the operation screen of the console or by selecting a predetermined coil from the options displayed as the menu screen.
Furthermore, select the shooting sequence that matches the inspection details,
The NMR signal is measured in the same manner as in the first embodiment (50
3). Next, the computer calculates the NM according to the processing program.
Prior to starting the calculation processing of the R signal data, the normal image reconstruction signal processing 505 is performed according to the identification information of the detection coil input from the operator console, or the image reconstruction including the processing for correcting the characteristic of the detection coil is performed. It is determined whether the configuration signal processing 506 is selected (504). These image reconstruction signal processing 50
5 and image reconstruction signal processing 506 including correction processing can be performed by the algorithm shown in FIG. 4, and the data processed in this way is managed by a data management program 507 that collects information such as imaging conditions and targets. . The presence / absence of correction processing is also input to this information. This completes the inspection.
【0029】本実施例によれば、従来のMRI装置のハ
ード構成を変更することなく、NMR信号の計算処理プ
ログラムの変更のみで、検出コイルの特性補正が可能に
なる。更に、新たな高周波コイルの追加に対しても、シ
ステムとしてのフレキシビリティが確保できる特徴があ
る。According to this embodiment, the characteristic of the detection coil can be corrected by changing the calculation processing program of the NMR signal without changing the hardware configuration of the conventional MRI apparatus. Furthermore, there is a feature that the flexibility of the system can be secured even when a new high frequency coil is added.
【0030】尚、以上の実施例では複数の種類の異なる
検出コイルを選択的に用いて計測する場合について説明
したが、本発明はフェーズドアレイコイル、スイッチド
コイルのようなマルチプルコイルを部分的に駆動する場
合にも適用できる。即ち、複数の表面コイルを配列して
なるコイルの一部(の表面コイル)を順次駆動する場合
に、駆動されるコイルが異なるごとに補正アルゴリズム
を実行し、コイルごとに感度補正された画像データを得
る。この場合にも、マルチプルコイルが接続されると電
子計算機13は識別信号により、或いはオペレータの操
作卓による入力により、マルチプルコイルが接続されて
いる旨を判断し、NMR信号の信号処理において感度分
布補正のためのアルゴリズムを含む信号処理を行う。こ
の信号処理は、駆動されるコイルが切り替わる度に感度
分布補正のためのアルゴリズムを実行するようにプログ
ラムされており、マルチプルコイルを構成する個々のコ
イルの感度分布特性に対応して均一な感度補正を行うこ
とができる。In the above embodiments, a case has been described in which a plurality of different types of detection coils are selectively used for measurement, but the present invention partially uses multiple coils such as a phased array coil and a switched coil. It is also applicable when driving. That is, when a part of (a surface coil of) a coil formed by arranging a plurality of surface coils is sequentially driven, the correction algorithm is executed every time the driven coil is different, and the image data whose sensitivity is corrected for each coil is executed. To get Also in this case, when the multiple coils are connected, the electronic computer 13 determines that the multiple coils are connected by the identification signal or the input from the operator's console, and the sensitivity distribution correction is performed in the signal processing of the NMR signal. Signal processing including algorithms for. This signal processing is programmed to execute an algorithm for sensitivity distribution correction each time the driven coil is switched, and a uniform sensitivity correction is performed corresponding to the sensitivity distribution characteristics of the individual coils making up the multiple coils. It can be performed.
【0031】[0031]
【発明の効果】本発明によれば、用いる検出手段の種類
に応じて検出手段の感度の空間分布特性を補正するよう
に構成したので、検査部位に合わせて好適な形状の検出
コイルを用い、効率的に且つ正確な検査結果を得ること
ができる。また本発明によれば、検出手段によって検出
したNMR信号を用いて、その検出手段の感度分布を求
めることにより、予め検出手段ごとの感度分布特性を求
めておく必要がなく、正確な検査結果を得ることができ
る。According to the present invention, since the spatial distribution characteristic of the sensitivity of the detecting means is corrected according to the type of the detecting means used, the detecting coil having a shape suitable for the inspection site is used. Efficient and accurate inspection results can be obtained. Further, according to the present invention, by using the NMR signal detected by the detection means, by obtaining the sensitivity distribution of the detection means, it is not necessary to obtain the sensitivity distribution characteristic for each detection means in advance, and an accurate inspection result can be obtained. Obtainable.
【図1】本発明を用いたMRI装置の全体構成図FIG. 1 is an overall configuration diagram of an MRI apparatus using the present invention
【図2】図1のコネクション回路の詳細を示す図FIG. 2 is a diagram showing details of a connection circuit of FIG.
【図3】撮影シーケンスの一実施例を示すタイムチャー
ト図FIG. 3 is a time chart diagram showing an example of a shooting sequence.
【図4】本発明による画像再構成アルゴリズムを説明す
る図FIG. 4 is a diagram illustrating an image reconstruction algorithm according to the present invention.
【図5】本発明の他の実施例を示す操作フローを説明す
る図FIG. 5 is a diagram illustrating an operation flow showing another embodiment of the present invention.
【図6】従来技術によるMRI装置の全体構成図FIG. 6 is an overall configuration diagram of a conventional MRI apparatus.
【符号の説明】 1 被検体 2 超電導磁石 3 傾斜磁場コイル 4 高周波コイル 5、6、7、8 駆動電源 9 患者テーブル 10 高周波コイル 11 コネクション回路 12 増幅回路 13 電子計算機 14 操作卓 15 表示モニター[Explanation of reference numerals] 1 subject 2 superconducting magnet 3 gradient magnetic field coil 4 high frequency coil 5, 6, 7, 8 drive power supply 9 patient table 10 high frequency coil 11 connection circuit 12 amplification circuit 13 electronic calculator 14 operator console 15 display monitor
Claims (3)
と位置により強度の異なる傾斜磁場と高周波磁場とをそ
れぞれ発生させる磁場発生手段と、前記被検体の検査部
位から発生する核磁気共鳴信号を検出する検出手段と、
検出された核磁気共鳴信号を信号処理する計算機と、該
計算機の計算結果を表示する表示手段と、前記磁場発生
手段及び前記検出手段を駆動制御する制御手段とを備え
た磁気共鳴イメージング装置において、 前記計算機は前記検出手段の種類を認識する機能を備
え、前記検出手段の種類に対応して、前記信号処理の処
理内容を変更するように構成したことを特徴とする磁気
共鳴イメージング装置。1. A magnetic field generating means for respectively generating a uniform static magnetic field in a measurement space in which a subject is placed and a gradient magnetic field and a high frequency magnetic field having different intensities depending on positions, and nuclear magnetic resonance generated from an examination site of the subject. Detection means for detecting the signal,
In a magnetic resonance imaging apparatus comprising a computer that performs signal processing of the detected nuclear magnetic resonance signal, a display unit that displays the calculation result of the computer, and a control unit that drives and controls the magnetic field generation unit and the detection unit, The magnetic resonance imaging apparatus, wherein the computer has a function of recognizing the type of the detecting means, and is configured to change the processing content of the signal processing according to the type of the detecting means.
と位置により強度の異なる傾斜磁場と高周波磁場とをそ
れぞれ発生させる磁場発生手段と、前記被検体の検査部
位ごとに配置され検査部位から発生する核磁気共鳴信号
を検出する少なくとも2以上の検出手段と、検出された
核磁気共鳴信号を信号処理する計算機と、該計算機の計
算結果を表示する表示手段と、前記磁場発生手段及び前
記検出手段を駆動制御する制御手段とを備えた磁気共鳴
イメージング装置において、 前記計算機は前記2以上の検出手段のうち駆動中の検出
手段を認識する機能を備え、前記検出手段の特性に対応
して、前記信号処理の処理内容を変更するように構成し
たことを特徴とする磁気共鳴イメージング装置。2. A magnetic field generating means for respectively generating a uniform static magnetic field and a gradient magnetic field and a high frequency magnetic field having different intensities depending on the position in a measurement space in which the subject is placed, and an examination site arranged for each examination site of the subject. At least two detecting means for detecting a nuclear magnetic resonance signal generated from the computer, a computer for processing the detected nuclear magnetic resonance signal, a display means for displaying a calculation result of the computer, the magnetic field generating means and the In a magnetic resonance imaging apparatus provided with a control unit that drives and controls a detection unit, the computer has a function of recognizing a detection unit that is being driven among the two or more detection units, and corresponds to a characteristic of the detection unit. A magnetic resonance imaging apparatus characterized in that the processing content of the signal processing is changed.
された核磁気共鳴信号に基づき該検出手段の感度分布特
性を求めるアルゴリズムと、前記検出手段により検出さ
れた核磁気共鳴信号を求められた感度分布特性に基づき
補正するアルゴリズムとを含むことを特徴とする請求項
1又は2記載の磁気共鳴イメージング装置。3. The signal processing comprises: an algorithm for obtaining a sensitivity distribution characteristic of the detection means based on the nuclear magnetic resonance signal detected by the detection means; and a nuclear magnetic resonance signal detected by the detection means. The magnetic resonance imaging apparatus according to claim 1 or 2, further comprising an algorithm for correcting based on a sensitivity distribution characteristic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11772495A JP3547520B2 (en) | 1995-04-20 | 1995-04-20 | Magnetic resonance imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11772495A JP3547520B2 (en) | 1995-04-20 | 1995-04-20 | Magnetic resonance imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08280646A true JPH08280646A (en) | 1996-10-29 |
JP3547520B2 JP3547520B2 (en) | 2004-07-28 |
Family
ID=14718724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11772495A Expired - Lifetime JP3547520B2 (en) | 1995-04-20 | 1995-04-20 | Magnetic resonance imaging system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3547520B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002056767A1 (en) * | 2001-01-19 | 2002-07-25 | Kabushiki Kaisha Toshiba | Parallel mr imaging using high-precision coil senstivity map |
JP2007244848A (en) * | 2006-02-17 | 2007-09-27 | Toshiba Corp | Data correction apparatus, data correction method, magnetic resonance imaging apparatus and x-ray ct apparatus |
CN101803921A (en) * | 2010-03-19 | 2010-08-18 | 苏州工业园区朗润科技有限公司 | Apparatus and method for identifying radio frequency coil in nuclear magnetic resonance system |
JP2010264047A (en) * | 2009-05-14 | 2010-11-25 | Hitachi Medical Corp | Magnetic resonance imaging apparatus |
JP2013046833A (en) * | 2006-02-17 | 2013-03-07 | Toshiba Corp | Data correction apparatus |
-
1995
- 1995-04-20 JP JP11772495A patent/JP3547520B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002056767A1 (en) * | 2001-01-19 | 2002-07-25 | Kabushiki Kaisha Toshiba | Parallel mr imaging using high-precision coil senstivity map |
JP2007244848A (en) * | 2006-02-17 | 2007-09-27 | Toshiba Corp | Data correction apparatus, data correction method, magnetic resonance imaging apparatus and x-ray ct apparatus |
JP2013046833A (en) * | 2006-02-17 | 2013-03-07 | Toshiba Corp | Data correction apparatus |
JP2010264047A (en) * | 2009-05-14 | 2010-11-25 | Hitachi Medical Corp | Magnetic resonance imaging apparatus |
CN101803921A (en) * | 2010-03-19 | 2010-08-18 | 苏州工业园区朗润科技有限公司 | Apparatus and method for identifying radio frequency coil in nuclear magnetic resonance system |
Also Published As
Publication number | Publication date |
---|---|
JP3547520B2 (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6108573A (en) | Real-time MR section cross-reference on replaceable MR localizer images | |
JP3393895B2 (en) | Magnetic resonance imaging | |
JP4736184B2 (en) | MR imaging system with MR geometry regulation control | |
JP3512482B2 (en) | Magnetic resonance imaging | |
CN100471454C (en) | A Method for Measuring Fault Locations Using Statistical Image Planning Tomography | |
EP1362550B1 (en) | Whole body MRI scanning with continously moving table and interactive control | |
US6546275B2 (en) | Determination of the arterial input function in dynamic contrast-enhanced MRI | |
US20080103383A1 (en) | Selective MR imaging of segmented anatomy | |
JP2004073379A (en) | Medical image diagnostic apparatus, and method for assisting image domain designation | |
JP3672976B2 (en) | Magnetic resonance imaging system | |
JP2010508054A (en) | MRIRF encoding using multiple transmit coils | |
EP1333295A2 (en) | Customized spatial saturation pulse sequence for suppression of artifacts in MR images | |
JP4237974B2 (en) | Nuclear spin tomography image processing and display device | |
JP4454960B2 (en) | Method for correcting imaging data, nuclear spin tomography apparatus, and computer-readable recording medium recording computer program | |
JP3547520B2 (en) | Magnetic resonance imaging system | |
US6492810B1 (en) | Anti-aliasing magnetic resonance device which reduces aliasing from regions outside of the excitation volume | |
US20240090791A1 (en) | Anatomy Masking for MRI | |
JP3474653B2 (en) | Magnetic resonance imaging equipment | |
US7190163B2 (en) | Method for producing multiple MR images with different contrast from a single image acquisition | |
JP2007282860A (en) | Magnetic resonance imaging apparatus and method | |
JP3137366B2 (en) | Magnetic resonance imaging equipment | |
JPH09173315A (en) | Magnetic resonance imaging method | |
JPH10277009A (en) | Device and method for monitoring position of insertion instrument inserted inside testee body in magnetic resonance inspection device | |
US8271067B1 (en) | Method and apparatus to graphically display a pre-scan volume on a localizer image | |
US6753683B2 (en) | System and method for generating spectra |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |