[go: up one dir, main page]

JPH08278402A - Preparation of optical resin film - Google Patents

Preparation of optical resin film

Info

Publication number
JPH08278402A
JPH08278402A JP7082983A JP8298395A JPH08278402A JP H08278402 A JPH08278402 A JP H08278402A JP 7082983 A JP7082983 A JP 7082983A JP 8298395 A JP8298395 A JP 8298395A JP H08278402 A JPH08278402 A JP H08278402A
Authority
JP
Japan
Prior art keywords
optical
substrate
producing
resin film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082983A
Other languages
Japanese (ja)
Inventor
Akira Tomaru
暁 都丸
Saburo Imamura
三郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7082983A priority Critical patent/JPH08278402A/en
Publication of JPH08278402A publication Critical patent/JPH08278402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To provide a preparing method of an optical resin film applicable for evening a substrate used for a waveguide type optical element, etc. CONSTITUTION: This preparing method includes a process to dispose a thermoplastic resin 64 which is not decomposed but has presents fluidity at temp. higher than heat distortion temp. on a flat part 62 and a recessed part of the substrate 61 having the recessed part which is nearly surrounded by this flat part 62, a process to dispose a flat plate 65 on the thermoplastic resin 64 so as to reach the flat part 62 of the substrate 61 to heat the resin 64 and the process to remove flat plate 65. A smoothness of the flat plate 65 is less than 1/10 of the wave length to be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信分野、光情報処
理分野において使用される光導波路素子用基板の平坦化
に適用可能な光学用樹脂膜の作製方法に関するものであ
る。本発明の光学用樹脂膜の作製方法は、レンズ等の単
体でも機能を発現する光学部品に対しても適用可能であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical resin film applicable to the flattening of a substrate for an optical waveguide element used in the fields of optical communication and optical information processing. The method for producing an optical resin film of the present invention can be applied to a single lens such as a lens or an optical component exhibiting a function.

【0002】[0002]

【従来の技術】従来、導波路型光学素子は、基板として
Si、ガラス、セラミックス、無機結晶、高分子材料を
用い、そのうえに導波路を構成するクラッド、コア材料
としてガラス、無機結晶、高分子材料等を用いて、LS
Iプロセスでよく用いられるフォトリソグラフィ、ドラ
イエッチングプロセスの組み合わせにより微細加工を施
し、高性能な導波路型光素子を作製していた(例えば、
河内正夫氏によるOptical and Quant
um Electronics 22巻391ページ
(1990年))。
2. Description of the Related Art Conventionally, a waveguide type optical element uses Si, glass, ceramics, an inorganic crystal or a polymer material as a substrate, and a clad constituting a waveguide on the substrate, and a glass, an inorganic crystal or a polymer material as a core material. LS
A high-performance waveguide type optical element was manufactured by performing microfabrication by a combination of photolithography and dry etching processes often used in the I process (for example,
Optical and Quant by Masao Kawauchi
um Electronics 22: 391 (1990)).

【0003】しかし、一般に光学素子等を搭載、あるい
は作製するための基板が凹凸形状を有している場合に
は、微細加工を施す際に、平面上でのレジストパターン
形成と異なり、精密なパターン形成が困難であり、μm
オーダーの導波路形成、あるいはμmオーダーの精度が
要求される光素子の位置合わせ等の面で不都合が生ずる
という欠点があった。
However, in general, when the substrate for mounting or manufacturing optical elements or the like has an uneven shape, a fine pattern is formed when performing fine processing, unlike resist pattern formation on a plane. Difficult to form, μm
There is a drawback that inconvenience occurs in terms of forming a waveguide on the order or aligning an optical element that requires accuracy on the order of μm.

【0004】また、基板の凹凸の高さが100μm以上
の場合にはレジストワークそのものが困難であるという
欠点もある。
There is also a drawback that the resist work itself is difficult when the height of the unevenness of the substrate is 100 μm or more.

【0005】高分子導波路の作製においては、最も膜厚
の均一性が良いとされるスピンコート法でコア材料やク
ラッド材料を塗布したうえで、レジストでパターン形成
するのが一般的である(例えば、今村氏他、Elect
ronics Letters 27巻1342ページ
(1991年))。
In the production of a polymer waveguide, it is common to apply a core material and a clad material by a spin coating method, which is said to have the most uniform film thickness, and then form a pattern with a resist ( For example, Mr. Imamura and others, Select
ronics Letters 27: 1342 (1991)).

【0006】ここで、高分子導波路の作製例を図1を参
照して説明する。図1に示すように、基板1は、その表
面に凸部1aと平坦部1bとを有している。このような
基板1上にクラッド材料等の塗膜をスピンコート法を用
いて形成しても、凸部1a近傍での膜厚t1 と平坦部1
bでの膜厚t2 とでは極端に差異が生じる。このため、
導波回路のパターン形成の際によく利用されるレジスト
自体の膜厚の均一性も得られないため、その後のコアの
パターン形成も困難になるか、あるいは図2に示すよう
に、下部クラッド部2上にパターン化されたコア部3の
高さが一様でなく高性能な導波路特性が得られないとい
う欠点がある。なお、図2において符号4は上部クラッ
ド部である。
Here, an example of producing a polymer waveguide will be described with reference to FIG. As shown in FIG. 1, the substrate 1 has a convex portion 1a and a flat portion 1b on its surface. Even if a coating film such as a clad material is formed on the substrate 1 by the spin coating method, the film thickness t 1 in the vicinity of the convex portion 1a and the flat portion 1 are
There is an extreme difference from the film thickness t 2 at b. For this reason,
The uniformity of the film thickness of the resist itself, which is often used in the pattern formation of the waveguide circuit, cannot be obtained either, which makes it difficult to form the core pattern thereafter, or, as shown in FIG. There is a drawback in that the height of the core portion 3 patterned on the surface 2 is not uniform and high-performance waveguide characteristics cannot be obtained. In FIG. 2, reference numeral 4 is an upper clad portion.

【0007】このような状況は他の導波路材料を用い、
レジストを用いてパターン形成する場合には同様であ
り、基板の凹凸形状の影響により高性能な導波路素子が
得られないという不都合があった。
This situation uses other waveguide materials,
This is also the case when patterning is performed using a resist, and there is the inconvenience that a high-performance waveguide element cannot be obtained due to the influence of the uneven shape of the substrate.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、導波
路型光学素子に用いられる基板の平坦化に適用可能な光
学用樹脂膜の作製方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing an optical resin film applicable to flatten a substrate used for a waveguide type optical element.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、光学用樹脂膜を作製する方
法において、基板上に光硬化性または熱硬化性の樹脂原
料を主成分とする光学材料の膜を形成する工程と、前記
光学材料膜の表面に平坦な板を配置した後、前記基板を
上または下として光照射または加熱により前記光学材料
を重合させて硬化膜を形成する工程と、前記平坦な板を
除去する工程とを含むことを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is a method for producing an optical resin film, in which a photocurable or thermosetting resin raw material is mainly used on a substrate. A step of forming a film of an optical material as a component, and after arranging a flat plate on the surface of the optical material film, the optical material is polymerized by light irradiation or heating with the substrate above or below to form a cured film. The method is characterized by including a step of forming and a step of removing the flat plate.

【0010】ここで、請求項2記載の発明は、請求項1
記載の光学用樹脂膜の作製方法において、前記光学材料
がエポキシ環を有するモノマーまたはオリゴマーを主成
分とし、さらに重合開始剤を含むものであってもよい。
Here, the invention according to claim 2 is the invention according to claim 1.
In the method for producing an optical resin film described above, the optical material may contain a monomer or oligomer having an epoxy ring as a main component and further contain a polymerization initiator.

【0011】請求項3記載の発明は、請求項1記載の光
学用樹脂膜の作製方法において、前記光学材料が不飽和
基を有するモノマーまたはオリゴマーを主成分とし、さ
らに重合開始剤を含むものであってもよい。
According to a third aspect of the present invention, in the method for producing an optical resin film according to the first aspect, the optical material contains a monomer or oligomer having an unsaturated group as a main component and further contains a polymerization initiator. It may be.

【0012】請求項4記載の発明は、請求項1記載の光
学用樹脂膜の作製方法において、前記光学材料がシロキ
サン結合を有するモノマーまたはオリゴマーを主成分と
し、さらに重合開始剤を含むものであってもよい。
According to a fourth aspect of the present invention, in the method for producing an optical resin film according to the first aspect, the optical material contains a monomer or oligomer having a siloxane bond as a main component and further contains a polymerization initiator. May be.

【0013】請求項5記載の発明は、請求項1ないし4
のいずれかの項に記載の光学用樹脂膜の作製方法におい
て、前記平坦な板または前記基板が光透過性を有する透
明板であり、前記光学材料が光硬化性であり、前記光照
射が該透明板を通して行われてもよい。
The invention according to claim 5 is defined by claims 1 to 4.
In the method for producing an optical resin film according to any one of the items, the flat plate or the substrate is a transparent plate having optical transparency, the optical material is photocurable, and the light irradiation is It may be performed through a transparent plate.

【0014】請求項6記載の発明は、光学用樹脂膜を作
製する方法において、基板上に、熱変形温度以上で分解
せずに流動性を呈する樹脂を配置する工程と、該樹脂上
に平坦な板を配置して該樹脂を加熱する工程と、該平坦
な板を除去する工程とを含むことを特徴とする。
According to a sixth aspect of the present invention, in a method for producing an optical resin film, a step of disposing a resin exhibiting fluidity without being decomposed at a heat deformation temperature or higher on a substrate, and a flat surface on the resin. And a step of heating the resin by disposing a flat plate, and a step of removing the flat plate.

【0015】請求項7記載の発明は、光学用樹脂膜を作
製する方法において、平坦部と該平坦部にほぼ囲まれた
凹部を有する基板の該凹部上に、熱変形温度以上で分解
せずに流動性を呈する樹脂を配置する工程と、該樹脂上
に該基板の平坦部に達するように平坦な板を配置して該
樹脂を加熱する工程と、該平坦な板を除去する工程とを
含むことを特徴とする。
According to a seventh aspect of the present invention, in the method for producing an optical resin film, a substrate having a flat portion and a concave portion substantially surrounded by the flat portion is not decomposed above the thermal deformation temperature on the concave portion. A step of disposing a resin exhibiting fluidity on the resin, a step of disposing a flat plate on the resin so as to reach the flat part of the substrate and heating the resin, and a step of removing the flat plate. It is characterized by including.

【0016】ここで、樹脂上に平坦な板を配置する工程
において、樹脂の余剰分が平坦な板を押し上げずに、樹
脂の余剰分をはみ出させることが必要である。これは、
最終的に得られる樹脂膜の表面の平滑度を上げるためで
ある。また、基板の凹部の内容積を上回る量の樹脂を用
いる必要がある。これは、基板の上に凹部を埋め込んだ
表面平滑な樹脂膜を形成するためである。
Here, in the step of arranging the flat plate on the resin, it is necessary that the surplus resin does not push up the flat plate, and the surplus resin is caused to overflow. this is,
This is to increase the smoothness of the surface of the resin film finally obtained. In addition, it is necessary to use an amount of resin that exceeds the inner volume of the recess of the substrate. This is to form a resin film having a smooth surface in which recesses are embedded on the substrate.

【0017】請求項8記載の発明は、請求項1ないし7
のいずれかの項に記載の光学用樹脂膜の作製方法におい
て、前記平坦な板の平滑度が、使用する波長の1/10
以下であってもよい。
The invention described in claim 8 is the invention as claimed in claims 1 to 7.
In the method for producing an optical resin film described in any one of 1 above, the flatness of the flat plate is 1/10 of a wavelength used.
It may be the following.

【0018】ここで、本発明の光学用樹脂膜の作製方法
を図3(a)および(b)を参照して概略説明する。図
3(a)および(b)は、本発明の光学用樹脂膜の作製
方法の一実施態様例を示す断面図である。
Here, a method for producing the optical resin film of the present invention will be schematically described with reference to FIGS. 3 (a) and 3 (b). 3A and 3B are cross-sectional views showing an example of an embodiment of the method for producing an optical resin film of the present invention.

【0019】まず、図3(a)に示すように、凸部31
aおよび平坦部31bを有する基板31を用意し、この
基板31上に熱あるいは光により硬化し得るモノマーか
らなる塗布膜32を形成する。この塗布方法については
スピンコート、ディッピング、あるいは単に基板の一部
にのせるだけでも構わない。
First, as shown in FIG. 3A, the convex portion 31
A substrate 31 having a and a flat portion 31b is prepared, and a coating film 32 made of a monomer curable by heat or light is formed on the substrate 31. This coating method may be spin coating, dipping, or simply applying onto a part of the substrate.

【0020】次に、平坦な面を有する金型33を塗布膜
32の上にのせ、この塗布膜32に向けて金型33に均
等な圧力をかけた後、熱あるいは光を照射し、塗布膜3
2を高分子化し、高分子膜34とする。
Next, a die 33 having a flat surface is placed on the coating film 32, and even pressure is applied to the die 33 toward the coating film 32, and then heat or light is irradiated to apply the coating. Membrane 3
2 is polymerized to form a polymer film 34.

【0021】このような操作により高分子膜34は基板
31の凹凸の程度によらず、金型33の面精度に依存し
て、平坦化する。この際用いた塗布膜32のモノマー材
料としては室温で適当な粘度を示す材料でエポキシ環、
不飽和基等を有し、重合する材料であれば、その骨格は
アクリレート系、シリコーン系、イミド系、アミド系等
いずれでもよい。
By such an operation, the polymer film 34 is flattened irrespective of the degree of irregularities of the substrate 31 depending on the surface accuracy of the die 33. As the monomer material of the coating film 32 used at this time, a material having an appropriate viscosity at room temperature is an epoxy ring,
The skeleton thereof may be any of acrylate-based, silicone-based, imide-based, amide-based, and the like, as long as it has an unsaturated group and the like and is polymerized.

【0022】また、高分子膜34の厚さは、金型33か
ら加えられる圧力、重合前の塗布膜32の粘度等により
任意の厚さの制御が可能となる。
Further, the thickness of the polymer film 34 can be controlled to an arbitrary thickness by the pressure applied from the mold 33, the viscosity of the coating film 32 before polymerization, and the like.

【0023】また、上記塗布膜32のモノマー材料に代
えて、熱変形温度以上に昇温した際に分解せず流動性を
示す高分子材料を用いることができる。この場合には、
上記金型33により圧力をかけた状態で、高分子材料か
らなる塗布膜32に対し熱変形温度以上に加温し、高分
子材料に流動性を持たせて平坦にした後、室温まで冷却
しても同様の操作が可能となる。この場合の高分子材料
としては、ガラス転移点以上で分解しにくいものであれ
ば、エステル、アクリル、イミド、アミド、シリコー
ン、エポキシ等ほとんどすべての熱可塑性樹脂を用いる
ことができる。
Further, instead of the monomer material of the coating film 32, a polymer material which does not decompose when heated to a temperature higher than the heat distortion temperature and exhibits fluidity can be used. In this case,
With pressure applied by the mold 33, the coating film 32 made of a polymer material is heated to a temperature not lower than the heat deformation temperature to make the polymer material fluid and flat, and then cooled to room temperature. However, the same operation can be performed. As the polymer material in this case, almost all thermoplastic resins such as ester, acryl, imide, amide, silicone and epoxy can be used as long as they are hard to be decomposed at a glass transition point or higher.

【0024】また、平坦形状の金型の平滑度は、本発明
方法による導波路素子の光学特性に直接影響するため、
重要である。その平滑度がλ/10以上になると、その
凹凸が導波路素子の光学損失、特に散乱損失に影響し、
数dB程度の損失源となる。また、光学素子の位置合わ
せに必要な数μm以下の位置合わせ精度が確保できなく
なるため、金型の平滑度はλ/10以下が望ましい。
Further, since the smoothness of the flat die directly affects the optical characteristics of the waveguide element according to the method of the present invention,
is important. When the smoothness is λ / 10 or more, the unevenness affects the optical loss of the waveguide element, especially the scattering loss,
It becomes a loss source of about several dB. Further, since it is not possible to secure the alignment accuracy of several μm or less, which is necessary for the alignment of the optical element, the smoothness of the mold is preferably λ / 10 or less.

【0025】[0025]

【実施例】以下、具体的な例を挙げて本発明の実施例を
詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below with reference to specific examples.

【0026】実施例1 図4の(a)〜(c)は、本発明の光学用樹脂膜の一実
施例における各工程を説明するための断面図である。図
4(a)に示すように、高さ50μm、2mm角の凸部
41が5mm間隔おきに配置された3インチSi基板4
2を用意した。
Example 1 (a) to (c) of FIG. 4 are sectional views for explaining each step in one example of the optical resin film of the present invention. As shown in FIG. 4A, a 3-inch Si substrate 4 in which convex portions 41 of 50 μm in height and 2 mm square are arranged at intervals of 5 mm.
I prepared 2.

【0027】次に、図4(b)に示すように、上記基板
42上に下記の構造を有する材料を主成分とする光硬化
性エポキシ系材料(粘度100cp)を0.4ccの
せ、塗布膜43を設ける。次に、図4(c)に示すよう
に、塗布膜43上に、透明なガラス製の金型44(面精
度、λ/10)を気泡を追い出しながらのせた後、UV
光(波長350nm)を照射し、塗布膜43を硬化させ
硬化膜45とする。この硬化膜45の上面の面精度を干
渉法により測定したところ、金型44と同等の面精度で
あった。
Next, as shown in FIG. 4B, 0.4 cc of a photocurable epoxy material (viscosity 100 cp) containing a material having the following structure as a main component is applied on the substrate 42 to form a coating film. 43 is provided. Next, as shown in FIG. 4C, a transparent glass mold 44 (surface accuracy, λ / 10) is placed on the coating film 43 while expelling bubbles, and then UV is applied.
Irradiation with light (wavelength 350 nm) cures the coating film 43 to form a cured film 45. When the surface accuracy of the upper surface of the cured film 45 was measured by the interferometry, the surface accuracy was equivalent to that of the mold 44.

【0028】[0028]

【化1】 Embedded image

【0029】実施例2 上記実施例1と同様の基板を用い、塗布膜43の材料と
して上記の構造を主成分に含む熱硬化性エポキシ樹脂
(粘度100cp)を0.4ccのせ同様な操作を行
い、金型44をかぶせた後、100℃に加温し、硬化膜
45を得た。この硬化膜45の上面の面精度を干渉法に
より測定したところ、ほぼ実施例1と同様に金型44と
同等の面精度であった。
Example 2 Using the same substrate as in Example 1, 0.4 cc of thermosetting epoxy resin (viscosity 100 cp) containing the above structure as a main component was applied as the material of the coating film 43 and the same operation was performed. After covering with the mold 44, it was heated to 100 ° C. to obtain a cured film 45. When the surface accuracy of the upper surface of the cured film 45 was measured by the interferometry, the surface accuracy was almost the same as that of the mold 44 as in Example 1.

【0030】実施例3 上記実施例1および2と同様の基板を用い、塗布膜43
の材料として下記の構造を主成分に含む光硬化性アクリ
ル樹脂(粘度100cp)を0.4ccのせ同様な操作
を行ったところ、ほぼ実施例1と同様に金型44と同等
の面精度であった。
Example 3 Using the same substrate as in Examples 1 and 2, the coating film 43 was used.
As a material, a photocurable acrylic resin (viscosity 100 cp) containing the following structure as a main component was placed at 0.4 cc, and the same operation was performed. It was

【0031】[0031]

【化2】 Embedded image

【0032】[0032]

【化3】 Embedded image

【0033】実施例4 上記実施例1〜3と同様の基板を用い、塗布膜43の材
料として下記の構造を主成分に含む光硬化性シリコーン
樹脂(粘度100cp)を0.4ccのせ同様な操作を
行ったところ、ほぼ実施例1と同様に金型44と同等の
面精度であった。
Example 4 Using the same substrate as in Examples 1 to 3 and applying 0.4 cc of a photocurable silicone resin (viscosity 100 cp) containing the following structure as a main component as the material of the coating film 43, the same operation As a result, the surface accuracy was almost the same as that of the mold 44 as in the first embodiment.

【0034】[0034]

【化4】 [Chemical 4]

【0035】[0035]

【化5】 Embedded image

【0036】実施例5 上記実施例1〜4と同様の基板を用い、塗布膜43の材
料として下記の構造を主成分に含む熱可塑性樹脂のビー
ズあるいは微粉末(Tg 140度)を基板42上にの
せ、250℃に加熱しながら金型44(面精度、λ/1
0)を気泡を追い出しながらのせた。次に、室温まで冷
却して金型44を除去したところ、基板42は平坦化さ
れその面精度はほぼ実施例1と同様に金型44と同等の
面精度であった。
Example 5 Using the same substrate as in Examples 1 to 4, beads or fine powder (Tg 140 °) of thermoplastic resin containing the following structure as a main component was used as the material of the coating film 43 on the substrate 42. On the mold 44 while heating to 250 ° C. (surface accuracy, λ / 1
0) was added while expelling bubbles. Next, when the mold 44 was removed by cooling to room temperature, the substrate 42 was flattened and its surface accuracy was almost the same as that of the mold 44 as in the first embodiment.

【0037】[0037]

【化6】 [Chemical 6]

【0038】次に、本発明の光学用樹脂膜の作製方法を
適用した導波路素子の作製例について説明する。
Next, an example of producing a waveguide element to which the method for producing an optical resin film of the present invention is applied will be described.

【0039】作製例1 図5(a)〜(f)は、本発明の光学用樹脂膜の作製方
法を適用した導波路素子の一作製例を、その工程順に示
す断面図である。
Manufacturing Example 1 FIGS. 5A to 5F are cross-sectional views showing, in the order of steps, a manufacturing example of a waveguide element to which the method for manufacturing an optical resin film of the present invention is applied.

【0040】図5(a)に示すように、平坦部62およ
び孔63を有する基板61の凹部上に、上記実施例5と
同じ熱可塑性樹脂64をのせた。ここで基板61は前記
平坦部62以外は平滑度が低く、表面が荒れている。次
に、図5(b)に示すように底面が平坦な板65を熱可
塑性樹脂64にのせた。ここで注意すべきことは図5
(c)に示す加熱工程を経た後、樹脂が変形した際に図
5(d)に示すように板65が基板61の平坦部62に
かかるように板65をのせる必要があることである。加
熱により樹脂64が重合、変形すると、重合された樹脂
66は板65により押され、その上面は平坦化し、樹脂
余剰分67は孔63を通して基板61の凹部から外には
み出し、加熱終了後、固化する。次いで、図5(e)に
示すように板65を取り除き、図5(f)に示すように
樹脂余剰分67を除去する。これにより、基板61の上
面は平坦化され、その面精度はほぼ実施例1と同様に金
型44と同等の面精度であった。
As shown in FIG. 5A, the same thermoplastic resin 64 as in Example 5 was placed on the concave portion of the substrate 61 having the flat portion 62 and the hole 63. Here, the substrate 61 has a low smoothness except for the flat portion 62 and has a rough surface. Next, as shown in FIG. 5B, a plate 65 having a flat bottom was placed on the thermoplastic resin 64. What should be noted here is FIG.
After the heating step shown in (c), when the resin is deformed, it is necessary to place the plate 65 on the flat portion 62 of the substrate 61 as shown in FIG. 5D. . When the resin 64 is polymerized and deformed by heating, the polymerized resin 66 is pushed by the plate 65, the upper surface thereof is flattened, and the resin surplus 67 protrudes from the concave portion of the substrate 61 through the hole 63 and solidifies after the heating is completed. To do. Next, the plate 65 is removed as shown in FIG. 5 (e), and the resin surplus 67 is removed as shown in FIG. 5 (f). As a result, the upper surface of the substrate 61 was flattened, and its surface accuracy was almost the same as that of the mold 44, as in the first embodiment.

【0041】なお、本作製例1における孔63に代えて
平坦部62に溝を設けることにより、樹脂の余剰分を基
板61の凹部外に排出することができることを付記して
おく。また、本作製例も含めて、全ての実施例におい
て、例えば図5(c)に代えて図6のように上下が反転
した操作を行っても効果は同じである。
It should be noted that by providing a groove in the flat portion 62 instead of the hole 63 in the first manufacturing example, the excess resin can be discharged to the outside of the concave portion of the substrate 61. In addition, in all of the examples including this manufacturing example, the same effect can be obtained even if the operation is performed upside down as shown in FIG. 6 instead of FIG. 5C.

【0042】作製例2 図7(a)〜(f)は、本発明の光学用樹脂膜の作製方
法を適用した導波路素子の一作製例を、その工程順に示
す断面図である。
Fabrication Example 2 FIGS. 7A to 7F are cross-sectional views showing a fabrication example of a waveguide element to which the method for fabricating an optical resin film of the present invention is applied in the order of steps.

【0043】図7(a)に示した基板51は受発光素子
等光学素子をのせるための凸部52を有する3インチS
i基板である。台の大きさは2×2mmで高さ100μ
mである。次に、図7(b)に示すように、基板51上
にエポキシ系UV樹脂モノマー(粘度200cps、屈
折率1.51)を0.5cc滴下し、塗布膜53を形成
した。次に、図7(c)に示すように、塗布膜53上
に、平滑度がλ/10以下の鏡面加工を施したガラス基
板(3インチ)54を被せ、泡を除去しながら、UV光
(波長350nm)55を照射した。その後、図7
(d)に示すように、ガラス基板54を剥離したとこ
ろ、硬化膜56の膜厚は110μmであり、その上面が
平坦化され(平滑度λ/10程度)、凸部52は硬化膜
56中に埋め込まれていた。その後、図7(e)に示す
ように、O2 ガスを用いた反応性イオンエッチング(R
IE)を用い、高分子膜56を凸部52の上面が露出す
るまでエッチングした。この結果、3インチのSi基板
はみかけ上、平坦な基板となり、通常の方法と同様にフ
ォトリソグラフィーを用いたパターン化が可能となっ
た。次に、図7(f)に示すように、基板51の上面を
基準にして塗布膜53より高い屈折率をもつ高分子導波
路材料57(屈折率1.52)を用いてフォトリソグラ
フィー、RIE技術により凸部52と接する形で導波路
コア部57を作製した。その後、凸部52上にLD素子
58を接着し、このLD素子58と導波路コア部57と
の光結合を試みたところ、結合損は3dB程度であっ
た。
The substrate 51 shown in FIG. 7A is a 3-inch S having a convex portion 52 for mounting an optical element such as a light emitting / receiving element.
i substrate. The size of the table is 2 x 2 mm and the height is 100μ.
m. Next, as shown in FIG. 7B, 0.5 cc of epoxy UV resin monomer (viscosity 200 cps, refractive index 1.51) was dropped on the substrate 51 to form a coating film 53. Next, as shown in FIG. 7C, a glass substrate (3 inches) 54 having a mirror surface finish with a smoothness of λ / 10 or less is covered on the coating film 53, and UV light is removed while removing bubbles. (Wavelength 350 nm) 55 was irradiated. After that, FIG.
As shown in (d), when the glass substrate 54 was peeled off, the cured film 56 had a film thickness of 110 μm, its upper surface was flattened (smoothness of about λ / 10), and the convex portions 52 were formed in the cured film 56. Was embedded in. After that, as shown in FIG. 7 (e), reactive ion etching (R
The polymer film 56 was etched using IE) until the upper surface of the protrusion 52 was exposed. As a result, the 3-inch Si substrate apparently became a flat substrate, and patterning using photolithography became possible as in the usual method. Next, as shown in FIG. 7F, photolithography and RIE are performed using a polymer waveguide material 57 (refractive index 1.52) having a higher refractive index than the coating film 53 with respect to the upper surface of the substrate 51. The waveguide core portion 57 was formed by a technique so as to be in contact with the convex portion 52. After that, when the LD element 58 was bonded onto the convex portion 52 and an optical coupling between the LD element 58 and the waveguide core portion 57 was tried, the coupling loss was about 3 dB.

【0044】作製例3 上記作製例2と同様な方法で導波路コア部57を作製
し、図7に示した凸部52上にPDをのせ、光結合した
ところ結合損は2dB程度であった。
Manufacturing Example 3 A waveguide core portion 57 was manufactured by the same method as in Manufacturing Example 2, and a PD was placed on the convex portion 52 shown in FIG. 7 and optically coupled, and the coupling loss was about 2 dB. .

【0045】作製例4 上記作製例2において図7に示した凸部52上に他の導
波路をのせ、光結合を試みたところ、結合損は0.2d
B程度であった。
Manufacturing Example 4 When another waveguide was placed on the convex portion 52 shown in FIG. 7 in the above Manufacturing Example 2 and optical coupling was attempted, the coupling loss was 0.2d.
It was about B.

【0046】上記作製例における凸部52は凸形状であ
ったが、凹部、V溝形状であっても同様で、光ファイバ
との結合においても同様な効果が発揮できるのはいうま
でもない。
Although the convex portion 52 in the above-described manufacturing example has a convex shape, it is needless to say that the same effect can be obtained even if the concave portion and the V-shaped groove are formed, and the same effect can be exhibited in coupling with an optical fiber.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
面精度に優れた光学用樹脂膜を簡便に作製することがで
きる。従って、このように作製された光学用樹脂膜上に
光導波路を形成し、あるいはレンズ等の単体でも機能を
発現する光学部品を搭載することにより、高性能な導波
路特性を発揮する導波路型光学素子を作製することが可
能となる。また、作製された光学用樹脂膜上における光
結合は結合損失の小さいものとなり、光通信分野、光情
報処理分野等において有益である。
As described above, according to the present invention,
An optical resin film excellent in surface accuracy can be easily produced. Therefore, by forming an optical waveguide on the optical resin film produced in this way, or by mounting an optical component such as a lens that also exerts a function, a waveguide type that exhibits high-performance waveguide characteristics. It becomes possible to manufacture an optical element. Further, the optical coupling on the produced optical resin film has a small coupling loss, which is useful in the fields of optical communication and optical information processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の一般的な膜厚分布を示す断面図である。FIG. 1 is a cross-sectional view showing a conventional general film thickness distribution.

【図2】従来のコア部膜厚分布を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional core portion film thickness distribution.

【図3】(a)および(b)は、本発明の光学用樹脂膜
の作製方法の一実施態様例を示す断面図である。
3 (a) and 3 (b) are cross-sectional views showing an example of an embodiment of a method for producing an optical resin film of the present invention.

【図4】(a)〜(c)は、本発明の光学用樹脂膜の第
1の実施例における各工程を説明するための断面図であ
る。
FIGS. 4A to 4C are cross-sectional views for explaining each step in the first embodiment of the optical resin film of the present invention.

【図5】(a)〜(f)は、本発明の光学用樹脂膜の作
製方法を適用した導波路素子の一作製例を、その工程順
に示す断面図である。
5A to 5F are cross-sectional views showing, in the order of steps, an example of manufacturing a waveguide element to which the method for manufacturing an optical resin film of the present invention is applied.

【図6】図5に示した導波路素子の作製例の変形例を示
す断面図である。
FIG. 6 is a cross-sectional view showing a modified example of the manufacturing example of the waveguide element shown in FIG.

【図7】(a)〜(f)は、本発明の光学用樹脂膜の作
製方法を適用した導波路素子の他の作製例を、その工程
順に示す断面図である。
7A to 7F are cross-sectional views showing, in the order of steps, another example of manufacturing a waveguide element to which the method for manufacturing an optical resin film of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 凹凸基板 1a 凸部 1b 平坦部 2 下部クラッド部 3 コア部 4 上部クラッド部 31 基板 31a 凸部 31b 平坦部 32 塗布膜 33 金型 34 高分子膜 41 凸部 42 Si基板 43 塗布膜 44 透明ガラス製の金型(面精度、λ/10) 45 硬化膜 51 基板 52 凸部 53 塗布膜 54 ガラス基板 55 UV光(波長350nm) 56 硬化膜 57 導波路コア部 58 LD素子 61 基板 62 平坦部 63 孔 64 熱可塑性樹脂 65 板 66 硬化樹脂膜 67 樹脂余剰分 1 Concavo-convex substrate 1a Convex part 1b Flat part 2 Lower clad part 3 Core part 4 Upper clad part 31 Substrate 31a Convex part 31b Flat part 32 Coating film 33 Mold 34 Polymer film 41 Convex part 42 Si substrate 43 Coating film 44 Transparent glass Mold (surface accuracy, λ / 10) 45 Cured film 51 Substrate 52 Convex portion 53 Coating film 54 Glass substrate 55 UV light (wavelength 350 nm) 56 Cured film 57 Waveguide core portion 58 LD element 61 Substrate 62 Flat portion 63 Hole 64 Thermoplastic resin 65 Plate 66 Cured resin film 67 Resin surplus

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/13 G02B 6/12 M // B29K 105:24 B29L 11:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02B 6/13 G02B 6/12 M // B29K 105: 24 B29L 11:00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光学用樹脂膜を作製する方法において、 基板上に光硬化性または熱硬化性の樹脂原料を主成分と
する光学材料の膜を形成する工程と、 前記光学材料膜の表面に平坦な板を配置した後、前記基
板を上または下として光照射または加熱により前記光学
材料を重合させて硬化膜を形成する工程と、 前記平坦な板を除去する工程とを含むことを特徴とする
光学用樹脂膜の作製方法。
1. A method for producing an optical resin film, comprising a step of forming a film of an optical material containing a photocurable or thermosetting resin raw material as a main component on a substrate, and forming a film on the surface of the optical material film. After disposing a flat plate, the step of polymerizing the optical material by light irradiation or heating with the substrate above or below to form a cured film, and a step of removing the flat plate, A method for producing an optical resin film.
【請求項2】 前記光学材料がエポキシ環を有するモノ
マーまたはオリゴマーを主成分とし、さらに重合開始剤
を含むことを特徴とする請求項1記載の光学用樹脂膜の
作製方法。
2. The method for producing an optical resin film according to claim 1, wherein the optical material contains a monomer or oligomer having an epoxy ring as a main component, and further contains a polymerization initiator.
【請求項3】 前記光学材料が不飽和基を有するモノマ
ーまたはオリゴマーを主成分とし、さらに重合開始剤を
含むことを特徴とする請求項1記載の光学用樹脂膜の作
製方法。
3. The method for producing an optical resin film according to claim 1, wherein the optical material contains a monomer or oligomer having an unsaturated group as a main component, and further contains a polymerization initiator.
【請求項4】 前記光学材料がシロキサン結合を有する
モノマーまたはオリゴマーを主成分とし、さらに重合開
始剤を含むことを特徴とする請求項1記載の光学用樹脂
膜の作製方法。
4. The method for producing an optical resin film according to claim 1, wherein the optical material contains a monomer or oligomer having a siloxane bond as a main component, and further contains a polymerization initiator.
【請求項5】 前記平坦な板または前記基板が光透過性
を有する透明板であり、前記光学材料が光硬化性であ
り、前記光照射が該透明板を通して行われることを特徴
とする請求項1ないし4のいずれかの項に記載の光学用
樹脂膜の作製方法。
5. The flat plate or the substrate is a light-transmissive transparent plate, the optical material is photocurable, and the light irradiation is performed through the transparent plate. 5. The method for producing an optical resin film according to any one of 1 to 4.
【請求項6】 光学用樹脂膜を作製する方法において、 基板上に、熱変形温度以上で分解せずに流動性を呈する
樹脂を配置する工程と、 該樹脂上に平坦な板を配置して該樹脂を加熱する工程
と、 該平坦な板を除去する工程とを含むことを特徴とする光
学用樹脂膜の作製方法。
6. A method for producing an optical resin film, comprising a step of disposing a resin exhibiting fluidity without decomposing above a heat distortion temperature on a substrate, and disposing a flat plate on the resin. A method for producing an optical resin film, comprising: a step of heating the resin; and a step of removing the flat plate.
【請求項7】 光学用樹脂膜を作製する方法において、 平坦部と該平坦部にほぼ囲まれた凹部を有する基板の該
凹部上に、熱変形温度以上で分解せずに流動性を呈する
樹脂を配置する工程と、 該樹脂上に該基板の平坦部に達するように平坦な板を配
置して該樹脂を加熱する工程と、 該平坦な板を除去する工程とを含むことを特徴とする光
学用樹脂膜の作製方法。
7. A method for producing an optical resin film, wherein a resin exhibiting fluidity without being decomposed at a thermal deformation temperature or higher is present on the concave portion of a substrate having a flat portion and a concave portion substantially surrounded by the flat portion. And a step of disposing a flat plate on the resin so as to reach a flat portion of the substrate to heat the resin, and a step of removing the flat plate. A method for producing an optical resin film.
【請求項8】 該平坦な板の平滑度が、使用する波長の
1/10以下であることを特徴とする請求項1ないし7
のいずれかの項に記載の光学用樹脂膜の作製方法。
8. The flatness of the flat plate is not more than 1/10 of the wavelength used, and the flatness is 1-10.
The method for producing an optical resin film according to any one of 1.
JP7082983A 1995-04-07 1995-04-07 Preparation of optical resin film Pending JPH08278402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082983A JPH08278402A (en) 1995-04-07 1995-04-07 Preparation of optical resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082983A JPH08278402A (en) 1995-04-07 1995-04-07 Preparation of optical resin film

Publications (1)

Publication Number Publication Date
JPH08278402A true JPH08278402A (en) 1996-10-22

Family

ID=13789460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082983A Pending JPH08278402A (en) 1995-04-07 1995-04-07 Preparation of optical resin film

Country Status (1)

Country Link
JP (1) JPH08278402A (en)

Similar Documents

Publication Publication Date Title
US6989114B1 (en) Micro-shape transcription method, micro-shape transcription apparatus, and optical-component manufacture method
US5716556A (en) Method for producing a polymeric optical waveguide
KR101020634B1 (en) Method of manufacturing a lens having a functional nanopattern
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
US6847773B2 (en) Optical waveguide and method for manufacturing the same
JPH08327842A (en) Optical waveguide
US7749410B2 (en) Method of fabricating polymer optical circuit
JP2006508399A (en) Optical element structure based on photodrawable polymerizable composite
JP2007517253A (en) Production of polymer optical waveguides using molds
JPH09281351A (en) Production of high-polymer optical waveguide
JPH08271746A (en) Optical waveguide and its production
JPH08278402A (en) Preparation of optical resin film
JPH1090532A (en) Optical waveguide and its production
JP2004125919A (en) Polarizing and splitting element
JPH08327844A (en) Production of optical waveguide
JPH07120605A (en) Surface light source device and manufacture thereof
JP3609685B2 (en) Manufacturing method of optical waveguide
JPS63293509A (en) Production of optical circuit board
JP3165167B2 (en) Micro lens and manufacturing method thereof
JP5351101B2 (en) Optical waveguide manufacturing method
JP2001337239A (en) Optical waveguide and its manufacturing method
JP2001235746A (en) Light transmission plate, its manufacturing method and liquid crystal display device
JP2000019337A (en) Optical waveguide and its production
JP2011253043A (en) Method for manufacturing optical waveguide
US8778451B2 (en) Method of manufacturing optical waveguide