[go: up one dir, main page]

JPH08273883A - Antistatic body - Google Patents

Antistatic body

Info

Publication number
JPH08273883A
JPH08273883A JP9764095A JP9764095A JPH08273883A JP H08273883 A JPH08273883 A JP H08273883A JP 9764095 A JP9764095 A JP 9764095A JP 9764095 A JP9764095 A JP 9764095A JP H08273883 A JPH08273883 A JP H08273883A
Authority
JP
Japan
Prior art keywords
water
antistatic
weight
blast furnace
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9764095A
Other languages
Japanese (ja)
Inventor
Satoru Mori
哲 森
Kazuyuki Murata
和幸 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP9764095A priority Critical patent/JPH08273883A/en
Publication of JPH08273883A publication Critical patent/JPH08273883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE: To provide an antistatic body having high strength, heat resistance and fire resistance by making a hydraulic antistatic body composition contain blast furnace slag, water soluble high polymer, alkaline substance, and conductive substance. CONSTITUTION: A hydraulic antistatic body composition contains blast furnace slag, water soluble high polymer, alkaline substance, and conductive substance. The composition composed of the blast furnace stag, the water soluble high polymer, the alkaline substance, the conductive substance, and water is kneaded and molded, and thereafter, is wet-cured so as to form an antistatic body. Or, the composition composed of the blast furnace slag, the water soluble high polymer, the alkaline substance, and the water is kneaded, and thereafter, is composite-molded with the conductive substance so as to form the antistatic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、帯電防止体に関する。FIELD OF THE INVENTION The present invention relates to an antistatic body.

【0002】[0002]

【従来の技術】近年、エレクトロニクス技術の発展にと
もない、パーソナルコンピュータやワードプロセッサ等
の各種電子機器が工場施設、事務所、一般家屋等に数多
く導入されている。これら電子機器から発せられる静電
気が使用空間に帯電することによる弊害、例えば、電子
機器の誤作動、人体への機能障害等、がクローズアップ
されている。さらに、電子機器、食品もしくは医薬品等
の製造工場や取扱所等におけるダスト発生防止には、ク
リーンルーム装置が用いられているが、より安価なシス
テムが求められている。上記問題点の解決にあたり、導
電性物質を樹脂もしくはコンクリート等のマトリックス
と複合化し板状にしたものがある。
2. Description of the Related Art In recent years, with the development of electronics technology, various electronic devices such as personal computers and word processors have been introduced in many factories, offices, general houses and the like. The harmful effects caused by the static electricity generated from these electronic devices being charged in the use space, such as malfunction of electronic devices and functional damage to the human body, have been highlighted. Further, a clean room device is used for preventing dust generation in a manufacturing factory or a handling place of electronic devices, foods or pharmaceuticals, but a cheaper system is required. In solving the above-mentioned problems, there is a plate-shaped composite of a conductive substance and a matrix such as resin or concrete.

【0003】[0003]

【発明が解決しようとする課題】導電性物質を樹脂等の
マトリックス等と複合化する場合は得られる帯電防止体
の耐熱性及び耐火性に劣る。また、例えばセメントのよ
うな無機系材料をマトリックスとした場合、十分な強度
を得ることが困難である。
When a conductive substance is combined with a matrix such as a resin, the resulting antistatic body is inferior in heat resistance and fire resistance. Further, when an inorganic material such as cement is used as a matrix, it is difficult to obtain sufficient strength.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記した
課題を解決すべく鋭意研究を重ねた結果、本発明を完成
した。即ち、本発明は、(1)高炉スラグ、水溶性高分
子、アルカリ性物質及び、導電性物質を含有する水硬性
帯電防止体組成物、(2)高炉スラグ、水溶性高分子、
アルカリ性物質、導電性物質、及び水から成る組成物を
混練、成形後、湿潤養生して成る帯電防止体、(3)高
炉スラグ、水溶性高分子、アルカリ性物質、及び水から
成る組成物を混練後、導電性物質と複合成形してなる帯
電防止体、(4)高炉スラグ、水溶性高分子、アルカリ
性物質、及び水から成る組成物を混練後、導電性物質と
複合成形して得られた成形体を湿潤養生して成る帯電防
止体を提供する。
The present inventors have completed the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention includes (1) a blast furnace slag, a water-soluble polymer, an alkaline substance, and a hydraulic antistatic body composition containing an electrically conductive substance, (2) a blast furnace slag, a water-soluble polymer,
An antistatic body obtained by kneading a composition consisting of an alkaline substance, a conductive substance and water, molding and then wet curing, and (3) kneading a composition consisting of blast furnace slag, a water-soluble polymer, an alkaline substance and water. After that, a composition comprising an antistatic body formed by composite molding with a conductive material, (4) blast furnace slag, a water-soluble polymer, an alkaline material, and water was kneaded, and then composite molded with the conductive material. Provided is an antistatic body obtained by wet curing a molded body.

【0005】以下、本発明について詳細に説明する。本
発明において、高炉スラグとは溶鉱炉中で銑鉄と同時に
生成する溶融スラグを水又は空気等によって急冷して得
られるガラス質の物質を粉砕、乾燥したものであり、一
般的にはブレーン値2000cm2 /g以上の比表面積
を持つものが使用できる。又、ブレーン値が4000c
2 /g以下の比較的粗い高炉スラグと、ブレーン値が
5000cm2 /g以上の細かい高炉スラグを併用する
ことも可能である。
The present invention will be described in detail below. In the present invention, the blast furnace slag is a product obtained by pulverizing and drying a glassy substance obtained by rapidly cooling molten slag produced simultaneously with pig iron in a blast furnace with water or air, and generally has a Blaine value of 2000 cm 2 Those having a specific surface area of / g or more can be used. Also, the Blaine value is 4000c
It is also possible to use a relatively coarse blast furnace slag of m 2 / g or less and a fine blast furnace slag having a Blaine value of 5000 cm 2 / g or more.

【0006】本発明で使用する水溶性高分子は特に制限
はないが、下記する混練工程において混練物中にに均一
に且つ迅速に溶解することが好ましく、そのため微粒子
状のものが好ましい。本発明で使用しうる水溶性高分子
を以下に例示する。 (a)分子中にカルボキシル基及び/又はアマイド基を
有する水溶性高分子類又はそれらの塩、α−ヒドロキシ
−ポリアクリル酸ナトリウム及び以下のモノマーを原料
とするホモポリマー又はコポリマーまたはそれらの塩。
The water-soluble polymer used in the present invention is not particularly limited, but it is preferable that the water-soluble polymer be uniformly and rapidly dissolved in the kneaded product in the kneading step described below, and therefore fine particles are preferable. The water-soluble polymers that can be used in the present invention are exemplified below. (A) Water-soluble polymers having a carboxyl group and / or an amide group in the molecule, or salts thereof, homopolymers or copolymers of α-hydroxy-sodium polyacrylate and the following monomers as raw materials, or salts thereof.

【0007】上記におけるモノマー原料としては、アク
リルアマイド、N,N−ジメチルアクリルアマイド、N
−メチルアクリルアマイド等の(メタ)アクリルアマイ
ド系モノマー、(メタ)アクリル酸、(メタ)アクリル
酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)
アクリル酸リチウム、2−ヒドロキシエチル(又はプロ
ピル)(メタ)アクリレート等の(メタ)アクリル酸系
モノマー、N−ビニルピロリドン、ビニルメチルエーテ
ル、スチレンスルホン酸(又はこれらのナトリウム又は
カリウム塩)等のビニル系モノマー。又、ポリ(メタ)
アクリルアマイドの部分加水分解物も使用可能である。
The above-mentioned monomer raw materials include acrylic amide, N, N-dimethyl acrylic amide, N
-(Meth) acrylic amide-based monomers such as methyl acrylic amide, (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, (meth)
Lithium acrylate, (meth) acrylic acid type monomers such as 2-hydroxyethyl (or propyl) (meth) acrylate, vinyl such as N-vinylpyrrolidone, vinyl methyl ether, styrene sulfonic acid (or their sodium or potassium salts) System monomer. Also, poly (meta)
A partial hydrolyzate of acrylic amide can also be used.

【0008】(b)ヒドロキシプロピルメチルセルロー
ス、ヒドロキシエチルメチルセルロース、カルボキシメ
チルセルロース等のセルロース誘導体。 (c)部分加水分解ポリ酢酸ビニル、カチオン化ポリ酢
酸ビニル、アニオン化ポリ酢酸ビニル等のポリ酢酸ビニ
ル誘導体。 (d)可溶性澱粉。 (e)ポリエチレンオキサイド。 (f)(メタ)アクリル酸メチル、(メタ)アクリル酸
エチル、(メタ)アクリル酸プロピル等の(メタ)アク
リル酸エステル類、スチレン、エチレン、プロピレン等
と上記水溶性モノマーとの共重合体。
(B) Cellulose derivatives such as hydroxypropylmethylcellulose, hydroxyethylmethylcellulose and carboxymethylcellulose. (C) Polyvinyl acetate derivatives such as partially hydrolyzed polyvinyl acetate, cationized polyvinyl acetate and anionized polyvinyl acetate. (D) Soluble starch. (E) Polyethylene oxide. (F) Copolymers of (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate and propyl (meth) acrylate, styrene, ethylene, propylene and the like with the above water-soluble monomer.

【0009】これら水溶性高分子の中で特に好ましいも
のとして、ポリ(メタ)アクリル酸ナトリウム、ポリ
(メタ)アクリル酸カリウム、ポリ(メタ)アクリルア
ミド、ポリ(メタ)アクリルアミドの部分加水分解物又
はその塩、(メタ)アクリル酸ナトリウムと(メタ)ア
クリルアミドとの共重合体、(メタ)アクリル酸カリウ
ムと(メタ)アクリルアミドとの共重合体、ポリカルボ
キシメチルセルロース等が例示される。これら(メタ)
アクリル酸又はその塩、(メタ)アクリルアミドと(メ
タ)アクリル酸塩との共重合体の分子量は10000以
上が好ましい。
Among these water-soluble polymers, particularly preferred are sodium poly (meth) acrylate, potassium poly (meth) acrylate, poly (meth) acrylamide, partial hydrolyzate of poly (meth) acrylamide, or a product thereof. Examples thereof include salts, copolymers of sodium (meth) acrylate and (meth) acrylamide, copolymers of potassium (meth) acrylate and (meth) acrylamide, polycarboxymethyl cellulose and the like. These (meta)
The molecular weight of acrylic acid or a salt thereof or a copolymer of (meth) acrylamide and (meth) acrylic acid salt is preferably 10,000 or more.

【0010】本発明における水溶性高分子の使用量には
特に制限はないが、高炉スラグに対して1〜25重量
%、好ましくは2〜10重量%である。水溶性高分子の
使用量が1重量%以下であると、混合物が混練できない
か、又は混練できたとしても後工程の成形加工性が悪く
なる傾向にある。又、25重量%以上使用しても得られ
る複合材料の曲げ強度、耐水性は大きく変わらず経済的
に不利である。
The amount of the water-soluble polymer used in the present invention is not particularly limited, but is 1 to 25% by weight, preferably 2 to 10% by weight based on the blast furnace slag. When the amount of the water-soluble polymer used is 1% by weight or less, the mixture cannot be kneaded, or even if the mixture can be kneaded, the moldability of the subsequent step tends to be poor. Further, even if it is used in an amount of 25% by weight or more, the bending strength and water resistance of the obtained composite material are not significantly changed, which is economically disadvantageous.

【0011】本発明で使用するアルカリ性物質として
は、水に溶解してアルカリ性を示すものならば特に制限
はない。例えば、水酸化ナトリウム、水酸化カリウム、
水酸化リチウム等のアルカリ金属の水酸化物、炭酸ナト
リウム、炭酸カリウム、炭酸リチウム等のアルカリ金属
の炭酸塩、重炭酸ナトリウム、重炭酸カリウム、重炭酸
リチウム等のアルカリ金属の重炭酸塩、水酸化カルシウ
ム、水酸化マグネシウム等のアルカリ土類金属の水酸化
物、酸化カルシウム、酸化マグネシウム等のアルカリ土
類金属の酸化物、及び、ポルトランドセメント、ポルト
ランドセメントクリンカー、ピロ燐酸カリウム、ピロ燐
酸ナトリウム、燐酸二カリウム、燐酸三カリウム、燐酸
三ナトリウム、メタ珪酸カリウム、メタ珪酸ナトリウム
等である。これらアルカリ性物質の中で特に好ましいも
のを具体的に例示すると、水酸化ナトリウム、炭酸ナト
リウム、メタ珪酸ナトリウム、ポルトランドセメントク
リンカー等である。
The alkaline substance used in the present invention is not particularly limited as long as it dissolves in water and exhibits alkalinity. For example, sodium hydroxide, potassium hydroxide,
Alkali metal hydroxides such as lithium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, alkali metal bicarbonates such as sodium bicarbonate, potassium bicarbonate and lithium bicarbonate, and hydroxides. Alkaline earth metal hydroxides such as calcium and magnesium hydroxide, alkaline earth metal oxides such as calcium oxide and magnesium oxide, and Portland cement, Portland cement clinker, potassium pyrophosphate, sodium pyrophosphate and diphosphate. Examples include potassium, tripotassium phosphate, trisodium phosphate, potassium metasilicate, sodium metasilicate and the like. Particularly preferable examples of these alkaline substances are sodium hydroxide, sodium carbonate, sodium metasilicate, Portland cement clinker and the like.

【0012】これらアルカリ性物質の使用量は、特に制
限はなく、アルカリ性物質の塩基性度及び添加する水量
によって異なるが、通常、高炉スラグに対して0.1〜
5重量%であり、好ましくは0.2〜3重量%である。
アルカリ性物質の使用量が0.1重量%以下であると成
形体が湿潤養生によっても硬化しないか、又は硬化した
としても湿潤養生(硬化)に長時間を要し、工業的に不
利になる。一方、アルカリ性物質を5重量%以上使用す
ると、硬化が速すぎ混練・成形工程中に硬化が進行する
恐れがある。この様に本発明に於いては、アルカリ性物
質の使用量が極めて少なくても高炉スラグが硬化すると
いう特徴がある。
The amount of these alkaline substances used is not particularly limited and varies depending on the basicity of the alkaline substance and the amount of water added, but it is usually 0.1 to blast furnace slag.
It is 5% by weight, preferably 0.2 to 3% by weight.
When the amount of the alkaline substance used is 0.1% by weight or less, the molded body does not cure even by wet curing, or even if it cures, wet curing (curing) requires a long time, which is industrially disadvantageous. On the other hand, if an alkaline substance is used in an amount of 5% by weight or more, the curing may be too fast and the curing may proceed during the kneading / molding process. As described above, the present invention is characterized in that the blast furnace slag is hardened even if the amount of the alkaline substance used is extremely small.

【0013】本発明に於いて使用する導電性物質は、金
属、カーボン物質に大別できる。金属としては、特に制
限はなく、アルミニウム、クロム、鉄、コバルト、ニッ
ケル、銅、亜鉛、モリブデン、鉛、スズ等の元素の1種
類から成る単体及び2種類以上の元素から構成される合
金が用いうる具体例として挙げられ、中でも、鋼、アル
ミニウム合金、銅、黄銅、青銅、ステンレス、パーマロ
イ等が好ましいものとして例示される。
The conductive substance used in the present invention can be roughly classified into metal and carbon substances. The metal is not particularly limited, and a simple substance made of one kind of element such as aluminum, chromium, iron, cobalt, nickel, copper, zinc, molybdenum, lead, tin and an alloy made of two or more kinds of elements are used. Specific examples thereof include steel, aluminum alloy, copper, brass, bronze, stainless steel, permalloy, and the like.

【0014】カーボン物質としては、特に制限はない
が、人造(天然)黒鉛粉末、カーボンブラック(アセチ
レンブラック、ケッチェンブラック、フィネスブラック
等)、炭素繊維粉末、ポリマーカーボン粉末、メソフェ
ーズピッチ系黒鉛粉末、複合炭素/黒鉛粉末等が用いう
る具体例として挙げられる。中でも、天然黒鉛粉末、炭
素繊維粉末等が好ましいものとして例示される。
The carbon material is not particularly limited, but artificial (natural) graphite powder, carbon black (acetylene black, Ketjen black, finesse black, etc.), carbon fiber powder, polymer carbon powder, mesophase pitch type graphite powder, Specific examples of the composite carbon / graphite powder and the like can be used. Among them, natural graphite powder, carbon fiber powder and the like are exemplified as preferable ones.

【0015】これら導電性物質の形状は、特に制限はな
く、様々な形状の導電性物質を用いることができる。微
粒子状のものとしては、不定形、球形、短繊維、偏平
形、板状等、繊維状のものとしては、単繊維、長繊維、
繊維をよった物、繊維を例えば網状に編んだ物等、シー
ト状のものとしては、箔、ペーパー、フェルト等が例示
される。又、これらの導電性物質は単独で用いてもよ
く、2種類以上を混合して用いてもよい。
The shapes of these conductive materials are not particularly limited, and various shapes of conductive materials can be used. As fine particles, amorphous, spherical, short fiber, flat, plate-like, etc., as fibrous materials, single fiber, long fiber,
Examples of the sheet-like material such as a fiber-based material, a fiber-woven material, and the like include foil, paper, felt, and the like. Further, these conductive materials may be used alone or in combination of two or more kinds.

【0016】これら導電性物質の添加量は、特に制限は
なく、通常高炉スラグに対して0.005〜2000重
量%、好ましくは、0.01〜1000重量%である。
The amount of the conductive material added is not particularly limited and is usually 0.005 to 2000% by weight, preferably 0.01 to 1000% by weight, based on the blast furnace slag.

【0017】本発明の帯電防止体を得る為の添加水量
は、水溶性高分子の添加量、アルカリ性物質の種類と添
加量、導電性物質の種類や形状及び添加量によって異な
り、混合物が良好な混練性を示すように決定しなければ
ならず、通常高炉スラグに対して5〜100重量%、好
ましくは10〜50重量%である。
The amount of water added to obtain the antistatic body of the present invention varies depending on the amount of water-soluble polymer added, the type and amount of alkaline substance, the type and shape of conductive substance, and the amount added, and a good mixture is obtained. It should be determined so as to show kneadability, and usually 5 to 100% by weight, preferably 10 to 50% by weight, based on the blast furnace slag.

【0018】本発明の帯電防止体の物理的強度を確保す
るために、微粒骨材を使用することもできる。微粒骨材
は一般に入手できるものならば特に制限はないが、シリ
カフューム、フライアッシュ、珪砂、珪砂粉、珪石粉、
クレー、タルク、カオリン、炭酸カルシウム、チタニ
ア、ジルコニア、アルミナ等が例示される。これらの微
粒骨材は、本発明の帯電防止体に於いて、空隙の充填材
的作用をなすものであり、その使用の有無は下記する混
練物の成形時の作業性の向上及び硬化体の乾燥による収
縮の低減に影響を及ぼす場合がある。これら微粒骨材の
中、シリカフュームが好適である。
In order to secure the physical strength of the antistatic body of the present invention, a fine aggregate may be used. The fine aggregate is not particularly limited as long as it is generally available, but silica fume, fly ash, silica sand, silica sand powder, silica stone powder,
Examples include clay, talc, kaolin, calcium carbonate, titania, zirconia, alumina and the like. These fine-grained aggregates function as a filler for voids in the antistatic body of the present invention. Whether or not they are used depends on whether the kneaded product is improved in workability during molding and is hardened as described below. This may affect the reduction of shrinkage due to drying. Among these fine aggregates, silica fume is preferable.

【0019】又、微粒骨材は粒径が小さいほど好まし
く、特に平均粒径が100μm以下のものが好ましい。
更に、微粒骨材の添加量は、高炉スラグに対し2〜50
重量%、更に好ましくは5〜30重量%である。本発明
の水硬性組成物及び複合材料の成形、硬化後の硬化体の
靭性を向上する目的で、ガラスファイバー、カーボンフ
ァイバー、ビニロンファイバー等の繊維状物質を添加す
ることができる。
Further, it is preferable that the fine aggregate has a smaller particle diameter, and it is particularly preferable that the average particle diameter is 100 μm or less.
Further, the addition amount of the fine aggregate is 2 to 50 with respect to the blast furnace slag.
%, More preferably 5 to 30% by weight. For the purpose of improving the toughness of the cured product after molding and curing of the hydraulic composition and the composite material of the present invention, a fibrous substance such as glass fiber, carbon fiber or vinylon fiber can be added.

【0020】本発明に於いて、混練、成形工程で十分な
作業時間を確保する目的で、硬化遅延剤を添加すること
ができる。使用しうる硬化遅延剤としては、グルコン
酸、酒石酸、マロン酸、コハク酸、マレイン酸、フマル
酸、リンゴ酸、蟻酸、酢酸等のナトリウム塩又はカリウ
ム塩、ブドウ糖、果糖、ショ糖、乳糖、麦芽糖等の糖類
等が例示され、その使用量は特に制限はないが、好まし
くは、高炉スラグに対して0.1〜10重量%である。
In the present invention, a curing retarder may be added for the purpose of ensuring a sufficient working time in the kneading and molding steps. As the curing retarder which can be used, gluconic acid, tartaric acid, malonic acid, succinic acid, maleic acid, fumaric acid, malic acid, formic acid, sodium salt or potassium salt of acetic acid, glucose, fructose, sucrose, lactose, maltose. Examples thereof include sugars, and the amount used is not particularly limited, but is preferably 0.1 to 10% by weight with respect to the blast furnace slag.

【0021】本発明の帯電防止体の形状は特に制限はな
いが、面状帯電防止板として使用する場合は板状にした
り、その他流し込み成形法を用いて様々な形状に成形し
たり、組成物を面状帯電防止ペーストとして使用するこ
とも可能である。板状にして使用する場合は、その厚さ
を0.1mm〜500mm、特に好ましくは1mm〜5
0mmにする。
The shape of the antistatic body of the present invention is not particularly limited, but when it is used as a sheet antistatic plate, it may be formed into a plate shape, or may be molded into various shapes by a casting method, or a composition. It is also possible to use as a planar antistatic paste. When used in the form of a plate, the thickness thereof is 0.1 mm to 500 mm, particularly preferably 1 mm to 5 mm.
Set to 0 mm.

【0022】次に本発明の水硬性帯電防止体組成物、帯
電防止体の製造法について述べるが、本発明はこれに限
定されるものではない。 (A)上記(1)記載の水硬性帯電防止体組成物の製法 高炉スラグ粉末、水溶性高分子、アルカリ性物質、導電
性物質及び必要により微粒骨材及び硬化遅延剤からなる
混合物を調製し、オムニミキサー(千代田技研工業
(株)製)のような揺動型ミキサー、ニーダールーダー
型ミキサー、プラネタリーミキサー等で粉状で混合し本
発明の水硬性帯電防止体組成物を得ることができる。こ
の場合、導電性物質は粉末状、繊維状のものが好まし
い。
Next, the hydraulic antistatic composition and the method for producing the antistatic material of the present invention will be described, but the present invention is not limited thereto. (A) A method for producing the hydraulic antistatic composition according to (1) above. A mixture of blast furnace slag powder, a water-soluble polymer, an alkaline substance, a conductive substance and, if necessary, a fine aggregate and a curing retarder is prepared, The hydraulic antistatic composition of the present invention can be obtained by mixing in a powder form with an oscillating mixer such as Omni Mixer (manufactured by Chiyoda Giken Kogyo Co., Ltd.), a kneader ruder mixer, a planetary mixer or the like. In this case, the conductive substance is preferably powdery or fibrous.

【0023】(B)上記(2)記載の帯電防止体の製法 まず、高炉スラグ粉末、水溶性高分子、導電性物質及び
必要により微粒骨材からなる混合物を調製し、上記
(A)で例示した混合機を用いて該混合物を混合する。
次にこの混合物に、所定量の水及びアルカリ性物質(必
要により硬化遅延剤)を溶解した水溶液を添加し、更に
粗混練を行う。又、前記(A)で得られる水硬性物質に
所定量の水を添加して、同様に粗混練をしてもよい。こ
の場合、導電性物質は粉末状、繊維状のものが好まし
い。
(B) Method for Producing Antistatic Body as Described in (2) First, a mixture of blast furnace slag powder, water-soluble polymer, electrically conductive substance and, if necessary, fine aggregate is prepared, and exemplified in (A) above. The mixture is mixed using the mixer described above.
Next, an aqueous solution in which a predetermined amount of water and an alkaline substance (setting retarder if necessary) are dissolved is added to this mixture, and further rough kneading is performed. Further, a predetermined amount of water may be added to the hydraulic substance obtained in the above (A), and similarly rough kneading may be performed. In this case, the conductive substance is preferably powdery or fibrous.

【0024】その後、混練を行うが混練は粗混練物に強
せん断を加えられる機器を使用することが望ましい。例
えば、ロールニーダー、バンバリーミキサー、湿式バン
バリーミキサー、ミキシングロール、クネットマシー
ン、バッグミル、スクリュー押し出し機、ニーダールー
ダー等が用いられ、混練物が粘土状を呈するまで混練を
行う。
After that, kneading is carried out, but it is desirable to use an apparatus capable of applying strong shear to the crude kneaded product. For example, a roll kneader, a Banbury mixer, a wet Banbury mixer, a mixing roll, a kunet machine, a bag mill, a screw extruder, a kneader ruder, etc. are used, and kneading is performed until the kneaded product has a clay-like appearance.

【0025】次いで上記混練物を適当な成形機で成形
し、成形体を得る。用いうる成形機に関しては特に制限
はなく、カレンダーロール、(低〜硬)圧プレス、(真
空)押し出し機等が例示される。本発明の帯電防止体
は、下記する湿潤養生工程により硬化させた硬化体とし
て使用するが、特に、減圧下で成形できる方法を採用す
ると、より大きい曲げ強度を有し、且つ曲げ強度のばら
つきが少ない硬化体が得られるので好ましい。
Next, the above kneaded product is molded by a suitable molding machine to obtain a molded product. There are no particular restrictions on the molding machine that can be used, and examples include calender rolls, (low to hard) pressure presses, and (vacuum) extruders. The antistatic body of the present invention is used as a cured body which is cured by the following wet curing step, but particularly when a method capable of molding under reduced pressure is adopted, it has a larger bending strength and a variation in bending strength. It is preferable because a small amount of cured product can be obtained.

【0026】成形後の湿潤養生は、少なくとも混練・成
形体の水分が蒸発しない、高湿潤雰囲気が達成されれ
ば、特に制限されない。通常、相対湿度80%以上で行
われるが、好ましくは90%以上の湿潤雰囲気下で養生
を行う方法、水分を通さない容器や袋に成形体を入れる
方法、又はプラスチック板や金属板に成形体を挟む方法
が例示される。又、湿潤養生初期の成形体を水に浸して
水中で養生を行うこともできる。
The wet curing after molding is not particularly limited as long as at least a moisture atmosphere of the kneaded / molded product is not evaporated and a high wet atmosphere is achieved. Usually, the relative humidity is 80% or more, but preferably curing is performed in a humid atmosphere of 90% or more, a molded body is put in a water-impermeable container or bag, or a molded body is formed on a plastic plate or a metal plate. An example of a method of sandwiching is shown. It is also possible to immerse the molded body in the early stage of wet curing in water to perform curing in water.

【0027】本発明における湿潤養生は高温であるほ
ど、混練・成形体の硬化が速い傾向にあるが、特に制限
はない。通常、室温〜100℃の温度が用いられる。
又、水蒸気を用いて100℃以上でオートクレーブ養生
を行っても良い。湿潤養生時間は、使用するアルカリ性
物質の種類や量、及び湿潤養生条件によって異なるが、
概ね1時間〜3日である。
In the wet curing in the present invention, the higher the temperature is, the faster the kneading / molding product cures, but there is no particular limitation. Usually, a temperature of room temperature to 100 ° C. is used.
Also, autoclave curing may be performed at 100 ° C. or higher using steam. The wet curing time depends on the type and amount of alkaline substance used and the wet curing conditions,
It is approximately 1 hour to 3 days.

【0028】湿潤養生後の硬化体は水分を含んでいる
が、乾燥して用いることが望ましい。乾燥温度は、特に
制限されず、室温〜100℃の温度範囲で任意に選択で
きるが、高温で乾燥するより室温に近い温度で徐々に時
間をかけ乾燥する方が望ましい。以上のようにして本発
明の帯電防止体を得ることができる。
Although the hardened body after wet curing contains water, it is preferably dried and used. The drying temperature is not particularly limited and can be arbitrarily selected in the temperature range of room temperature to 100 ° C., but it is preferable to gradually dry at a temperature close to room temperature over a period of time rather than drying at a high temperature. The antistatic body of the present invention can be obtained as described above.

【0029】(C)上記(3)記載の帯電防止体の製法 まず、上記(B)と同様の方法で、高炉スラグ粉末、水
溶性高分子、アルカリ性物質及び必要により微粒骨材及
び硬化遅延剤からなる混合物を調製し、(B)と同様に
し成形体を得る。次いで、二枚の該成形体の間に板(シ
ート状または網状)状の導電性物質を挟み、二本ロール
プレスの間を通したり、プレスで軽く圧着させて一体化
させてることにより、本発明の帯電防止体を得ることが
できる。
(C) Method for Producing Antistatic Body According to (3) Above, in the same manner as in (B) above, blast furnace slag powder, water-soluble polymer, alkaline substance and, if necessary, fine aggregate and hardening retarder A mixture consisting of is prepared, and a molded product is obtained in the same manner as in (B). Next, a plate (sheet-like or net-like) conductive material is sandwiched between the two molded bodies, and the material is passed between two roll presses or lightly pressed by the press to integrate the two, thereby forming a book. The antistatic body of the invention can be obtained.

【0030】(D)更に、上記(C)で得られた帯電防
止体を上記(B)と同様にして、湿潤養生することによ
り上記(4)記載の帯電防止体を得ることができる。
(D) Further, the antistatic body obtained in (C) above is wet-cured in the same manner as in (B) above to obtain the antistatic body described in (4) above.

【0031】[0031]

【実施例】以下、実施例を挙げて本発明を説明するが、
本発明はこれによって限定されるものではない。
The present invention will be described below with reference to examples.
The present invention is not limited to this.

【0032】実施例1 帯電防止性水硬性組成物の調製 高炉スラグ粉末(新日鐵化学(株)製、エスメント40
P(ブレーン値、4000cm2 /g));180重量
部、重炭酸ナトリウム;2重量部、シリカフューム(日
本重化学工業(株)製、SFパウダー);20重量部、
ポリアクリル酸ナトリウム(日本化薬(株)製、パナカ
ヤク−B);6重量部、B−800(天然黒鉛粉末、日
本カーボン(株)製);60重量部及び砂糖;0.2重
量部をビニール袋中で混合し本発明の水硬性帯電防止体
組成物を得た。
Example 1 Preparation of Antistatic Hydraulic Composition Blast furnace slag powder (manufactured by Nippon Steel Chemical Co., Ltd., ESMENT 40)
P (Blaine value, 4000 cm 2 / g)); 180 parts by weight, sodium bicarbonate; 2 parts by weight, silica fume (manufactured by Nippon Heavy Chemical Industry Co., Ltd., SF powder); 20 parts by weight,
Sodium polyacrylate (manufactured by Nippon Kayaku Co., Ltd., Panakayak-B); 6 parts by weight, B-800 (natural graphite powder, manufactured by Nippon Carbon Co., Ltd.); 60 parts by weight and sugar; 0.2 parts by weight The mixture was mixed in a vinyl bag to obtain the hydraulic antistatic composition of the present invention.

【0033】実施例2 実施例1において、B−800の代わりに鱗片状黒鉛
(中央化成(株)製);90重量部使用した他は、実施
例1と同様にして本発明の水硬性帯電防止体組成物を得
た。
Example 2 The hydraulic charging of the present invention was carried out in the same manner as in Example 1 except that 90 parts by weight of flake graphite (manufactured by Chuo Kasei Co., Ltd.) was used instead of B-800. An inhibitor composition was obtained.

【0034】実施例3 帯電防止体の調製 エスメント40P;180重量部、SFパウダー;20
重量部、パナカヤク−B;6重量部、B−800;60
重量部を計量し、ポリエチレン製の袋に入れ粉体混合を
行った。次に、水酸化ナトリウム;2重量部、及び砂
糖;0.2重量部を水;32重量部に溶解した水溶液を
添加し、袋の上から軽く揉み粗混練物を得た。
Example 3 Preparation of Antistatic Body Essment 40P; 180 parts by weight, SF powder; 20
Parts by weight, Panakayak-B; 6 parts by weight, B-800; 60
Part by weight was weighed and put in a polyethylene bag for powder mixing. Next, 2 parts by weight of sodium hydroxide and 0.2 parts by weight of sugar were added to an aqueous solution of 32 parts by weight of water, and the mixture was lightly kneaded from the top of the bag to obtain a coarse kneaded product.

【0035】次いで、この粗混練物を卓上型ニーダ
((株)入江商会製、PBV−0.3)で、5分間高せ
ん断力下にて混練し、ドウを得た。このドウを熱盤プレ
ス((株)テスター産業製)を用い、厚さ3mmの板状
成形物に調製した。この成形体をポリエチレン製の袋に
入れ、相対湿度90%、90℃の養生器にいれ24時間
湿潤養生し本発明の帯電防止体を得た。この硬化体をポ
リエチレン製の袋から取り出し、バンドソーイングマシ
ーン((株)ラクソー、V−19型DIA)で15mm
×60mmの板状に切断し、帯電防止測定用サンプル
(BH−1)とした。
Then, this crude kneaded product was kneaded with a tabletop kneader (PBV-0.3, manufactured by Irie Shokai Co., Ltd.) for 5 minutes under high shearing force to obtain a dough. This dough was prepared into a plate-shaped molded product having a thickness of 3 mm using a hot platen press (manufactured by Tester Sangyo Co., Ltd.). This molded body was placed in a polyethylene bag, placed in a curing chamber at 90% relative humidity and 90 ° C., and wet-cured for 24 hours to obtain an antistatic body of the present invention. This cured product was taken out of the polyethylene bag and was 15 mm in a band sawing machine (Luxor V-19 type DIA).
It was cut into a plate of × 60 mm to obtain an antistatic measurement sample (BH-1).

【0036】帯電防止効果の評価は、デジタルマルチメ
ーター(R6441A、アドバンテスト(株)製)の測
定プローブをプローブ間隔1cmで、サンプル表面に押
し当てて測定し本発明の帯電防止体を得た。その結果、
BH−1の帯電防止効果は、500Ωであった。
The antistatic effect was evaluated by pressing a measuring probe of a digital multimeter (R6441A, manufactured by Advantest Co., Ltd.) against the sample surface at a probe interval of 1 cm to obtain an antistatic body of the present invention. as a result,
The antistatic effect of BH-1 was 500Ω.

【0037】また、上記サンプル;BH−1を15mm
×100mmの板状に切断し、曲げ物性測定用サンプル
とした。曲げ物性の測定はテンシロン((株)オリエン
テック製、UT−2500)を用い、スパン間隔60m
m、曲げ速度1mm/分の条件で行ったところ、曲げ強
度;300kgf/cm2 、曲げ弾性率;1.0×10
5 kgf/cm2 であった。
The above sample; BH-1 is 15 mm
It was cut into a plate of × 100 mm and used as a sample for measuring bending properties. Bending properties were measured using Tensilon (UT-2500, manufactured by Orientec Co., Ltd.) with a span interval of 60 m.
m, bending speed 1 mm / min, bending strength; 300 kgf / cm 2 , bending elastic modulus; 1.0 × 10
It was 5 kgf / cm 2 .

【0038】実施例4〜7 実施例3に於て、B−800に代えて、表1に示す導電
性物質を添加し、実施例1と同様な操作を行い本発明の
帯電防止体を調製した。得られた帯電防止体について実
施例3と同様にして測定した帯電防止効果を表2に示
す。
Examples 4 to 7 In Example 3, the conductive material shown in Table 1 was added in place of B-800, and the same operation as in Example 1 was carried out to prepare the antistatic body of the present invention. did. Table 2 shows the antistatic effect measured on the obtained antistatic body in the same manner as in Example 3.

【0039】[0039]

【表1】 表1 導電性物質 添加量(重量部) 実施例4(BH−2) B−800 90 実施例5(BH−3) B−800 180 実施例6(BH−4) R−1 60 実施例7(BH−5) RIN 60Table 1 Table 1 Conductive substance Addition amount (parts by weight) Example 4 (BH-2) B-800 90 Example 5 (BH-3) B-800 180 Example 6 (BH-4) R-1 60 Example 7 (BH-5) RIN 60

【0040】表1中、R−1:天然黒鉛(日本カーボン
(株)製、粉末状) RIN:鱗片状黒鉛(中央化成(株)製) である。
In Table 1, R-1 is natural graphite (manufactured by Nippon Carbon Co., Ltd., powder form) RIN: Flake graphite (manufactured by Chuo Kasei Co., Ltd.).

【0041】[0041]

【表2】 [Table 2]

【0042】実施例8 エスメント40P;180重量部、SFパウダー;20
重量部、パナカヤク−B;6重量部、B−800;60
重量部を計量し、ポリエチレン製の袋に入れ粉体混合を
行った。次に、水酸化ナトリウム;2重量部、及び砂
糖;0.2重量部を水;32重量部に溶解した水溶液を
添加し、袋の上から軽く揉み粗混練物を得た。
Example 8 Essment 40P; 180 parts by weight, SF powder; 20
Parts by weight, Panakayak-B; 6 parts by weight, B-800; 60
Part by weight was weighed and put in a polyethylene bag for powder mixing. Next, 2 parts by weight of sodium hydroxide and 0.2 parts by weight of sugar were added to an aqueous solution of 32 parts by weight of water, and the mixture was lightly kneaded from the top of the bag to obtain a coarse kneaded product.

【0043】次いで、この粗混練物をロールニーダー
で、5分間高せん断力下にて混練し、ドウを得た。この
ドウを真空押出機(本田鉄工(株)製、HDE−3)を
用い、30mmHgに減圧し、押し出し速度;60cm
/分で厚さ4mm、幅100mmの板状成形物に調製し
た。この成形体をポリエチレン製の袋に入れ、相対湿度
90%、90℃の養生器にいれ24時間湿潤養生した。
この硬化体をポリエチレン製の袋から取り出し、バンド
ソーイングマシーン((株)ラクソー、V−19型DI
A)で15mm×60mmの板状に切断し、帯電防止測
定用サンプル(BH−6)とした。
Next, this crude kneaded material was kneaded with a roll kneader for 5 minutes under a high shearing force to obtain a dough. This dough was depressurized to 30 mmHg using a vacuum extruder (HDE-3 manufactured by Honda Iron Works Co., Ltd.), and the extrusion speed was 60 cm.
/ Min to prepare a plate-shaped molded product having a thickness of 4 mm and a width of 100 mm. This molded body was placed in a polyethylene bag and placed in a curing chamber at 90% relative humidity and 90 ° C. for wet curing for 24 hours.
This cured product was taken out of the polyethylene bag and was used as a band sawing machine (Laxau Co., Ltd., V-19 type DI).
A) was cut into a plate shape of 15 mm × 60 mm to obtain an antistatic measurement sample (BH-6).

【0044】実施例3と同様に帯電防止効果及び曲げ強
度の評価を行った結果、BH−1の帯電防止効果は45
0Ωであり、曲げ強度は600kgf/cm2 、曲げ弾
性率は1.5×105 kgf/cm2 であった。
As a result of evaluating the antistatic effect and the bending strength as in Example 3, the antistatic effect of BH-1 was 45.
It was 0Ω, the flexural strength was 600 kgf / cm 2 , and the flexural modulus was 1.5 × 10 5 kgf / cm 2 .

【0045】この様に、高炉スラグ、水溶性高分子、ア
ルカリ性物質、導電性物質、及び水から成る組成物を混
練、成形後、湿潤養生して成る複合材料は帯電防止効果
があり、高強度であることを見いだした。
As described above, the composite material obtained by kneading and molding the composition comprising the blast furnace slag, the water-soluble polymer, the alkaline substance, the conductive substance, and water, and then wet-curing the mixture has an antistatic effect and high strength. I found that.

【0046】実施例9 エスメント40P、180重量部、SFパウダー、20
重量部、パナカヤク−B、6重量部を計量し、ポリエチ
レン製の袋に入れ粉体混合を行った。次に、水酸化ナト
リウム、2重量部、及び砂糖、0.2重量部を水、32
重量部に溶解した水溶液を添加し、袋の上から軽く揉み
粗混練物を得た。
Example 9 Essment 40P, 180 parts by weight, SF powder, 20
6 parts by weight of Panakayak-B was weighed and placed in a polyethylene bag for powder mixing. Next, sodium hydroxide, 2 parts by weight, and sugar, 0.2 parts by weight of water, 32 parts
An aqueous solution dissolved in parts by weight was added, and the mixture was lightly kneaded from the top of the bag to obtain a coarse kneaded product.

【0047】次いで、この粗混練物を卓上型ニーダで5
分間高せん断力下にて混練し、ドウを得た。このドウを
熱盤プレスを用い、厚さ1mmと2mmの板状成形物に
調製した。この成形体でカーボンシートを1枚挟み、更
にプレス成形した。この成形体をポリエチレン製の袋に
入れ、相対湿度90%、90℃の養生器にいれ24時間
湿潤養生し本発明の帯電防止体を得た。この硬化体をポ
リエチレン製の袋から取り出し、バンドソーイングマシ
ーンで15mm×60mmの板状に切断し、面状帯電防
止測定用サンプル(SH−1)とした。
Next, this crude kneaded product was mixed with a table-type kneader for 5 minutes.
The mixture was kneaded for a minute under high shearing force to obtain a dough. This dough was prepared into a plate-shaped molded product having a thickness of 1 mm and 2 mm using a hot platen press. A carbon sheet was sandwiched between this molded body and press-molded. This molded body was placed in a polyethylene bag, placed in a curing chamber at 90% relative humidity and 90 ° C., and wet-cured for 24 hours to obtain an antistatic body of the present invention. This cured product was taken out from a polyethylene bag and cut into a plate shape of 15 mm × 60 mm with a band sawing machine to obtain a surface antistatic measurement sample (SH-1).

【0048】SH−1のマトリックスを一部破壊し、中
に挟み込んであるカーボンシートをむき出し、帯電防止
効果を測定したところ、80Ωであった。
When the SH-1 matrix was partially destroyed and the carbon sheet sandwiched therein was exposed and the antistatic effect was measured, it was 80Ω.

【0049】比較例1 エスメント40P;180重量部、SFパウダー;20
重量部、パナカヤク−B;6重量部を計量し、ポリエチ
レン製の袋に入れ粉体混合を行った。次に、水酸化ナト
リウム;2重量部、及び砂糖;0.2重量部を水;32
重量部に溶解した水溶液を添加し、袋の上から軽く揉み
粗混練物を得た。
Comparative Example 1 Essment 40P; 180 parts by weight, SF powder; 20
6 parts by weight of Panakayak-B (part by weight) were weighed and put in a polyethylene bag for powder mixing. Next, sodium hydroxide; 2 parts by weight, and sugar; 0.2 parts by weight of water; 32
An aqueous solution dissolved in parts by weight was added, and the mixture was lightly kneaded from the top of the bag to obtain a coarse kneaded product.

【0050】次いで、この粗混練物を卓上型ニーダで、
5分間高せん断力下にて混練し、ドウを得た。このドウ
を熱盤プレスを用い、厚さ3mmの板状成形物を調製し
た。この成形体をポリエチレン製の袋に入れ、相対湿度
90%、90℃の養生器にいれ24時間湿潤養生した。
この硬化体をポリエチレン製の袋から取り出し、バンド
ソーイングマシーンで15mm×60mmの板状に切断
し、サンプル(AH−1)とした。
Then, this crude kneaded product was put in a table-type kneader,
The mixture was kneaded for 5 minutes under a high shearing force to obtain a dough. Using a hot platen press, this dough was prepared into a plate-shaped molded product having a thickness of 3 mm. This molded body was placed in a polyethylene bag and placed in a curing chamber at 90% relative humidity and 90 ° C. for wet curing for 24 hours.
The cured product was taken out of the polyethylene bag and cut into a plate of 15 mm × 60 mm with a band sawing machine to obtain a sample (AH-1).

【0051】実施例3と同様に帯電防止効果及び曲げ強
度の評価を行った結果、AH−1の帯電防止効果は15
0MΩであり、曲げ強度は380kgf/cm2 、曲げ
弾性率は1.2×105 kgf/cm2 であった。
As a result of evaluating the antistatic effect and the bending strength in the same manner as in Example 3, the antistatic effect of AH-1 was 15
The flexural strength was 0 MΩ, the flexural strength was 380 kgf / cm 2 , and the flexural modulus was 1.2 × 10 5 kgf / cm 2 .

【0052】比較例2 エスメント40P;180重量部、SFパウダー;20
重量部、パナカヤク−B;6重量部を計量し、ポリエチ
レン製の袋に入れ粉体混合を行った。次に、水酸化ナト
リウム;2重量部、及び砂糖;0.2重量部を水;32
重量部に溶解した水溶液を添加し、袋の上から軽く揉み
粗混練物を得た。
Comparative Example 2 Essment 40P; 180 parts by weight, SF powder; 20
6 parts by weight of Panakayak-B (part by weight) were weighed and put in a polyethylene bag for powder mixing. Next, sodium hydroxide; 2 parts by weight, and sugar; 0.2 parts by weight of water; 32
An aqueous solution dissolved in parts by weight was added, and the mixture was lightly kneaded from the top of the bag to obtain a coarse kneaded product.

【0053】次いで、この粗混練物をロールニーダー
で、5分間高せん断力下にて混練し、ドウを得た。この
ドウを真空押出機(本田鉄工(株)製、HDE−3)を
用い、30mmHgに減圧し、押し出し速度;60cm
/分で厚さ4mm、幅100mmの板状成形物に調製し
た。この成形体をポリエチレン製の袋に入れ、相対湿度
90%、90℃の養生器にいれ24時間湿潤養生した。
この硬化体をポリエチレン製の袋から取り出し、バンド
ソーイングマシーン((株)ラクソー、V−19型DI
A)で15mm×60mmの板状に切断し、帯電防止測
定用サンプル(AH−2)とした。
Next, this crude kneaded material was kneaded with a roll kneader for 5 minutes under a high shearing force to obtain a dough. This dough was depressurized to 30 mmHg using a vacuum extruder (HDE-3 manufactured by Honda Iron Works Co., Ltd.), and the extrusion speed was 60 cm.
/ Min to prepare a plate-shaped molded product having a thickness of 4 mm and a width of 100 mm. This molded body was placed in a polyethylene bag and placed in a curing chamber at 90% relative humidity and 90 ° C. for wet curing for 24 hours.
This cured product was taken out of the polyethylene bag and was used as a band sawing machine (Laxau Co., Ltd., V-19 type DI).
A) was cut into a plate of 15 mm × 60 mm to obtain an antistatic measurement sample (AH-2).

【0054】実施例3と同様に帯電防止効果及び曲げ強
度の評価を行った結果、AH−1の帯電防止効果は15
0MΩであり、曲げ強度は860kgf/cm2 、曲げ
弾性率は2.0×105 kgf/cm2 であった。
The antistatic effect and the bending strength were evaluated in the same manner as in Example 3. As a result, the antistatic effect of AH-1 was 15
It was 0 MΩ, the bending strength was 860 kgf / cm 2 , and the bending elastic modulus was 2.0 × 10 5 kgf / cm 2 .

【0055】[0055]

【発明の効果】本発明の帯電防止体は、耐熱性及び耐火
性があり、高強度を有しており、また、マトリックスの
比重が2前後でありその結果材料の重量を軽くする事が
出来る。従って、室内外の面状帯電防止体として有効な
材料である。
INDUSTRIAL APPLICABILITY The antistatic body of the present invention has heat resistance and fire resistance, has high strength, and the specific gravity of the matrix is about 2, and as a result, the weight of the material can be reduced. . Therefore, it is an effective material for indoor and outdoor planar antistatic bodies.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高炉スラグ、水溶性高分子、アルカリ性物
質及び、導電性物質を含有する水硬性帯電防止体組成
物。
1. A hydraulic antistatic composition containing blast furnace slag, a water-soluble polymer, an alkaline substance, and a conductive substance.
【請求項2】高炉スラグ、水溶性高分子、アルカリ性物
質、導電性物質、及び水から成る組成物を混練、成形
後、湿潤養生して成る帯電防止体。
2. An antistatic body obtained by kneading and molding a composition comprising blast furnace slag, a water-soluble polymer, an alkaline substance, a conductive substance, and water, and then wet-curing the composition.
【請求項3】高炉スラグ、水溶性高分子、アルカリ性物
質、及び水から成る組成物を混練後、導電性物質と複合
成形してなる帯電防止体。
3. An antistatic body obtained by kneading a composition comprising blast furnace slag, a water-soluble polymer, an alkaline substance, and water, and then forming a composite with a conductive substance.
【請求項4】高炉スラグ、水溶性高分子、アルカリ性物
質、及び水から成る組成物を混練後、導電性物質と複合
成形して得られた成形体を湿潤養生して成る帯電防止
体。
4. An antistatic body obtained by kneading a composition consisting of blast furnace slag, a water-soluble polymer, an alkaline substance, and water, and then wet-curing a molded body obtained by composite molding with a conductive material.
JP9764095A 1995-03-31 1995-03-31 Antistatic body Pending JPH08273883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9764095A JPH08273883A (en) 1995-03-31 1995-03-31 Antistatic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9764095A JPH08273883A (en) 1995-03-31 1995-03-31 Antistatic body

Publications (1)

Publication Number Publication Date
JPH08273883A true JPH08273883A (en) 1996-10-18

Family

ID=14197736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9764095A Pending JPH08273883A (en) 1995-03-31 1995-03-31 Antistatic body

Country Status (1)

Country Link
JP (1) JPH08273883A (en)

Similar Documents

Publication Publication Date Title
KR960001424B1 (en) Hydraulic composition and high strength composite material
GB2195626A (en) Cementitious compositions and products
JPH02289456A (en) Asbestos-free inorganic hardened body and production thereof
EP1400557B1 (en) Redispersible synthetic resin powder
JPH0832603B2 (en) Lightweight cement composition
JPH08273883A (en) Antistatic body
JPH07157356A (en) Electromagnetic shielding composite material
JPH07335377A (en) Heating element
JPH05117001A (en) Hardened material of cement
JP2724618B2 (en) High strength composite material and method for producing the same
JP2810192B2 (en) Method for producing composite material and composite material thereby
JPH04285083A (en) Clad material
JPH1025171A (en) Ceramic composite plate having high strength
JP3011515B2 (en) Colored composite materials
JPH0597495A (en) High strength composite material
JPH0597494A (en) Composite material
JPH07126055A (en) Hydraulic composition, extrusion molded article and production thereof
JP3365811B2 (en) Method for producing hydraulic molded product
JPH10120456A (en) Hydraulic composition and cured product
JP2000336834A (en) Inorganic plate
JP2980292B2 (en) High strength composite material composition and method for producing cured product using the same
JP2002255614A (en) Artificial plastic lightweight aggregate
JPH0832581B2 (en) Cement composition
JP2640376B2 (en) High strength composite material
JP4425110B2 (en) Steam and / or autoclave curing hydraulic composition, and molded article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Effective date: 20050104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426