JPH08270440A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engineInfo
- Publication number
- JPH08270440A JPH08270440A JP7279995A JP7279995A JPH08270440A JP H08270440 A JPH08270440 A JP H08270440A JP 7279995 A JP7279995 A JP 7279995A JP 7279995 A JP7279995 A JP 7279995A JP H08270440 A JPH08270440 A JP H08270440A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- catalyst
- temperature
- exhaust gas
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車のリーンバーン
エンジン等、リーンな空燃比の混合気で主に運転される
内燃機関の排気浄化装置に関し、特にリーンな空燃比の
混合気で運転される領域(以下、リーン運転領域とい
う)で発生したNOx(窒素酸化物)の外気への排出量
を低減する対策に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, which is mainly operated with a lean air-fuel mixture such as a lean-burn engine of an automobile, and is particularly operated with a lean air-fuel mixture. The present invention relates to a measure for reducing the amount of NOx (nitrogen oxide) emitted to the outside air generated in a region (hereinafter referred to as a lean operation region).
【0002】[0002]
【従来の技術】従来より、例えば特開平5−13322
2号公報には、リーンバーンエンジンの排気系に、リー
ン運転領域においてHC(炭化水素)の存在下で排気ガ
ス中のNOxを還元浄化するNOx浄化用触媒(例えば
銅イオン交換ゼオライト等の遷移金属ゼオライト)が配
置されている場合に、上記NOx浄化用触媒の下流側
に、理論空燃比の混合気で運転される領域(以下、理論
空燃比運転領域という)での排気ガスに対するHC、C
O(一酸化炭素)及びNOx浄化能の三元能(以下、単
に三元能という)を有する三元触媒に、該三元触媒を加
熱可能な電気ヒータが併設されてなるヒータ付触媒(以
下、EHCという)を配置することが記載されている。2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 5-13322.
No. 2 publication discloses a catalyst for NOx purification (for example, transition metal such as copper ion-exchanged zeolite) for reducing and purifying NOx in exhaust gas in the presence of HC (hydrocarbon) in a lean operating region in an exhaust system of a lean burn engine. (Zeolite) is disposed downstream of the NOx purification catalyst, HC, C with respect to the exhaust gas in a region where the mixture is operated at a stoichiometric air-fuel ratio (hereinafter referred to as a stoichiometric air-fuel ratio operating region).
A catalyst with a heater (hereinafter referred to as a three-way catalyst having a three-way ability of O (carbon monoxide) and NOx purification ability (hereinafter, simply referred to as three-way ability)) is provided with an electric heater capable of heating the three-way catalyst. , EHC).
【0003】この従来例では、冷機時に、エンジンの始
動と同時に上記EHCのヒータに通電されるようにする
ことで、該EHCの触媒を短時間(例えば40秒間)の
うちに活性温度域(三元触媒の場合では一般に300℃
以上)に昇温させて排気浄化が行えるようになってい
る。In this conventional example, when the engine is started, the heater of the EHC is energized when the engine is started, so that the catalyst of the EHC is activated within a short period of time (for example, 40 seconds). In the case of original catalyst, it is generally 300 ℃
Exhaust gas purification can be performed by raising the temperature above).
【0004】一方、例えば特開平5−302508号公
報には、リーンバーンエンジンの排気系に、リーン運転
領域のときに排気ガス中のNOxを吸着する一方、理論
空燃比運転領域のときに該吸着したNOxを放出するN
Ox吸着用触媒が配置されている場合に、上記NOx吸
着用触媒の上流側に、上記の場合と同じようにリーン運
転領域でのNOx浄化能を持ったNOx浄化用触媒を配
置する技術が提案されている。On the other hand, for example, in Japanese Unexamined Patent Publication (Kokai) No. 5-302508, NOx in the exhaust gas is adsorbed in the exhaust system of the lean burn engine in the lean operation region, while it is adsorbed in the stoichiometric air-fuel ratio operation region. Released NOx
In the case where the Ox adsorption catalyst is arranged, a technique is proposed in which the NOx purification catalyst having the NOx purification ability in the lean operation region is arranged on the upstream side of the NOx adsorption catalyst in the same manner as the above case. Has been done.
【0005】この提案例では、リーン運転領域のときの
NOxの一部をNOx浄化用触媒で浄化するようにして
おくことで、その残りのNOxだけをNOx吸着用触媒
に吸着させればよいようになされている。つまり、NO
x吸着用触媒に吸着されたNOxを放出させるために
は、リーン運転領域を理論空燃比運転領域に切り換える
必要がある。したがって、NOx吸着用触媒が吸着すべ
きNOxの量を低減することができれば、理論空燃比運
転領域に切り換える頻度が少なくて済むようになるの
で、その分だけ燃料消費率の向上が図れるのである。In this proposed example, a portion of NOx in the lean operation region is purified by the NOx purification catalyst so that only the remaining NOx is adsorbed by the NOx adsorption catalyst. Has been done. That is, NO
In order to release the NOx adsorbed on the x adsorption catalyst, it is necessary to switch the lean operation region to the stoichiometric air-fuel ratio operation region. Therefore, if the amount of NOx to be adsorbed by the NOx adsorbing catalyst can be reduced, the frequency of switching to the stoichiometric air-fuel ratio operation region can be reduced, so that the fuel consumption rate can be improved accordingly.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、前者の
従来例では、リーン運転領域であっても、NOx浄化用
触媒が活性温度域に達していない低温時には、排気ガス
中のNOxは、NOx浄化用触媒では浄化されないため
に、未浄化の状態で外気に排出されるという問題があ
る。However, in the former conventional example, even in the lean operation region, when the NOx purification catalyst does not reach the activation temperature range, at low temperature, the NOx in the exhaust gas is used for NOx purification. Since it is not purified by the catalyst, there is a problem that it is discharged to the outside air in an unpurified state.
【0007】一方、後者の従来例では、NOx吸着用触
媒に吸着させる必要のあるNOxの量自体は確かに低減
されるのであるが、NOx吸着用触媒は、リーン運転領
域のときであってもNOxを100%の吸着率で吸着す
る訳ではなく、そのNOx吸着率には20〜80%ほど
の変動幅がある。このような事情から、NOx吸着用触
媒のNOx吸着能を十分に活用することができない状態
のままで燃料消費率の向上のみが図られるとすると、N
Ox吸着用触媒に流入したNOxの一部は該NOx吸着
用触媒に吸着されず、やはり未浄化のままで外気に排出
される虞れが生じる。したがって、もしも、燃料消費率
向上とNOx排出量低減とが共に図れるようにするとす
れば、NOx吸着率の変動に応じてリーン運転領域及び
理論空燃比運転領域を切り換えるような非常に微妙でか
つ複雑な制御システムが必要となる。On the other hand, in the latter conventional example, the amount of NOx that needs to be adsorbed on the NOx adsorbing catalyst is certainly reduced, but the NOx adsorbing catalyst is even in the lean operating region. NOx is not adsorbed at an adsorption rate of 100%, and the NOx adsorption rate has a fluctuation range of about 20 to 80%. Under these circumstances, if only the fuel consumption rate is improved while the NOx adsorption capacity of the NOx adsorption catalyst cannot be fully utilized, N
Part of the NOx that has flowed into the Ox adsorbing catalyst is not adsorbed by the NOx adsorbing catalyst, and there is a fear that it will be discharged to the outside air without being purified. Therefore, if it is possible to improve both the fuel consumption rate and the NOx emission amount, it is very delicate and complicated that the lean operation region and the stoichiometric air-fuel ratio operation region are switched according to the fluctuation of the NOx adsorption ratio. Various control systems are required.
【0008】本発明は斯かる諸点に鑑みてなされたもの
であり、その目的は、リーンな空燃比の混合気で主に運
転される内燃機関の排気浄化装置において、EHC及び
NOx吸着用触媒を適正に組み合わせ、上記NOx吸着
用触媒のNOx吸着率を高いレベルに維持できるように
することで、リーン運転領域のときの排気ガスの低温域
から高温域に亘る広い温度領域においてNOxの外気へ
の排出量を低減できるようにすることにある。The present invention has been made in view of the above points, and an object thereof is to provide an EHC and NOx adsorption catalyst in an exhaust gas purification apparatus for an internal combustion engine which is mainly operated with a lean air-fuel mixture. By properly combining them and enabling the NOx adsorption rate of the NOx adsorbing catalyst to be maintained at a high level, the NOx adsorbed to the outside air in a wide temperature range from a low temperature range to a high temperature range of the exhaust gas in the lean operation range. It is to be able to reduce the amount of emissions.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
め、請求項1の発明では、NOx吸着用触媒のNOx吸
着率の変動は温度に依存しているとの知見に基づき、上
記EHCのヒータの加熱温度でNOx吸着用触媒の入口
ガス温度を制御できるようにし、このことでNOx吸着
用触媒のNOx吸着率が高いレベルに維持されるように
した。In order to achieve the above object, the invention of claim 1 is based on the finding that the fluctuation of the NOx adsorption rate of the NOx adsorption catalyst depends on the temperature. The temperature of the inlet gas of the NOx adsorbing catalyst can be controlled by the heating temperature of the heater, so that the NOx adsorbing rate of the NOx adsorbing catalyst can be maintained at a high level.
【0010】具体的には、本発明では、内燃機関の排気
系に配置されていて、リーン運転領域のときに排気ガス
中のNOxを吸着する一方、理論空燃比運転領域のとき
に上記吸着したNOxを放出するNOx吸着能を少なく
とも有し、かつ入口ガス温度が所定の温度域にあるとき
に該所定温度域以外の温度域にあるときよりもNOx吸
着率が高くなるようになされたNOx吸着用触媒と、こ
のNOx吸着用触媒の下流側に配置されていて、理論空
燃比運転領域での排気ガスに対する三元能を少なくとも
有する排気浄化用触媒と、上記NOx吸着用触媒の上流
側に配置されていて、理論空燃比運転領域での排気ガス
に対する三元能を少なくとも有する排気浄化用触媒に、
該排気浄化用触媒を加熱可能なヒータが併設されてなる
ヒータ付触媒とを備えるようにする。Specifically, according to the present invention, the NOx in the exhaust gas is arranged in the exhaust system of the internal combustion engine to adsorb NOx in the exhaust gas in the lean operation region, while adsorbing NOx in the stoichiometric air-fuel ratio operation region. NOx adsorption having at least NOx adsorption capacity for releasing NOx and having a higher NOx adsorption rate when the inlet gas temperature is in a predetermined temperature range than in a temperature range other than the predetermined temperature range. Catalyst, an exhaust purification catalyst disposed downstream of the NOx adsorption catalyst and having at least a ternary capacity for exhaust gas in the stoichiometric air-fuel ratio operating region, and an upstream side of the NOx adsorption catalyst. The catalyst for purification of exhaust gas having at least three-way capacity for exhaust gas in the theoretical air-fuel ratio operation region,
A catalyst with a heater provided with a heater capable of heating the exhaust gas purification catalyst is provided.
【0011】請求項2の発明では、上記請求項1の発明
において、NOx吸着用触媒の入口ガス温度を検出する
温度検出手段と、リーン運転領域のときに上記温度検出
手段により検出される入口ガス温度が所定の温度域に維
持されるようにヒータ付触媒のヒータによる加熱温度を
制御する制御手段とを備えるようにする。According to a second aspect of the present invention, in the above first aspect of the invention, there is provided temperature detecting means for detecting an inlet gas temperature of the NOx adsorbing catalyst, and the inlet gas detected by the temperature detecting means in a lean operation region. Control means for controlling the heating temperature of the heater-equipped catalyst by the heater so that the temperature is maintained in a predetermined temperature range.
【0012】請求項3の発明では、上記請求項2の発明
において、NOx吸着用触媒が、その入口ガス温度が2
50〜350℃の温度域にあるときに該温度域以外の温
度域にあるときよりもNOxの吸着率が高くなるように
構成されている場合に、制御手段は、上記NOx吸着用
触媒の入口ガス温度が250〜350℃の温度域に維持
されるようにヒータ付触媒のヒータによる加熱温度を制
御する構成とされているものとする。According to a third aspect of the present invention, in the above-mentioned second aspect, the NOx adsorption catalyst has an inlet gas temperature of 2
When the NOx adsorption rate is higher in the temperature range of 50 to 350 ° C than in the temperature range other than the temperature range, the control means controls the inlet of the NOx adsorption catalyst. It is assumed that the heating temperature of the heater-equipped catalyst is controlled so that the gas temperature is maintained in the temperature range of 250 to 350 ° C.
【0013】[0013]
【作用】以上の構成により、請求項1の発明では、内燃
機関の排気系において、排気ガス温度が低温域にあると
き、その排気ガスはEHCのヒータにより加熱されてN
Ox吸着用触媒及びEHCの排気浄化用触媒を順に通過
し、このことで、これらNOx吸着用触媒及び排気浄化
用触媒は短時間で活性温度域に昇温(例えば40秒間で
300℃に昇温)するようになる。そして、理論空燃比
運転領域のときには、上記排気浄化用触媒により排気ガ
ス中のHC、CO及びNOxが浄化される。一方、リー
ン運転領域のときには、上記NOx吸着用触媒により排
気ガス中のNOxが吸着された後、該排気ガス中のHC
及びCOは排気浄化用触媒により浄化される。With the above structure, in the invention of claim 1, when the exhaust gas temperature is in the low temperature range in the exhaust system of the internal combustion engine, the exhaust gas is heated by the heater of the EHC and the N
The NOx adsorbing catalyst and the exhaust gas purifying catalyst pass through the Ox adsorbing catalyst and the EHC exhaust gas purifying catalyst in this order, whereby the NOx adsorbing catalyst and the exhaust gas purifying catalyst are heated to an active temperature range in a short time (for example, to 300 ° C. in 40 seconds). ). Then, in the stoichiometric air-fuel ratio operation region, the exhaust purification catalyst purifies HC, CO and NOx in the exhaust gas. On the other hand, in the lean operation region, after the NOx in the exhaust gas is adsorbed by the NOx adsorbing catalyst, the HC in the exhaust gas is exhausted.
And CO are purified by the exhaust purification catalyst.
【0014】このとき、上記NOx吸着用触媒における
NOx吸着率は、EHCのヒータの加熱温度により変化
する。つまり、NOx吸着用触媒の入口ガス温度が所定
の温度域にあるときには、該所定温度域以外の温度域に
あるときよりもNOx吸着率は高くなる。したがって、
上記EHCのヒータによりNOx吸着用触媒の入口ガス
温度が所定温度域に加熱されるようにすることで、NO
x吸着用触媒のNOx吸着率は高いレベルに維持される
ようになる。よって、排気ガスの低温域から高温域に亘
る広い温度領域において、上記NOx吸着用触媒による
NOxの吸着が効率よく行われるようになり、その分だ
けリーン運転領域でのNOx排出量が低減されることと
なる。At this time, the NOx adsorption rate in the NOx adsorption catalyst changes depending on the heating temperature of the EHC heater. That is, when the inlet gas temperature of the NOx adsorption catalyst is in the predetermined temperature range, the NOx adsorption rate is higher than in the temperature range other than the predetermined temperature range. Therefore,
By heating the inlet gas temperature of the NOx adsorbing catalyst to a predetermined temperature range by the EHC heater, NO
The NOx adsorption rate of the x adsorption catalyst is maintained at a high level. Therefore, NOx is efficiently adsorbed by the NOx adsorbing catalyst in a wide temperature range from a low temperature region of the exhaust gas to a high temperature region, and the NOx emission amount in the lean operation region is reduced accordingly. It will be.
【0015】請求項2の発明では、上記NOx吸着用触
媒の入口ガス温度が温度検出手段により検出され、その
入口ガス温度が所定の温度域になるように、制御手段に
よりヒータ付触媒のヒータによる加熱温度が制御され
る。これにより、上記NOx吸着用触媒のNOx吸着率
は高いレベルに維持されるようになる。よって、上記請
求項1の発明での作用が具体的に営まれる。In the invention of claim 2, the inlet gas temperature of the NOx adsorbing catalyst is detected by the temperature detecting means, and the control means controls the heater of the heater-equipped catalyst so that the inlet gas temperature falls within a predetermined temperature range. The heating temperature is controlled. As a result, the NOx adsorption rate of the NOx adsorption catalyst is maintained at a high level. Therefore, the action of the invention of claim 1 is carried out specifically.
【0016】請求項3の発明では、上記NOx吸着用触
媒の入口ガス温度が250〜350℃の温度域に維持さ
れることで、該NOx吸着用触媒のNOx吸着率は高い
レベルに維持される。よって、上記請求項1の発明での
作用が、より具体的に営まれる。In the invention of claim 3, the inlet gas temperature of the NOx adsorbing catalyst is maintained in a temperature range of 250 to 350 ° C., so that the NOx adsorbing rate of the NOx adsorbing catalyst is maintained at a high level. . Therefore, the action of the invention of claim 1 is carried out more specifically.
【0017】[0017]
【実施例】以下、本発明の実施例に係る自動車用リーン
バーンエンジンの排気浄化装置を図面に基づいて説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An exhaust gas purifying apparatus for an automobile lean burn engine according to an embodiment of the present invention will be described below with reference to the drawings.
【0018】上記排気浄化装置では、図1に示すよう
に、内燃機関としてのエンジン1の排気系である排気通
路2の途中に1つの触媒ケース3が配設されており、こ
の触媒ケース3の内部に、上流側から下流側に亘り、E
HC4、NOx吸着用触媒5及び排気浄化用触媒として
の三元触媒6が順に配設されている。In the above exhaust gas purifying apparatus, as shown in FIG. 1, one catalyst case 3 is arranged in the middle of an exhaust passage 2 which is an exhaust system of an engine 1 as an internal combustion engine. Inside, from the upstream side to the downstream side, E
The HC 4, the NOx adsorption catalyst 5, and the three-way catalyst 6 as an exhaust gas purification catalyst are sequentially arranged.
【0019】上記EHC4は、図示は省略するが、理論
空燃比運転領域での三元能を有する排気浄化用触媒とし
ての三元触媒に、該三元触媒を加熱可能なヒータが併設
されてなっている。また、上記NOx吸着用触媒5は、
リーン運転領域のときに排気ガス中のNOxを吸着する
一方、理論空燃比運転領域のときに上記吸着したNOx
を放出するNOx吸着能と、理論空燃比運転領域での排
気ガスに対する三元能とを有し、かつ入口ガス温度が所
定の温度域にあるときに該所定温度域以外の温度域にあ
るときよりもNOx吸着率が高くなるようになされてい
る。そして、上記三元触媒6は、上記EHC4の三元触
媒と同じ触媒能を有しており、該三元触媒よりも容量が
大きくなされている。Although not shown, the EHC 4 has a three-way catalyst as an exhaust gas purification catalyst having a three-way capacity in the stoichiometric air-fuel ratio operation region and a heater capable of heating the three-way catalyst. ing. Further, the NOx adsorption catalyst 5 is
While adsorbing NOx in the exhaust gas in the lean operating region, the adsorbed NOx in the stoichiometric air-fuel ratio operating region
NOx adsorbing ability to release NOx and ternary ability for exhaust gas in the stoichiometric air-fuel ratio operating range, and when the inlet gas temperature is in a predetermined temperature range and is in a temperature range other than the predetermined temperature range The NOx adsorption rate is higher than that. The three-way catalyst 6 has the same catalytic ability as the three-way catalyst of the EHC 4 and has a larger capacity than the three-way catalyst.
【0020】上記排気通路2におけるエンジン1の出口
側の位置には、該エンジン1に供給された混合気の空燃
比をチェックするために排気ガス中のO2 の濃度を検出
するO2 センサ7が配置されている。また、上記NOx
吸着用触媒5の入口側には、該NOx吸着用触媒5の入
口ガス温度を検出する温度検出手段としての温度センサ
8が配置されている。さらに、上記EHC4のヒータの
部分には、該ヒータの作動を確認するためにその加熱温
度を検出する温度センサ9が配置されている。これらセ
ンサ7〜9の各検出信号は、制御手段としての自動車の
CPU10に入力可能に接続されている。そして、上記
CPU10では、各検出信号に基づき、EHC4のヒー
タへの通電等を制御するようになされている。At a position on the outlet side of the engine 1 in the exhaust passage 2, an O 2 sensor 7 for detecting the concentration of O 2 in the exhaust gas for checking the air-fuel ratio of the air-fuel mixture supplied to the engine 1. Are arranged. In addition, the above NOx
On the inlet side of the adsorption catalyst 5, a temperature sensor 8 is arranged as a temperature detection means for detecting the inlet gas temperature of the NOx adsorption catalyst 5. Further, a temperature sensor 9 for detecting the heating temperature of the heater of the EHC 4 is arranged at the heater portion of the EHC 4 in order to confirm the operation of the heater. Each detection signal of these sensors 7 to 9 is connected to the CPU 10 of the automobile as a control means so as to be inputtable. The CPU 10 controls energization of the heater of the EHC 4 based on each detection signal.
【0021】具体的には、上記EHC4のヒータは、基
本的には、自動車のエンジン1を始動する際にイグニッ
ションスイッチがオンされると同時に通電されて昇温を
開始し、所定の温度に達すると上記通電が自動的に停止
されるようになされている。その加熱性能は、例えば2
5℃の雰囲気下で通電が開始された時点から40秒程度
が経過した時点で300℃の加熱温度に達する。Specifically, the heater of the EHC 4 is basically energized at the same time when the ignition switch is turned on when the engine 1 of the automobile is started to start temperature rise and reach a predetermined temperature. Then, the energization is automatically stopped. Its heating performance is, for example, 2
The heating temperature of 300 ° C. is reached when about 40 seconds have passed from the time when the energization was started in the atmosphere of 5 ° C.
【0022】上記NOx吸着用触媒5は、母材としての
MFI型ゼオライトに、活性種としてのRh(ロジウ
ム)が担持されてなる触媒パウダーを、コージェライト
製ハニカム担体に該担体1リットル当たり2gの割合と
なるように担持させることでなっていて、その容量は
0.5リットルとされている。このNOx吸着用触媒5
は、リーン運転領域のときに、図2に示すように、約2
00〜400℃の活性温度域でNOxを吸着するが、そ
のうちの250〜350℃の温度域で約70%から80
%を超える範囲にNOx吸着率が高くなっていて、約3
00℃のときにピークに達するようなNOx吸着特性を
有する。。The NOx adsorbing catalyst 5 is a catalyst powder in which Rh (rhodium) as an active species is supported on MFI type zeolite as a base material, and 2 g per liter of the carrier is made of a cordierite honeycomb carrier. It is to be carried in a ratio so that the capacity is 0.5 liter. This NOx adsorption catalyst 5
In the lean operation area, as shown in FIG.
NOx is adsorbed in the active temperature range of 00 to 400 ° C, but about 70% to 80% in the temperature range of 250 to 350 ° C.
The NOx adsorption rate is high in the range exceeding 3%,
It has a NOx adsorption characteristic that reaches a peak at 00 ° C. .
【0023】上記三元触媒6は、母材としてのアルミナ
(酸化アルミニウム)及びセリア(酸化セリウム)に、
活性種としてのPt(白金)及びRhが担持されてなる
触媒パウダーを、コージェライト製ハニカム担体に該担
体1リットル当たり1.6gの割合となるように担持さ
せてなっている。その際に、Pt及びRhはPt:Rh
=5:1の比率とされている。また、その容量は1.0
リットルである。The three-way catalyst 6 has alumina (aluminum oxide) and ceria (cerium oxide) as base materials,
A catalyst powder supporting Pt (platinum) and Rh as active species is carried on a cordierite honeycomb carrier at a rate of 1.6 g per liter of the carrier. At that time, Pt and Rh are Pt: Rh
= 5: 1. The capacity is 1.0
It is a liter.
【0024】そして、上記CPU10では、NOx吸着
用触媒5の入口ガス温度が250〜350℃の温度域に
維持されるようにEHC4のヒータによる加熱温度を制
御するようになされている。つまり、ここでは、EHC
4のヒータの加熱温度が300℃に達した時点では通電
は停止されず、例えば上記入口ガス温度が300℃に達
した時点で通電が停止され、その後は、入口ガス温度が
300±50℃の温度域に維持されるように通電とその
停止とが繰り返される。The CPU 10 controls the heating temperature by the heater of the EHC 4 so that the inlet gas temperature of the NOx adsorption catalyst 5 is maintained in the temperature range of 250 to 350 ° C. That is, here, EHC
The energization is not stopped when the heating temperature of the heater of No. 4 reaches 300 ° C., for example, the energization is stopped when the inlet gas temperature reaches 300 ° C., and thereafter, the inlet gas temperature is 300 ± 50 ° C. Energization and stopping thereof are repeated to maintain the temperature range.
【0025】ここで、上記排気浄化装置において、CP
U10によるEHC4のヒータ制御が行われない場合
と、行われる場合とについてそれぞれ冷機時における作
動を説明する。Here, in the above exhaust purification device, CP
The operation when the heater of the EHC 4 is not controlled by U10 and when it is performed will be described in the cold state.
【0026】先ず、ヒータ制御が行われない場合には、
図3に示すように、始動してから油温及び水温が所定の
温度に上昇するまでの間はエンジン1は理論空燃比(λ
=1)領域ないしリッチ領域での運転が行われる。一
方、EHC4のヒータは、エンジン1の始動と同時に通
電(作動)され、その時点から40秒が経過した時点で
300℃程度に昇温し、その後、所定時間(例えば10
秒間)が経過した時点で通電を停止(作動せず)され
る。そして、EHC4の三元触媒及び下流側の三元触媒
6(TWC)は排気浄化を開始する。この理論空燃比運
転領域のときには、NOx吸着触媒5は排気ガスに対し
三元触媒として機能(作動)する。First, when the heater control is not performed,
As shown in FIG. 3, during the period from the start to the time when the oil temperature and the water temperature rise to a predetermined temperature, the engine 1 keeps the theoretical air-fuel ratio (λ
= 1) The operation is performed in the region or the rich region. On the other hand, the heater of the EHC 4 is energized (operated) at the same time as the engine 1 is started, the temperature is raised to about 300 ° C. when 40 seconds have passed from that time, and then a predetermined time (for example, 10
The power supply is stopped (does not operate) when (seconds) has elapsed. Then, the three-way catalyst of the EHC 4 and the three-way catalyst 6 (TWC) on the downstream side start exhaust gas purification. In this stoichiometric air-fuel ratio operation region, the NOx adsorption catalyst 5 functions (operates) as a three-way catalyst for exhaust gas.
【0027】上記エンジン1の油温及び水温が十分に昇
温した後には、該エンジン1は主にリーン領域で運転さ
れる。このリーン運転領域のときには、三元触媒6はN
Oxを殆ど浄化しない(一部作動)。一方、NOx吸着
用触媒5は、リーン運転領域のときに排気ガス中のNO
xを吸着するのであるが、EHC4のヒータへの通電が
早い時点で停止されるために、リーン運転領域に切り換
えられた直後の段階ではNOx吸着用触媒5の入口ガス
温度が十分に昇温しておらず、したがって、NOx吸着
率の低い状態(一部作動)に留まる。やがて、排気ガス
自体が昇温し、NOx吸着用触媒5の入口ガス温度が2
00〜400℃、好ましくは300℃をピークとする2
50〜350℃の温度域に入るようになると、NOx吸
着用触媒5はNOxを高い吸着率で吸着(作動)するよ
うになる。After the oil temperature and the water temperature of the engine 1 have sufficiently risen, the engine 1 is mainly operated in the lean region. In this lean operation region, the three-way catalyst 6 is
Almost no purification of Ox (partial operation). On the other hand, the NOx adsorbing catalyst 5 is used for the NOx in the exhaust gas in the lean operation region.
x is adsorbed, but since the power supply to the heater of the EHC 4 is stopped at an early point, the inlet gas temperature of the NOx adsorbing catalyst 5 rises sufficiently in the stage immediately after switching to the lean operation region. Therefore, the NOx adsorption rate remains low (partial operation). Eventually, the temperature of the exhaust gas itself rises, and the inlet gas temperature of the NOx adsorption catalyst 5 rises to 2
Peak at 00 to 400 ° C, preferably 300 ° C 2
When it enters the temperature range of 50 to 350 ° C., the NOx adsorption catalyst 5 adsorbs (operates) NOx at a high adsorption rate.
【0028】そして、エンジン1が理論空燃比運転領域
に戻ると、NOx吸着用触媒5からNOxが放出されて
三元触媒6で浄化される。つまり、この場合には、NO
x吸着用触媒5によるNOx吸着能が十分に活用されて
いるとはいえない。尚、ヒータ制御の有無に拘らず、入
口ガス温度が350〜400℃を超えるとNOx吸着触
媒5のNOx吸着率は低下(一部作動)するようになる
が、そのような場合には、エンジン1の負荷が大きくて
理論空燃比運転領域に切り換わっているので、その際の
排気ガスはEHC4の三元触媒及び下流側の三元触媒6
により浄化される。よって、NOx吸着率の低下に起因
する外気へのNOx排出量の増加は生じない。Then, when the engine 1 returns to the stoichiometric air-fuel ratio operation region, NOx is released from the NOx adsorbing catalyst 5 and is purified by the three-way catalyst 6. That is, in this case, NO
It cannot be said that the NOx adsorption ability of the x adsorption catalyst 5 is fully utilized. It should be noted that, regardless of the presence or absence of heater control, when the inlet gas temperature exceeds 350 to 400 ° C., the NOx adsorption rate of the NOx adsorption catalyst 5 decreases (partially operates). Since the load of No. 1 is large and the air-fuel ratio is switched to the stoichiometric air-fuel ratio operating region, the exhaust gas at that time is the three-way catalyst of EHC4 and the three-way catalyst 6 of the downstream side.
Purified by. Therefore, the NOx emission amount to the outside air does not increase due to the decrease in the NOx adsorption rate.
【0029】次に、ヒータ制御が行われる場合では、図
4に示すように、冷間始動後に300℃に昇温して以降
も、NOx吸着用触媒5の入口ガス温度が300±50
℃の温度域に達してその温度域に維持されるように、E
HC4のヒータへの通電(作動)を繰り返して行う。つ
まり、常にNOx吸着用触媒5のNOx吸着率が略最大
レベルとなるようにヒータ制御を続行する。Next, in the case where the heater control is performed, as shown in FIG. 4, even after the temperature is raised to 300 ° C. after the cold start, the inlet gas temperature of the NOx adsorption catalyst 5 is 300 ± 50.
To reach and maintain the temperature range of ℃, E
The energization (operation) to the heater of HC4 is repeated. That is, the heater control is continued so that the NOx adsorption rate of the NOx adsorption catalyst 5 is always at the maximum level.
【0030】そして、図5に示すように、ヒータ制御が
続行されている状態(作動)で、車速に応じてリーン運
転領域及び理論空燃比運転領域等が切り換えられると、
NOx吸着用触媒5は、リーン運転領域のときに吸着し
たNOxを理論空燃比運転領域のときに放出し、その放
出されたNOxは三元触媒6により浄化(作動)され
る。Then, as shown in FIG. 5, when the lean control region and the stoichiometric air-fuel ratio drive region are switched in accordance with the vehicle speed while the heater control is continued (operation),
The NOx adsorption catalyst 5 releases NOx adsorbed in the lean operation region in the stoichiometric air-fuel ratio operation region, and the released NOx is purified (operated) by the three-way catalyst 6.
【0031】したがって、本実施例によれば、EHC4
のヒータによる加熱温度を制御することにより、NOx
吸着用触媒5の入口ガス温度を250〜350℃の温度
域に維持することができるので、上記NOx吸着用触媒
5のNOx吸着率を70%以上の高いレベルに維持する
ことができる。よって、排気ガスの低温域から高温域に
亘る広い温度領域において、上記NOx吸着用触媒5に
よるNOxの吸着が効率よく行われ、その分だけリーン
運転領域のときに発生したNOxの外気への排出量を低
減することができる。Therefore, according to this embodiment, the EHC4
NOx by controlling the heating temperature by the heater of
Since the inlet gas temperature of the adsorption catalyst 5 can be maintained in the temperature range of 250 to 350 ° C., the NOx adsorption rate of the NOx adsorption catalyst 5 can be maintained at a high level of 70% or more. Therefore, NOx is efficiently adsorbed by the NOx adsorbing catalyst 5 in a wide temperature range from a low temperature region of the exhaust gas to a high temperature region, and the NOx generated in the lean operation region is discharged to the outside by that much. The amount can be reduced.
【0032】尚、上記実施例では、NOx吸着用触媒5
の好適な例の1つとして、母材としてのゼオライトに活
性種としてのRhを担持させて構成されていて、理論空
燃比運転領域での排気ガスに対する三元能を併せ持つも
のを挙げているが、NOx吸着用触媒としては、リーン
運転領域でのNOx吸着能を少なくとも有するものであ
ればよく、上記構成のものに限定されるものではない。In the above embodiment, the NOx adsorption catalyst 5 is used.
As one of the preferred examples of the above, there is mentioned one composed of zeolite as a base material carrying Rh as an active species and also having ternary ability for exhaust gas in the theoretical air-fuel ratio operation region. The NOx adsorbing catalyst is not limited to the above-mentioned one as long as it has at least the NOx adsorbing ability in the lean operation region.
【0033】また、上記実施例では、EHC4の排気浄
化用触媒及びNOx吸着用触媒5の下流側の排気浄化用
触媒をそれぞれ三元触媒としていて、その三元触媒の好
適な例の1つとして母材としてのアルミナ及びセリア
に、活性種としてのPt及びRhを担持させて構成され
たものを挙げているが、上記排気浄化用触媒としては、
理論空燃比運転領域で三元能を少なくとも有するもので
あれば三元触媒に限定する必要はなく、例えば、上記三
元触媒に代えて、リーン運転領域でのNOx浄化能に上
記三元能を併せ持つNOx浄化用触媒(いわゆる、リー
ンバーン用三元触媒)を使用するようにしてもよい。そ
のようなNOx浄化用触媒の材料構成例としては、母材
として主にゼオライトを用い、活性種としてPt、Ir
(イリジウム)及びRhを用いてなるもの、又はPt及
びRhをPt/Rh≦1/20の割合で用いてなるもの
が挙げられる。担体としてはコージェライト製ハニカム
担体が好適である。In the above embodiment, the exhaust purification catalyst for EHC 4 and the exhaust purification catalyst on the downstream side of the NOx adsorption catalyst 5 are three-way catalysts, respectively. An example is described in which alumina and ceria as base materials are made to carry Pt and Rh as active species, and the exhaust purification catalyst is as follows.
It is not necessary to limit to the three-way catalyst as long as it has at least three-way capacity in the stoichiometric air-fuel ratio operation range. For example, instead of the three-way catalyst, the three-way capacity can be added to the NOx purification capacity in the lean operation range. A NOx purifying catalyst (so-called lean burn three-way catalyst) may be used together. As an example of the material structure of such a NOx purification catalyst, zeolite is mainly used as a base material, and Pt and Ir are used as active species.
Examples include those using (iridium) and Rh, or those using Pt and Rh in a ratio of Pt / Rh ≦ 1/20. A cordierite honeycomb carrier is suitable as the carrier.
【0034】また、上記実施例では、EHC4、NOx
吸着用触媒5及び三元触媒6により排気浄化装置を構成
しているが、これに、NOx浄化用触媒等のその他の排
気浄化部材を追加して配置するようにしてもよい。尚、
HCの存在下でNOxを分解浄化する遷移金属ゼオライ
ト等のNOx浄化用触媒を追加する際には、EHC4の
上流側や、三元触媒6の下流側等に配置することができ
るが、上記NOx浄化用触媒へのHCの供給量を確保す
る点では、EHC4の上流側に配置することが望まし
い。Further, in the above embodiment, EHC4, NOx
Although the adsorption catalyst 5 and the three-way catalyst 6 constitute an exhaust gas purification device, other exhaust gas purification members such as a NOx purification catalyst may be additionally arranged. still,
When a NOx purification catalyst such as a transition metal zeolite that decomposes and purifies NOx in the presence of HC is added, it can be arranged on the upstream side of the EHC 4, the downstream side of the three-way catalyst 6, or the like. From the viewpoint of ensuring the amount of HC to be supplied to the purification catalyst, it is desirable to arrange it on the upstream side of EHC4.
【0035】さらに、上記実施例では、CPU10によ
る制御については、EHC4のヒータ制御のみを説明し
たが、図1に破線の矢印で示すように、CPU10から
運転領域を切り換える制御信号をエンジン1(具体的に
は、燃料噴射装置や点火装置等)に出力するようにし、
このことで、NOx吸着用触媒5のNOx吸着量に応じ
てエンジン1をリーン運転領域から理論空燃比運転領域
に切り換える制御を併せて行うようにすることもでき
る。Further, in the above embodiment, as for the control by the CPU 10, only the heater control of the EHC 4 was explained, but as shown by the broken line arrow in FIG. Output to a fuel injection device, an ignition device, etc.,
As a result, control for switching the engine 1 from the lean operation region to the stoichiometric air-fuel ratio operation region can also be performed in accordance with the NOx adsorption amount of the NOx adsorption catalyst 5.
【0036】−具体例− ここで、上記排気浄化装置の排気浄化能を調べるために
行った実験について説明する。実験に際し、加速時及び
定速時の大部分をエンジンのリーン領域での運転で走行
する車両において、エンジンの排気マニホールドから約
0.5mmだけ下流側の排気通路の位置から下流側に亘
り、上記実施例のEHC4、NOx吸着用触媒5及び三
元触媒6を順に配置してなる本発明システム(図1に示
したもの)を本発明例とした。-Specific Example- An experiment carried out to examine the exhaust gas purifying ability of the exhaust gas purifying apparatus will now be described. In the experiment, in a vehicle that travels in the lean region of the engine during acceleration and at a constant speed, most of the exhaust passage on the downstream side from the exhaust manifold of the engine to the downstream side by about 0.5 mm. The system of the present invention (shown in FIG. 1) in which the EHC 4, the NOx adsorption catalyst 5, and the three-way catalyst 6 of the embodiment are arranged in this order was taken as an example of the present invention.
【0037】上記車両には、排気量が1500ccの直
列4気筒のDOHCエンジンが搭載されたものを用い
た。上記エンジンのリーン限界は空燃比A/FでA/F
=27である。また、車両重量は1300kgである。The above vehicle was equipped with an in-line four-cylinder DOHC engine having a displacement of 1500 cc. The lean limit of the engine is A / F at air-fuel ratio A / F.
= 27. The vehicle weight is 1300 kg.
【0038】上記本発明例と比較するために、比較例1
として、理論空燃比運転領域での三元能を有する三元触
媒のみのものを、また比較例2として、本発明例の場合
と同じEHCのみのものをそれぞれ用意し、各々につい
て、25℃の雰囲気温度下での冷機時に理論空燃比領域
のみで運転した場合の排気浄化率(Y1浄化率)、及び
アイドル運転以外の略全域をリーン領域で運転した場合
の排気浄化率(FTP浄化率)についてそれぞれ調べ
た。その結果を、次の表1に併せて示す。Comparative Example 1 for comparison with the above-mentioned example of the present invention
As a comparative example 2, only a three-way catalyst having a three-way capacity in the stoichiometric air-fuel ratio operating region and an EHC-only one which is the same as the case of the present invention example are prepared. Exhaust gas purification rate (Y1 purification rate) when operating only in the stoichiometric air-fuel ratio region when cooling at ambient temperature, and exhaust gas purification rate (FTP purification rate) when operating almost all regions except the idle operation in the lean region I examined each. The results are also shown in Table 1 below.
【0039】[0039]
【表1】 [Table 1]
【0040】上記表1から判るように、本発明例では、
理論空燃比運転領域及びリーン運転領域の何れにおいて
も、NOx浄化率が向上している。これは、リーン運転
領域のときに発生したNOxをNOx吸着用触媒5に吸
着させ、そのNOxを理論空燃比運転領域のときに三元
触媒6で浄化するようにして、NOxの外気への排出量
が抑えられるようにしたことによるものと考えられる。
また、理論空燃比運転の場合には、上記NOx吸着用触
媒5は三元触媒となるので、下流側の三元触媒6と相俟
って容量がアップしたことになり、その分だけガス空間
速度が下がってNOx浄化率を向上させていることも寄
与していると考えられる。As can be seen from Table 1 above, in the example of the present invention,
The NOx purification rate is improved in both the stoichiometric air-fuel ratio operation region and the lean operation region. This is because NOx generated in the lean operating region is adsorbed by the NOx adsorbing catalyst 5, and the NOx is purified by the three-way catalyst 6 in the stoichiometric air-fuel ratio operating region to discharge NOx to the outside air. This is probably because the amount was controlled.
Further, in the case of the stoichiometric air-fuel ratio operation, the NOx adsorption catalyst 5 is a three-way catalyst, so that the capacity is increased in cooperation with the downstream three-way catalyst 6, and the gas space is correspondingly increased. It is considered that the decrease in speed and the improvement in the NOx purification rate also contributed.
【0041】次に、上記本発明システムにおいてEHC
4のヒータ制御を行わない場合、つまり、始動時にヒー
タに通電してその加熱温度が300℃に達したときに該
通電を停止して以降は通電しない場合を発明例1(表1
の本発明例)、ヒータによる加熱温度が300℃に達し
て以降にNOx吸着用触媒5の入口ガス温度が250〜
350℃となるように制御する場合を発明例2、この発
明例2の場合と同じヒータ制御に加え、NOx吸着用触
媒5がNOxを吸着したり該吸着したNOxを放出する
ように混合気の空燃比をリーン及び理論空燃比間で切り
換える空燃比制御を行うようにした場合を発明例3と
し、これら発明例1〜3について、上記と同じ排気浄化
率をそれぞれ調べた。その結果を、次の表2に併せて示
す。Next, in the above system of the present invention, EHC
Inventive Example 1 (Table 1), in which the heater control of No. 4 is not performed, that is, when the heater is energized at the time of starting and the energization is stopped when the heating temperature reaches 300 ° C.
Inventive example), after the heating temperature by the heater reaches 300 ° C., the inlet gas temperature of the NOx adsorption catalyst 5 is 250 to
In the case of controlling the temperature to be 350 ° C., the same heater control as in the case of the invention example 2 and the invention example 2 is performed, and the NOx adsorption catalyst 5 adsorbs NOx and releases the adsorbed NOx. The case where the air-fuel ratio control in which the air-fuel ratio is switched between lean and stoichiometric air-fuel ratio is performed is defined as Invention Example 3, and the same exhaust gas purification rates as described above were investigated for Invention Examples 1 to 3. The results are also shown in Table 2 below.
【0042】[0042]
【表2】 [Table 2]
【0043】上記表2から判るように、発明例1及び2
を対比すると、発明例2ではNOx浄化率が向上してい
る。これは、EHC4のヒータ制御を行うことで、排気
ガスの温度変化に拘らず、NOx吸着用触媒5のNOx
吸着率を高いレベルに維持することができるからである
と考えられる。尚、NOx吸着用触媒5については、三
元触媒6の上流側に位置していればEHC4の上流側に
配置されていてもよいようにも考えられるが、その場合
には、ヒータ制御によるNOx吸着特性の十分な活用が
できない。As can be seen from Table 2, Invention Examples 1 and 2
In contrast, in the invention example 2, the NOx purification rate is improved. This is because the heater control of the EHC 4 is performed so that the NOx of the NOx adsorption catalyst 5 is reduced regardless of the temperature change of the exhaust gas.
It is considered that this is because the adsorption rate can be maintained at a high level. Note that the NOx adsorbing catalyst 5 may be arranged upstream of the EHC 4 as long as it is located upstream of the three-way catalyst 6, but in that case, NOx controlled by the heater is used. The adsorption properties cannot be fully utilized.
【0044】最後に、図6(a)に示すように、HCの
存在下でNOxを分解浄化するNOx浄化能に加え、低
温域でHCを吸着する一方、高温域で上記吸着したHC
を放出するHC吸着能を有するようになされたNOx浄
化用触媒11(例えば銅イオン交換ゼオライト等の遷移
金属ゼオライト)を、本発明システムが収容された触媒
ケース3bの上流側の別の触媒ケース3a内に配置して
なる発明例1と、図6(b)に示すように、同NOx浄
化用触媒11を本発明システムの三元触媒6の下流側に
配置してなる発明例2と、上記発明例1の三元触媒6
を、該三元触媒6と同等の浄化能にリーン運転領域での
NOx浄化能を併せ持つ排気浄化用触媒としてのNOx
浄化用触媒6′(上記実施例の尚書きで説明したリーン
バーン用三元触媒)に交換してなる発明例3とをそれぞ
れ用意し、これら発明例1〜3について、上記と同じ排
気浄化率をそれぞれ調べた。その際に、比較のため、本
発明システムの場合と同じEHCのみの比較例(上記表
1の比較例2と同じもの)を用意し、この比較例につい
ても調べた。その結果を、次の表3に併せて示す。Finally, as shown in FIG. 6 (a), in addition to the NOx purifying ability of decomposing and purifying NOx in the presence of HC, HC is adsorbed in the low temperature range while the adsorbed HC is adsorbed in the high temperature range.
The catalyst 11 for purifying NOx (for example, transition metal zeolite such as copper ion-exchanged zeolite) adapted to have the ability to adsorb HC is released from the other catalyst case 3a upstream of the catalyst case 3b in which the system of the present invention is housed. Inventive Example 1 arranged inside, and as shown in FIG. 6 (b), Inventive Example 2 in which the same NOx purification catalyst 11 is arranged on the downstream side of the three-way catalyst 6 of the system of the present invention; Three-way catalyst 6 of Inventive Example 1
NOx as an exhaust gas purification catalyst that has both the purification performance equivalent to that of the three-way catalyst 6 and the NOx purification performance in the lean operation region.
Inventive Example 3 in which the purifying catalyst 6 '(three-way catalyst for lean burn described in the above description of the Examples) is replaced is prepared, and for these Inventive Examples 1 to 3, the same exhaust gas purification rate as described above is prepared. I investigated each. At that time, for comparison, a comparative example (same as comparative example 2 in Table 1 above) having only the same EHC as in the case of the system of the present invention was prepared, and this comparative example was also examined. The results are also shown in Table 3 below.
【0045】[0045]
【表3】 [Table 3]
【0046】上記表3から判るように、発明例1及び2
を比較すると、本発明システムの上流側にNOx浄化用
触媒11を配置した発明例1では、略全ての浄化率にお
いて向上している。一方、発明例2のように、NOx浄
化用触媒11を本発明システムの下流側に配置すると、
NOx分解に必要なHCがEHC4で浄化されるため
に、該NOx浄化用触媒11のNOx浄化効率が若干低
下する。また、発明例1及び3を対比すると、三元触媒
6をNOx浄化用触媒6′に代えても、発明例1の場合
に比べて遜色のない浄化性能の得られることが判る。As can be seen from Table 3 above, Invention Examples 1 and 2
In comparison, in Invention Example 1 in which the NOx purification catalyst 11 is arranged on the upstream side of the system of the present invention, almost all purification rates are improved. On the other hand, when the NOx purifying catalyst 11 is arranged on the downstream side of the system of the present invention as in Inventive Example 2,
Since the HC necessary for NOx decomposition is purified by EHC4, the NOx purification efficiency of the NOx purification catalyst 11 is slightly reduced. Further, comparing invention examples 1 and 3, it can be seen that even if the three-way catalyst 6 is replaced by the NOx purification catalyst 6 ′, purification performance comparable to that of the invention example 1 can be obtained.
【0047】[0047]
【発明の効果】以上説明したように、請求項1の発明に
よれば、内燃機関の排気浄化装置として、リーン運転領
域で排気ガス中のNOxを吸着する一方、理論空燃比運
転領域で上記吸着したNOxを放出するNOx吸着能を
少なくとも有し、かつ入口ガス温度が所定の温度域にあ
るときに該所定温度域以外の温度域にあるときよりもN
Ox吸着率が高くなるようになされたNOx吸着用触媒
と、このNOx吸着用触媒の下流側に配置され、理論空
燃比運転領域での三元能を少なくとも有する排気浄化用
触媒と、上記NOx吸着用触媒の上流側に配置され、理
論空燃比運転領域での三元能を少なくとも有する排気浄
化用触媒に、該排気浄化用触媒を加熱可能なヒータが併
設されてなるヒータ付触媒とを備えるようにしたので、
上記EHCのヒータでNOx吸着用触媒の入口ガス温度
を上記所定温度域に加熱することができ、このことで、
NOx吸着用触媒のNOx吸着率を高いレベルに安定し
て維持できるようになる。よって、排気ガスの低温域か
ら高温域に亘る広い温度領域において、上記NOx吸着
用触媒によるNOx吸着を効率よく行わせることがで
き、その分だけリーン運転領域のときに発生したNOx
の外気への排出量の低減を図ることができる。As described above, according to the invention of claim 1, as an exhaust purification system for an internal combustion engine, NOx in the exhaust gas is adsorbed in a lean operation region while the adsorption is performed in a stoichiometric air-fuel ratio operation region. Has at least a NOx adsorbing capacity for releasing NOx, and when the inlet gas temperature is in a predetermined temperature range, N is higher than that in a temperature range other than the predetermined temperature range.
A NOx adsorption catalyst having a high Ox adsorption rate, an exhaust gas purification catalyst disposed at a downstream side of the NOx adsorption catalyst and having at least three-way capacity in the theoretical air-fuel ratio operation region, and the NOx adsorption catalyst. A catalyst with a heater, which is arranged on the upstream side of the exhaust catalyst and has at least a heater capable of heating the exhaust purification catalyst, in addition to the exhaust purification catalyst having at least ternary capacity in the stoichiometric air-fuel ratio operation region. Because I chose
The heater of the EHC can heat the inlet gas temperature of the NOx adsorption catalyst to the above predetermined temperature range.
The NOx adsorption rate of the NOx adsorption catalyst can be stably maintained at a high level. Therefore, NOx adsorption by the NOx adsorption catalyst can be efficiently performed in a wide temperature range from a low temperature region of exhaust gas to a high temperature region, and the NOx generated in the lean operation region is correspondingly increased.
It is possible to reduce the amount of exhausted to the outside air.
【0048】請求項2の発明によれば、上記NOx吸着
用触媒の入口ガス温度を検出する温度検出手段と、リー
ン運転領域のときに、上記温度検出手段により検出され
る入口ガス温度が所定の温度域に維持されるようにヒー
タ付触媒のヒータによる加熱温度を制御する制御手段と
を備えるようにしたので、上記NOx吸着用触媒の入口
ガス温度を該NOx吸着用触媒の所定温度域に維持する
ことができる。よって、上記請求項1の発明による効果
を具体的に得ることができる。According to the second aspect of the present invention, the temperature detecting means for detecting the inlet gas temperature of the NOx adsorbing catalyst and the inlet gas temperature detected by the temperature detecting means in the lean operation region are predetermined. Since the control means for controlling the heating temperature of the heater-equipped catalyst by the heater so as to be maintained in the temperature range is provided, the inlet gas temperature of the NOx adsorption catalyst is maintained in the predetermined temperature range of the NOx adsorption catalyst. can do. Therefore, the effect according to the invention of claim 1 can be specifically obtained.
【0049】請求項3の発明によれば、上記NOx吸着
用触媒の入口ガス温度の所定の温度域が250〜350
℃である場合に、制御手段により、上記入口ガス温度が
250〜350℃の温度域に維持できるようにしたの
で、上記請求項1の発明による効果を効率よく得ること
ができる。According to the third aspect of the invention, the predetermined temperature range of the inlet gas temperature of the NOx adsorption catalyst is 250 to 350.
When the temperature is ℃, the inlet gas temperature can be maintained in the temperature range of 250 to 350 ° C. by the control means, so that the effect of the invention of claim 1 can be efficiently obtained.
【図1】本発明の実施例に係る排気浄化装置を示す概略
図である。FIG. 1 is a schematic diagram showing an exhaust emission control device according to an embodiment of the present invention.
【図2】NOx吸着用触媒のNOx吸着率の変化を入口
ガス温度との関係で示すNOx吸着特性図である。FIG. 2 is a NOx adsorption characteristic diagram showing a change in NOx adsorption rate of a NOx adsorption catalyst in relation to an inlet gas temperature.
【図3】EHCのヒータ制御が行われない場合の冷機時
の排気浄化装置の作動を排気ガスの温度変化と併せて示
すタイミングチャート図である。FIG. 3 is a timing chart showing the operation of the exhaust gas purification device during cooling when EHC heater control is not performed together with the temperature change of exhaust gas.
【図4】EHCのヒータ制御が行われる場合の冷機時の
排気浄化装置の作動を排気ガスの温度変化と併せて示す
図3相当図である。FIG. 4 is a diagram corresponding to FIG. 3, showing the operation of the exhaust gas purification device during cooling when EHC heater control is performed together with the temperature change of exhaust gas.
【図5】EHCのヒータ制御が行われる場合の排気浄化
装置の作動を車速変化と併せて示すタイミングチャート
図である。FIG. 5 is a timing chart showing the operation of the exhaust emission control device when the EHC heater control is performed together with the vehicle speed change.
【図6】本実施例の各変形例をそれぞれ示す概略図であ
る。FIG. 6 is a schematic view showing each modification of the present embodiment.
1 エンジン(内燃機関) 2 排気通路(排気系) 4 EHC(ヒータ付触媒) 5 NOx吸着用触媒 6 三元触媒(排気浄化用触媒) 6′ NOx浄化用触媒(排気浄化用触媒) 8 温度センサ(温度検出手段) 10 CPU(制御手段) DESCRIPTION OF SYMBOLS 1 engine (internal combustion engine) 2 exhaust passage (exhaust system) 4 EHC (catalyst with heater) 5 NOx adsorption catalyst 6 three-way catalyst (exhaust gas purification catalyst) 6'NOx purification catalyst (exhaust gas purification catalyst) 8 temperature sensor (Temperature detection means) 10 CPU (control means)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 ZAB F01N 3/24 ZABR ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01N 3/24 ZAB F01N 3/24 ZABR
Claims (3)
転領域のときに排気ガス中のNOxを吸着する一方、理
論空燃比運転領域のときに上記吸着したNOxを放出す
るNOx吸着能を少なくとも有し、かつ入口ガス温度が
所定の温度域にあるときに該所定温度域以外の温度域に
あるときよりもNOx吸着率が高くなるようになされた
NOx吸着用触媒と、 上記NOx吸着用触媒の下流側に配置され、理論空燃比
運転領域での排気ガスに対するHC、CO及びNOx浄
化能の三元能を少なくとも有する排気浄化用触媒と、 上記NOx吸着用触媒の上流側に配置され、理論空燃比
運転領域での排気ガスに対するHC、CO及びNOx浄
化能の三元能を少なくとも有する排気浄化用触媒に、該
排気浄化用触媒を加熱可能なヒータが併設されてなるヒ
ータ付触媒とを備えていることを特徴とする内燃機関の
排気浄化装置。1. An NOx adsorbing ability, which is arranged in an exhaust system of an internal combustion engine and adsorbs NOx in exhaust gas in a lean operating region, and releases the adsorbed NOx in a stoichiometric air-fuel ratio operating region. And a NOx adsorption catalyst having a higher NOx adsorption rate when the inlet gas temperature is in a predetermined temperature range than in a temperature range other than the predetermined temperature range, and the NOx adsorption catalyst An exhaust gas purification catalyst having at least a ternary capacity of HC, CO, and NOx purification capacity for exhaust gas in the theoretical air-fuel ratio operation region, and an upstream side of the NOx adsorption catalyst. An exhaust gas purification catalyst having at least a ternary function of purifying HC, CO and NOx with respect to exhaust gas in an air-fuel ratio operation region is provided with a heater capable of heating the exhaust gas purification catalyst. Exhaust purification system of an internal combustion engine, characterized in that it comprises a chromatography data with the catalyst.
において、 NOx吸着用触媒の入口ガス温度を検出する温度検出手
段と、 リーン運転領域のときに上記温度検出手段により検出さ
れる入口ガス温度が所定の温度域に維持されるようにヒ
ータ付触媒のヒータによる加熱温度を制御する制御手段
とを備えていることを特徴とする内燃機関の排気浄化装
置。2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a temperature detecting means for detecting an inlet gas temperature of the NOx adsorbing catalyst, and an inlet gas detected by the temperature detecting means in a lean operation region. An exhaust emission control device for an internal combustion engine, comprising: a control unit that controls a heating temperature of a heater-equipped catalyst by a heater so that the temperature is maintained in a predetermined temperature range.
において、 NOx吸着用触媒は、その入口ガス温度が250〜35
0℃の温度域にあるときに該温度域以外の温度域にある
ときよりもNOx吸着率が高くなるように構成され、 制御手段は、上記NOx吸着用触媒の入口ガス温度が2
50〜350℃の温度域に維持されるようにヒータ付触
媒のヒータによる加熱温度を制御する構成とされている
ことを特徴とする内燃機関の排気浄化装置。3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the NOx adsorption catalyst has an inlet gas temperature of 250 to 35.
When the temperature is 0 ° C., the NOx adsorption rate is higher than when it is in a temperature range other than the temperature range, and the control means is such that the inlet gas temperature of the NOx adsorption catalyst is 2
An exhaust emission control device for an internal combustion engine, characterized in that the heating temperature of the heater-equipped catalyst is controlled so as to be maintained in a temperature range of 50 to 350 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07279995A JP3834832B2 (en) | 1995-03-30 | 1995-03-30 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07279995A JP3834832B2 (en) | 1995-03-30 | 1995-03-30 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08270440A true JPH08270440A (en) | 1996-10-15 |
JP3834832B2 JP3834832B2 (en) | 2006-10-18 |
Family
ID=13499809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07279995A Expired - Fee Related JP3834832B2 (en) | 1995-03-30 | 1995-03-30 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3834832B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300179B1 (en) * | 1999-04-01 | 2001-09-22 | 이계안 | catalyst system reducing NOx for gasoline GDI/lean burn engine |
JP2002155784A (en) * | 2000-09-05 | 2002-05-31 | Denso Corp | Exhaust emission control device of internal combustion engine |
CN109931127A (en) * | 2017-12-18 | 2019-06-25 | 丰田自动车株式会社 | The emission-control equipment of internal combustion engine |
-
1995
- 1995-03-30 JP JP07279995A patent/JP3834832B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100300179B1 (en) * | 1999-04-01 | 2001-09-22 | 이계안 | catalyst system reducing NOx for gasoline GDI/lean burn engine |
JP2002155784A (en) * | 2000-09-05 | 2002-05-31 | Denso Corp | Exhaust emission control device of internal combustion engine |
JP4492776B2 (en) * | 2000-09-05 | 2010-06-30 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
CN109931127A (en) * | 2017-12-18 | 2019-06-25 | 丰田自动车株式会社 | The emission-control equipment of internal combustion engine |
CN109931127B (en) * | 2017-12-18 | 2021-01-15 | 丰田自动车株式会社 | Exhaust gas purification device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3834832B2 (en) | 2006-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3699410B1 (en) | A catalytic article and the use thereof for the treatment of an exhaust gas | |
US9810120B2 (en) | Exhaust gas purifying system | |
EP0616115B1 (en) | Exhaust gas purifying apparatus and method for internal combustion engine | |
EP1815112B1 (en) | Exhaust system comprising exotherm-generating catalyst | |
JP2010230011A (en) | Compression ignition engine and exhaust mechanism therefor | |
JP2003531721A (en) | Exhaust gas purification method and apparatus | |
JPH07144119A (en) | Exhaust gas purifier | |
KR100370486B1 (en) | Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst | |
KR20200102150A (en) | Exhaust gas purification system for vehicle and method of controlling the same | |
JPH07766A (en) | Waste gas purifier | |
JP3716738B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP0886041A3 (en) | System for exhaust gas purification | |
JP3834832B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2600785B2 (en) | Exhaust gas purification device | |
JPH0559937A (en) | Engine exhaust emission control device | |
JPH06336915A (en) | Exhaust emission control device of internal combustion engine | |
JPH0579320A (en) | Internal combustion engine, operation thereof and automobile | |
JPH1193643A (en) | Exhaust emission control device for internal combustion engine | |
JPH05171921A (en) | Exhaust gas purifying device | |
JP2003247418A (en) | Exhaust gas purifying device of engine | |
JPH08270434A (en) | Exhaust emission control device for internal combustion engine | |
JPH05171918A (en) | Purifying device for exhaust gas including unburnt matter | |
JPH08270439A (en) | Exhaust emission control device for internal combustion engine | |
JP3952840B2 (en) | Exhaust gas purification method and exhaust gas purification device | |
JP2025028863A (en) | Catalytic article and its use for the treatment of exhaust gases - Patents.com |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20050311 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060717 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |