JPH08269541A - Production of hot rolled high carbon steel plate excellent in hardenability and workability - Google Patents
Production of hot rolled high carbon steel plate excellent in hardenability and workabilityInfo
- Publication number
- JPH08269541A JPH08269541A JP7592395A JP7592395A JPH08269541A JP H08269541 A JPH08269541 A JP H08269541A JP 7592395 A JP7592395 A JP 7592395A JP 7592395 A JP7592395 A JP 7592395A JP H08269541 A JPH08269541 A JP H08269541A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- workability
- hardenability
- high carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000677 High-carbon steel Inorganic materials 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005096 rolling process Methods 0.000 claims abstract description 37
- 238000000137 annealing Methods 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 46
- 239000010959 steel Substances 0.000 claims description 46
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 15
- 229910001562 pearlite Inorganic materials 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 238000004080 punching Methods 0.000 description 14
- 239000002344 surface layer Substances 0.000 description 14
- 238000005452 bending Methods 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 238000005461 lubrication Methods 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 102220062469 rs786203185 Human genes 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、構造用鋼、機械部品
用鋼および工具鋼などに用いて好適な高炭素熱延鋼板に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon hot-rolled steel sheet suitable for use in structural steel, steel for machine parts, tool steel and the like.
【0002】[0002]
【従来の技術】炭素鋼の熱間加工鋼材は、通常の製造条
件、すなわち加熱温度:1200〜1300℃、熱延仕上げ温
度:800 〜900 ℃、巻取温度:400 〜650 ℃で製造され
た場合、一般に、その組織中にパーライトとよばれる層
状炭化物を有している。このような層状の炭化物は、加
工性を劣化させ、また焼入れなどの熱処理に際しても焼
入れ不良や靱性劣化の原因となるため、次工程で炭化物
を球状化するのが一般的である。2. Description of the Related Art Hot-worked carbon steel is manufactured under normal manufacturing conditions, namely, heating temperature: 1200 to 1300 ° C, hot rolling finishing temperature: 800 to 900 ° C, coiling temperature: 400 to 650 ° C. In this case, the structure generally has a layered carbide called pearlite. Since such a layered carbide deteriorates workability and causes quenching failure and toughness deterioration during heat treatment such as quenching, it is common to make the carbide spherical in the next step.
【0003】層状炭化物の球状化方法としては、従来 a.バッチ炉を用いてA1 点直下の温度に長時間加熱し
た後、冷却する方法、 b.A1 点直上の温度に加熱した後、A1 点近傍を徐冷
する方法等が知られているが、いずれも数十時間に及ぶ
長い処理時間を必要とした。As a method of spheroidizing a layered carbide, conventional methods include a. A method in which a batch furnace is used for heating for a long time to a temperature just below A 1 point and then cooling, b. After heating to a temperature just above the A 1 point, but such a method of slowly cooling the vicinity of A 1 point is known, both required a long processing time of up to several tens of hours.
【0004】そこで、上記の問題の改善策として、 c.熱間加工後、フェライトの動的再結晶温度以上、A
1 点以下の温度で加工を加えた後、 630℃以上、A1 点
以下の温度に5分間〜5時間保持する方法(特公昭63-1
4045号公報)や、 d.熱間加工中にパーライトやベイナイト、マルテンサ
イト等に変態させた後、急熱し、ついでAc3点以下の温
度域で加工を加え、しかるのち上記a,bの処理を比較
的短時間で行う方法(特開昭63-86814号、同63-86815
号、同63-89617号各公報)等が提案された。Therefore, as a remedy for the above problem, c. After hot working, above the dynamic recrystallization temperature of ferrite, A
After addition of machining at one point temperatures below, 630 ° C. or higher, a method of holding 5 hours 5 minutes to a temperature of less than 1 point A (JP-B-63-1
No. 4045), and d. A method of transforming into pearlite, bainite, martensite, etc. during hot working, then rapidly heating, and then working in a temperature range of Ac 3 point or less, and then performing the treatments a and b in a relatively short time. (JP-A-63-86814 and 63-86815)
No. 63-89617).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記
c.の方法では、加工中に加熱を必要とするだけでな
く、その温度管理が難しいところに、また上記d.の方
法には、その後の処理にまだかなりの時問を要するとこ
ろに、それぞれ問題を残していた。加えて、炭化物を板
厚方向に均一に微細化することは、一般的な冷間加工性
や焼入れ性あるいは鋼板の靱性にとっては有利ではある
ものの、打ち抜き加工時にかえり(バリ)が発生しいわ
ゆる精密打ち抜き加工性に劣り、また曲げ加工性も十分
ではないという問題があった。However, the above-mentioned c. In the method of (3), not only heating is required during processing, but it is difficult to control the temperature, and the above d. Each of these methods left problems, where the subsequent processing still required a considerable amount of time. In addition, although uniformly refining the carbide in the plate thickness direction is advantageous for general cold workability, hardenability, and toughness of the steel plate, burrs are generated during punching and so-called precision There was a problem that the punching workability was poor and the bending workability was not sufficient.
【0006】この発明は、上述した微細球状化炭化物分
散鋼の製造上の問題および特性上の問題の両者の現状に
鑑み、開発されたもので、工場でのいわゆる熱間圧延工
程と短時間の焼鈍工程のみで、微細でかつ均一な球状炭
化物分散鋼と同等の特性を有し、しかも従来の微細炭化
物分散鋼の問題点であった加工性とくに精密打ち抜き加
工性ならびに曲げ加工性の点についても有利に改善した
高炭素熱延鋼板の製造方法を提案することを目的とす
る。The present invention has been developed in view of both the problems in the production of the above-mentioned fine spheroidized carbide-dispersed steel and the problems in the characteristics thereof, and it is a so-called hot rolling process in a factory and a short time. It has the same characteristics as fine and uniform spherical carbide-dispersed steel only by the annealing process, and also has the problems of conventional fine carbide-dispersed steel such as workability, especially precision punching workability and bending workability. It is an object of the present invention to propose a method for producing a high-carbon hot-rolled steel sheet which is advantageously improved.
【0007】[0007]
【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく鋭意研究を重ねた結果、熱延工程の仕
上げ圧延前または圧延中にオーステナイトから層状パー
ライトヘの変態を完了させ、これに圧延加工を加えた
後、高温で巻き取り、しかるのち短時間の焼鈍を行うこ
とが所期した目的の達成に関し極めて有効であり、しか
も上記の工程中とくに仕上げ圧延工程に工夫を加えれ
ば、板厚方向に対して一定割合の鋼板表層部の組織のみ
を微細炭化物分散組織とすることができ、従来鋼板の問
題点であった打ち抜き加工性および曲げ加工性について
も有利に改善できることの知見を得た。Means for Solving the Problems Now, as a result of intensive studies to achieve the above object, the inventors completed the transformation from austenite to layered pearlite before or during finish rolling in the hot rolling step, It is extremely effective for achieving the intended purpose that after rolling processing, rolling at high temperature, and then annealing for a short time, it is very effective in achieving the intended purpose. The finding that only a certain proportion of the steel sheet surface layer structure with respect to the plate thickness direction can be made into a fine carbide dispersed structure, and punching workability and bending workability, which were problems of conventional steel plates, can be advantageously improved. Got
【0008】この発明は、上記の知見に立脚するもので
あり、その要旨構成は以下のとおりである。 1)C:0.2 〜1.3 wt%、 Si:0.1 〜1.0 wt%、M
n:0.05〜2.0 wt%、 P:0.05wt%以下、S:0.05w
t%以下、 Al:0.01〜0.2 wt%、N:0.05wt%以
下を含有し、残部はFeおよび不可避的不純物の組成にな
る高炭素鋼素材を、1000〜1300℃の温度に加熱後、Ar3
点以上、950 ℃以下の温度範囲で圧下率:50%以上の粗
圧延を施し、ついで圧延終了温度が600 ℃以上で、かつ
600 ℃以上、Ar1点未満の温度範囲で圧下率:10%以
上、30%未満で仕上げ圧延し、その際、仕上げ圧延機の
少なくとも最終スタンドについては摩擦係数μが0.15以
上の条件下で圧延を行い、引き続き 450〜700 ℃の温度
範囲で巻き取り、さらに500 〜740 ℃の温度範囲で10 s
ec〜8hr保持する焼鈍を行うことを特徴とする焼入れ性
と加工性に優れた高炭素熱延鋼板の製造方法。The present invention is based on the above findings, and its gist is as follows. 1) C: 0.2-1.3 wt%, Si: 0.1-1.0 wt%, M
n: 0.05 to 2.0 wt%, P: 0.05 wt% or less, S: 0.05w
A high carbon steel material containing t% or less, Al: 0.01 to 0.2 wt%, N: 0.05 wt% or less, and the balance of Fe and unavoidable impurities is heated to a temperature of 1000 to 1300 ° C. and then Ar. 3
Rolling is carried out at a rolling reduction of 50% or more in the temperature range of at least 950 ° C and below 950 ° C.
Finishing rolling at a rolling reduction of 10% or more and less than 30% in a temperature range of 600 ° C or more and less than 1 point of Ar, and at least the final stand of the finishing mill is rolled under a friction coefficient μ of 0.15 or more. Then, wind it in the temperature range of 450 to 700 ° C, and then in the temperature range of 500 to 740 ° C for 10 s.
A method for producing a high-carbon hot-rolled steel sheet excellent in hardenability and workability, characterized by performing annealing for holding for ec to 8 hours.
【0009】2)上記1)において、素材の成分組成が
C:0.2 〜1.3 wt%、 Si:0.1 〜1.0 wt%、Mn:0.
05〜2.0 wt%、 P:0.05wt%以下、S:0.05wt%以
下、 Al:0.01〜0.2 wt%、N:0.05wt%以下を含
有し、かつNi:0.1 〜5.0 wt%、 Cr:0.1 〜5.0 wt
% Mo:0.1 〜1.0 wt%、 B:0.0005〜0.0100wt%のう
ちから選ばれる1種または2種以上を含有し、残部はFe
および不可避的不純物の組成になる焼入れ性と加工性に
優れた高炭素熱延鋼板の製造方法。2) In the above 1), the material composition of the material is C: 0.2 to 1.3 wt%, Si: 0.1 to 1.0 wt%, Mn: 0.
05-2.0 wt%, P: 0.05 wt% or less, S: 0.05 wt% or less, Al: 0.01-0.2 wt%, N: 0.05 wt% or less, and Ni: 0.1-5.0 wt%, Cr: 0.1 ~ 5.0 wt
% Mo: 0.1-1.0 wt%, B: 0.0005-0.0100 wt% One or more selected from the rest, the balance Fe
And a method for producing a high carbon hot-rolled steel sheet which has an inevitable impurity composition and is excellent in hardenability and workability.
【0010】[0010]
【作用】以下、この発明を具体的に説明する。まず、鋼
の成分組成を上記の範囲に限定した理由について説明す
る。 C:0.2 〜1.3 wt% この発明では、前提として均一な層状炭化物を生成させ
る必要があるが、C量が 0.2wt%未満ではオーステナイ
トからの冷却過程で先にフェライトが生成されるため全
面均一な層状炭化物(パーライト)が生成されず、一方
Cが 1.3wt%を超えるとオーステナイトからの冷却過程
で先に網目状の粗大炭化物を生じるためやはり均一な微
細球状炭化物が得られないので、Cは 0.2〜1.3 wt%の
範囲に限定する。なお、好ましい含有範囲は、0.4 〜1.
0 wt%である。The present invention will be described in detail below. First, the reason why the chemical composition of steel is limited to the above range will be described. C: 0.2 to 1.3 wt% In the present invention, it is necessary to form a uniform layered carbide as a premise, but if the C content is less than 0.2 wt%, ferrite is first formed in the cooling process from austenite, so that the entire surface is uniform. Layered carbides (pearlite) are not formed, while if C exceeds 1.3 wt%, coarse net-like carbides are first produced during the cooling process from austenite, and thus uniform fine spherical carbides cannot be obtained. Limited to ~ 1.3 wt%. The preferable content range is 0.4 to 1.
It is 0 wt%.
【0011】Si:0.1 〜1.0 wt% Siは、脱酸に有用なだけでなく、焼入れ性の向上にも有
効に寄与するが、含有量が 0.1wt%未満ではその効果に
乏しく、一方 1.0wt%を超えて添加すると鋼板が硬質と
なって脆化するので、 0.1〜1.0 wt%の範囲に限定し
た。なお、好ましい含有範囲は、0.15〜0.50wt%であ
る。Si: 0.1-1.0 wt% Si is not only useful for deoxidation but also contributes effectively to the improvement of hardenability, but if the content is less than 0.1 wt%, the effect is poor, while 1.0 wt% %, The steel plate becomes hard and becomes brittle, so the content was limited to the range of 0.1 to 1.0 wt%. The preferred content range is 0.15 to 0.50 wt%.
【0012】Mn :0.05〜2.0 wt% Mnは、強度の向上あるいは焼入性の向上のために添加さ
れるが、含有量が0.05wt%未満では固溶Sが多くなって
熱間加工時に脆化が生じ、鋼板製造性の劣化を招き、一
方 2.0wt%を超えると靱性の低下を招くので、Mn含有量
は0.05〜2.0 wt%の範囲に限定した。なお、好ましい含
有範囲は、0.4 〜1.0 wt%である。Mn: 0.05 to 2.0 wt% Mn is added to improve strength or hardenability, but if the content is less than 0.05 wt%, solute S increases and brittleness occurs during hot working. However, the Mn content is limited to the range of 0.05 to 2.0 wt% because if it exceeds 2.0 wt%, the toughness decreases. The preferable content range is 0.4 to 1.0 wt%.
【0013】P:0.05wt%以下 Pは、0.05wt%を超えると粒界脆化が生じ易くなるの
で、0.05wt%以下とする必要がある。より好ましくは0.
01wt%以下である。P: 0.05 wt% or less If P exceeds 0.05 wt%, grain boundary embrittlement easily occurs, so it is necessary to set P to 0.05 wt% or less. More preferably 0.
It is less than 01wt%.
【0014】S:0.05wt%以下 Sは、0.05wt%を超えると靱性を著しく劣化させるの
で、0.05wt%以下とする必要がある。より好ましくは0.
01wt%以下である。S: 0.05 wt% or less S exceeds 0.05 wt%, since the toughness is remarkably deteriorated, so S must be 0.05 wt% or less. More preferably 0.
It is less than 01wt%.
【0015】Al:0.01〜0.2 wt% Alは、脱酸剤として添加されるが、含有量が0.01wt%に
満たないとその効果がなく、一方 0.2wt%を超えて添加
してもコストアップとなるばかりか鋼板の脆化を招くの
で、0.01〜0.2 wt%の範囲に限定した。コストパフオー
マンスの観点から、好ましい範囲は0.04〜0.1 wt%であ
る。Al: 0.01 to 0.2 wt% Al is added as a deoxidizing agent, but if the content is less than 0.01 wt%, it has no effect. On the other hand, if it exceeds 0.2 wt%, the cost increases. Not only that, but it also causes embrittlement of the steel sheet, so the range was limited to 0.01 to 0.2 wt%. From the viewpoint of cost performance, the preferable range is 0.04 to 0.1 wt%.
【0016】N:0.05wt%以下 Nは、積極的に添加して強化に利用する場合もあるが、
0.05wt%を超えて添加すると鋼板を脆化させるので、0.
05wt%以下とする必要がある。特に強化を必要としない
場合には、0.01wt%以下とすることが望ましい。N: 0.05 wt% or less N may be positively added and used for strengthening.
If added in excess of 0.05 wt%, the steel plate becomes brittle, so
It should be below 05wt%. If no particular strengthening is required, it is preferably 0.01 wt% or less.
【0017】以上、必須成分について説明したが、この
発明では必要に応じ、以下に述べる強化成分を併せて含
有させることもできる。 Ni:0.1 〜5.0 wt% Niは、鋼板の焼入性を向上させると共に靱性を高める効
果があるため、必要に応じて添加されるが、 0.1wt%未
満ではその添加効果に乏しく、一方 5.0wt%を超えて添
加しても効果は飽和し、コストアップとなるだけなの
で、含有量は0.1〜5.0 wt%の範囲とした。なお、好ま
しい含有範囲は、0.15〜2.0 wt%である。Although the essential components have been described above, the reinforcing components described below can also be contained in the present invention, if necessary. Ni: 0.1 to 5.0 wt% Ni is added as needed because it has the effect of improving the hardenability and toughness of the steel sheet, but if it is less than 0.1 wt%, the addition effect is poor, while 5.0 wt% If added in excess of%, the effect will be saturated and only the cost will increase, so the content was made 0.1-5.0 wt%. The preferred content range is 0.15 to 2.0 wt%.
【0018】Cr:0.1 〜5.0 wt% Crは、耐食性の向上や炭化物の黒鉛化抑制などの効果が
あるため、必要に応じて添加されるが、 0.1wt%未満で
はその添加効果に乏しく、一方 5.0wt%を超えて添加す
ると鋼が硬質化して脆化するので、 0.1〜5.0 wt%の範
囲とした。なお、好ましい含有範囲は、0.1 〜1.0 wt%
である。Cr: 0.1-5.0 wt% Cr is added as necessary because it has effects of improving corrosion resistance and suppressing graphitization of carbides, but if less than 0.1 wt%, the addition effect is poor. If added in excess of 5.0 wt%, the steel becomes hard and brittle, so the range was set to 0.1 to 5.0 wt%. The preferred content range is 0.1-1.0 wt%
Is.
【0019】Mo:0.1 〜1.0 wt% Moは、焼入性を高めて耐摩耗性の改善に有効に寄与する
だけでなく、特定の焼戻温度で発生する「焼戻脆化」の
改善にも多大な効果があるので、必要に応じて添加され
るが、 0.1wt%未満ではその添加効果に乏しく、一方
1.0wt%を超えて添加しても効果は飽和に達し、コスト
アップとなるだけなので、含有量は 0.1〜1.0 wt%の範
囲とした。なお、好ましい含有範囲は、0.10〜0.5 wt%
である。Mo: 0.1 to 1.0 wt% Mo not only enhances hardenability and effectively contributes to improvement of wear resistance, but also improves "tempering embrittlement" which occurs at a specific tempering temperature. However, if it is less than 0.1 wt%, its effect is poor.
Even if added in excess of 1.0 wt%, the effect will reach saturation and only cost will increase, so the content was made 0.1-1.0 wt%. The preferred content range is 0.10-0.5 wt%
Is.
【0020】B:0.0005〜0.0100wt% Bは、焼入性を高める効果があり、必要に応じて添加さ
れるが、0.0005wt%未満ではその添加効果に乏しく、一
方0.0100wt%を超えて添加すると鋼が硬質化して脆化す
るので、0.0005〜0.0100wt%の範囲とした。なお、好ま
しい含有範囲は、0.0010〜0.0030wt%である。B: 0.0005 to 0.0100 wt% B has the effect of enhancing the hardenability and is added as necessary, but if it is less than 0.0005 wt%, its effect is poor, while if it exceeds 0.0100 wt%. Then, the steel hardens and becomes brittle, so the range was made 0.0005 to 0.0100 wt%. The preferred content range is 0.0010 to 0.0030 wt%.
【0021】次に、この発明に従う製造方法について説
明する。素材鋳片の製造に際しては、連続鋳造法および
造塊−分塊法いずれもが適合する。次いで、熱間圧延に
先立ち加熱処理を施すが、この熱延前の加熱では完全な
溶体化を実現する必要があり、その観点から1000〜1300
℃の範囲に限定した。なお、好ましい加熱温度範囲は11
50〜1250℃である。Next, the manufacturing method according to the present invention will be described. Both the continuous casting method and the ingot-casting method are suitable for the production of the raw material slab. Next, heat treatment is performed prior to hot rolling, but it is necessary to realize complete solution treatment by heating before hot rolling, and from this viewpoint, 1000 to 1300
Limited to the range of ° C. The preferred heating temperature range is 11
50 to 1250 ° C.
【0022】熱間圧延とくに粗圧延工程は、仕上げ圧延
前に先立って等間隔の小さい層状炭化物(パーライト)
を均一に生成させる上で重要である。圧延後にパーライ
トを生成させるためには、粗圧延温度はAr3変態点以上
とする必要がある。他方、パーライトの核生成サイトを
増やすためには、粗圧延温度は 950℃以下でかつ、圧下
率を50%以上とする必要がある。In the hot rolling, particularly in the rough rolling process, prior to the finish rolling, layered carbides (pearlite) having small equal intervals are formed.
Is important for uniform production. In order to generate pearlite after rolling, the rough rolling temperature needs to be the Ar 3 transformation point or higher. On the other hand, in order to increase the nucleation sites of pearlite, the rough rolling temperature must be 950 ° C or lower and the reduction rate must be 50% or higher.
【0023】これに続く仕上げ圧延前あるいは圧延中に
パーライトに変態させた後、仕上げ圧延工程で鋼板表裏
面の表層部それぞれにつき、板厚の1/10以上、1/4以下
の領域について、パーライトを分断する。分断された領
域は、その後の自己焼鈍によってフェライト中に微細な
球状化炭化物が分散した組織となるが、板厚に占める割
合は、板厚の1/10以上としないと、微細炭化物分散組織
層の効果である優れた焼き入れ性、靱性、曲げ加工性な
どの冷間加工性が得られない。一方、板厚の1/4を超え
る領域を微細炭化物分散組織としても、上記した特性上
の効果の飛躍的な向上が期待できないばかりでなく、打
ち抜き時のかえり(バリ)の発生などの問題も新たに発
生する。このことから、フェライト中に微細な球状化炭
化物が均一に分散した微細炭化物分散組織を形成する領
域は、板厚の1/10以上、1/4以下の範囲とするのが効果
的である。なおこの際、炭化物の球状化率は90%以上、
また粒径は0.10μm 以下とするのが好ましい。というの
は、球状化率は加工性を確保するために重要であり、90
%以上とすることによって、その効果が顕著に現れるか
らであり、また、炭化物粒径を0.10μm 以下とすること
によって、短時間の加熱処理条件でも、焼き入れ硬化性
が得られるからである。Before or after the subsequent finish rolling, after being transformed into pearlite, in the finish rolling step, pearlite is applied to each of the surface layer portions on the front and back surfaces of the steel sheet in an area of 1/10 or more and 1/4 or less of the sheet thickness. Divide. The divided region has a structure in which fine spheroidized carbide is dispersed in ferrite by the subsequent self-annealing, but the ratio to the plate thickness should be 1/10 or more of the plate thickness, and the fine carbide dispersed structure layer As a result, excellent cold workability such as hardenability, toughness and bending workability cannot be obtained. On the other hand, even if the region where the thickness exceeds 1/4 of the plate thickness is made to have a fine carbide dispersion structure, not only the dramatic improvement in the above-mentioned characteristic effects cannot be expected, but also problems such as burr formation at the time of punching occur. It occurs newly. From this, it is effective that the region forming the fine carbide dispersion structure in which the fine spheroidized carbide is uniformly dispersed in the ferrite is within the range of 1/10 or more and 1/4 or less of the plate thickness. At this time, the spheroidization rate of the carbide is 90% or more,
The particle size is preferably 0.10 μm or less. The spheroidization rate is important for ensuring workability, and
%, The effect becomes remarkable, and by setting the carbide grain size to 0.10 μm or less, quench hardening can be obtained even under a short-time heat treatment condition.
【0024】このように、表層部のみを微細炭化物分散
組織とするためには、以下のようにすればよい。仕上げ
圧延完了前にパーライト変態させるため、仕上げ圧延終
了温度はAr1変態点(通常、鋼種によらず 700℃前後)
未満とする。一方、仕上げ圧延温度が 600℃を下回ると
圧延時の負荷が高くなるため、仕上げ圧延終了温度の下
限は 600℃とする。また、600 ℃以上、Ar1 点未満の温
度範囲における仕上げ圧延の圧下率は、鋼板表層部のパ
ーライトを分断するのに十分な大きさとする必要があ
り、10%以上とするが、逆に圧下率が30%以上になる
と、表層部のパーライトを分断するためのひずみ量とし
ては多すぎ、かえって形状不良などの弊害を招くので、
仕上げ圧延における圧下率は10%以上、30%未満の範囲
に限定した。As described above, in order to make only the surface layer portion have a fine carbide dispersion structure, the following may be carried out. Since the pearlite transformation takes place before the completion of finish rolling, the finish rolling finish temperature is the Ar 1 transformation point (usually around 700 ° C regardless of the steel type).
Less than On the other hand, if the finish rolling temperature is lower than 600 ° C, the load during rolling increases, so the lower limit of the finish rolling finish temperature is set to 600 ° C. In addition, the reduction ratio of finish rolling in the temperature range of 600 ℃ or more and less than Ar 1 point must be large enough to divide the pearlite in the steel sheet surface layer, and it should be 10% or more. When the ratio is 30% or more, the amount of strain for dividing the pearlite in the surface layer is too large, which causes adverse effects such as defective shape.
The rolling reduction in finish rolling was limited to the range of 10% or more and less than 30%.
【0025】ところで、上記の熱間仕上げ圧延に際して
は、仕上げ圧延機の少なくとも最終スタンドについては
摩擦係数μが0.15以上、好ましくは0.20〜0.40となるよ
うな無潤滑または低潤滑条件で行うことが重要である。
というのは、かような無潤滑または低潤滑条件で圧延を
行ってはじめて、この発明が規定した鋼板表層部のみに
剪断ひずみを効果的に加えることができ、この領域のパ
ーライトを効果的に分断することができるからである。
上記の潤滑条件および圧下率をはずれた条件で仕上げ圧
延を行った場合には、その後に適正な条件下に巻取処理
を行ったとしても、所定の領域の表層部組織は適正な球
状化率および適正な粒径の球状炭化物とすることができ
ない。なお、上記したようなμ≧0.15の無潤滑または低
潤滑条件で圧延すべきスタンドは、最終スタンドのみで
十分であるが、これだけでは不安な場合には、最終スタ
ンドの他、後段の1〜2スタンドを同様の無潤滑または
低潤滑圧延とすれば良い。By the way, it is important to carry out the hot finish rolling under non-lubrication or low lubrication conditions such that at least the final stand of the finish rolling mill has a friction coefficient μ of 0.15 or more, preferably 0.20 to 0.40. Is.
This is because it is possible to effectively apply shear strain only to the surface layer of the steel sheet specified by the present invention after rolling under such a non-lubricated or low-lubricated condition, and effectively divide the pearlite in this region. Because you can do it.
When finish rolling is performed under conditions that deviate from the above-mentioned lubrication conditions and reduction rates, the surface layer structure in the prescribed region will have an appropriate spheroidization rate, even if winding treatment is performed under appropriate conditions thereafter. Moreover, it is impossible to obtain a spherical carbide having an appropriate particle size. It should be noted that the last stand is sufficient as the stand to be rolled under the non-lubrication condition or low lubrication condition of μ ≧ 0.15 as described above. The same non-lubricated or low-lubricated rolling may be applied to the stand.
【0026】仕上げ圧延に続く巻取工程で表層部の分断
されたパーライトを球状化する。ここに、巻取温度が 4
50℃に満たないと球状化率:90%以上、球状炭化物の粒
径:0.05μm 以下を達成できず、一方、700 ℃を超える
と加熱のために特別の装置が必要となるなど負荷が大き
くなりすぎ、また脱炭などの不都合も生じるので、巻取
温度は 450〜700 ℃の範囲に限定した。なお、好ましく
は550 〜650 ℃の範囲がよい。In the winding step following the finish rolling, the divided pearlite in the surface layer portion is spheroidized. Here, the winding temperature is 4
If the temperature is less than 50 ° C, the spheroidization rate: 90% or more and the particle size of the spherical carbides: 0.05 μm or less cannot be achieved. The coiling temperature is limited to the range of 450 to 700 ℃, because it causes excessive temperature and decarburization. The range of 550 to 650 ° C is preferable.
【0027】上記の巻き取り工程ののち、さらに500 〜
740 ℃で10秒〜8時間の短時間焼鈍を施すことにより、
焼入れ性を損なわない程度に炭化物を粗大化して軟質化
をはかり、曲げ加工性の向上、打ち抜き型の寿命延長等
の加工性の改善を達成することができる。ここに、500
℃未満または10秒未満の焼鈍では軟質化が不十分であ
り、一方740 ℃超えまたは8時間超えの焼鈍ではパーラ
イトが再生成したり、炭化物が粗大化したりして焼入れ
性が損なわれるので、焼鈍条件は500 〜740 ℃の温度範
囲で10秒〜8時間とする。なお、好ましい温度は600 〜
700 、時間は60秒〜2時間である。After the above-mentioned winding step, further 500-
By performing short-time annealing at 740 ℃ for 10 seconds to 8 hours,
It is possible to achieve softening by coarsening the carbide to the extent that the hardenability is not impaired, improving bending workability, and improving workability such as extending the life of the punching die. Here, 500
Annealing below ℃ or less than 10 seconds does not provide sufficient softening, whereas annealing above 740 ° C or over 8 hours regenerates pearlite and coarsens carbides, which impairs hardenability. The conditions are 10 seconds to 8 hours in the temperature range of 500 to 740 ° C. The preferred temperature is 600-
700, the time is 60 seconds to 2 hours.
【0028】[0028]
・実施例1 JIS規格SK5相当(表1のa鋼、C:0.79wt%,S
i:0.24wt%,Mn:0.35wt%,P:0.02wt%,S:0.005
wt%,Al:0.05wt%,N:0.01wt%:Ar3=700 ℃)
の素材を用い、1200℃に加熱後、表2に示す種々の条件
で熱間圧延、焼鈍を行い、高炭素熱延鋼板とした。かく
して得られた鋼板組織はいずれもフェライトと炭化物の
2相組織であった。その組織の特徴、すなわち表層部の
球状炭化物分散組織領域について、その層厚の板厚に占
める割合、表層の対板厚10%の領域における炭化物の
球状化率(長径/短径の比が1.0 〜1.5 の範囲にある炭
化物が全炭化物に占める数の割合)、粒径(長径と短径
の相加平均)および表裏面の片方の球状炭化物分散層の
板厚に対する比率を調査するとともに、180°曲げ試
験において割れを生じない最小曲げ半径(半径Rを板厚
tで割った値で比較)およびクリアランスを板厚の15
%として打ち抜き加工後のバリ高さ(かえり高さ)を測
定したした。これらの結果を表2に併せて示す。-Example 1 JIS standard SK5 equivalent (a steel in Table 1, C: 0.79 wt%, S
i: 0.24wt%, Mn: 0.35wt%, P: 0.02wt%, S: 0.005
wt%, Al: 0.05 wt%, N: 0.01 wt%: Ar 3 = 700 ° C)
After heating to 1200 ° C. using the above material, hot rolling and annealing were performed under various conditions shown in Table 2 to obtain a high carbon hot rolled steel sheet. The steel sheet structures thus obtained were all two-phase structures of ferrite and carbide. The characteristics of the structure, that is, the ratio of the layer thickness to the plate thickness of the spherical carbide dispersion structure region of the surface layer, the spheroidization rate of the carbide in the region of the surface layer to the plate thickness of 10% (ratio of major axis / minor axis is 1.0). The ratio of the number of carbides in the range of to 1.5 to the total number of carbides), particle size (arithmetic mean of major axis and minor axis), and the ratio of the spherical carbide dispersion layer on one side of the front and back surfaces to the plate thickness are investigated. ° The minimum bending radius that does not cause cracks in the bending test (compare radius R divided by plate thickness t) and clearance are 15
The burr height (barrel height) after punching was measured as%. The results are also shown in Table 2.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】なお、図1に、表1中No. 1の条件で製造
した発明例と、 No.3の条件(焼鈍条件が発明範囲外)
で製造した比較例および No.3の条件(熱延条件が発明
範囲外)で製造した比較例とについて、750℃で加熱
−焼入れしたときの各加熱時と表面硬さとの関係につい
て調べた結果を示す。また、図2に、板厚4.0 mmのS
K−5相当成分の鋼について球状炭化物分散相の板厚に
占める割合を種々変化させたサンプルにつき、30mm
φに打ち抜き加工(クリアランス:板厚の15%)を行
った時の剪断部バリ高さを比較した結果を示す。FIG. 1 shows an example of the invention manufactured under the conditions of No. 1 in Table 1 and conditions of No. 3 (annealing conditions are outside the scope of the invention).
The results of examining the relationship between each heating time and the surface hardness when heating-quenching at 750 ° C. for the comparative example manufactured in No. 3 and the comparative example manufactured under the No. 3 condition (the hot rolling condition is outside the invention range) Indicates. In addition, as shown in FIG.
30 mm for samples in which the ratio of the spherical carbide dispersed phase to the plate thickness is variously changed for steel of K-5 equivalent composition
The results of comparing the heights of burrs at the shearing portion when punching (clearance: 15% of plate thickness) to φ are shown.
【0032】表1および表2から明らかなように、本発
明法に従って製造した鋼板はいずれも良好な曲げ特性お
よび打ち抜き特性を示し、良好な加工性を有しているこ
とがわかる。本発明法でこのように良好な特性が得られ
たのは、炭化物のサイズ、形状、分布が適正に制御され
たことによるものと思われる。また図1に示したとお
り、本発明法で製造した鋼板では良好な短時間焼き入れ
性が得られており、高周波焼入にも十分対応できること
がわかる。また、図2から明らかなように、板厚全体を
微細炭化物分散組織とした従来材に比べて、この発明鋼
板は、かえり高さが格段に低減されている。As is clear from Tables 1 and 2, it is understood that the steel sheets produced according to the method of the present invention all have good bending properties and punching properties and have good workability. It is considered that the reason why such good characteristics were obtained by the method of the present invention is that the size, shape and distribution of the carbide were properly controlled. Further, as shown in FIG. 1, the steel sheet manufactured by the method of the present invention has a good short-time hardenability, and it can be seen that it can sufficiently cope with induction hardening. Further, as is clear from FIG. 2, the burr height of the steel sheet of the present invention is remarkably reduced as compared with the conventional material in which the entire plate thickness has a fine carbide dispersed structure.
【0033】・実施例2 JIS規格S35C相当(表1のb鋼、C:0.35wt%,S
i:0.27wt%,Mn:0.80wt%,P:0.016wt %,S:0.0
05 wt%,Al:0.05wt%, N:0.01wt%,Ar3=750
℃)の素材を用い、1100℃に加熱後、表3に示す条件で
熱間圧延、焼鈍を行い、高炭素熱延鋼板とした。得られ
た鋼板組織の特徴および特性値について、実施例1と同
様に調査した結果を表3に示す。Example 2 JIS standard S35C equivalent (steel b in Table 1, C: 0.35 wt%, S
i: 0.27wt%, Mn: 0.80wt%, P: 0.016wt%, S: 0.0
05 wt%, Al: 0.05 wt%, N: 0.01 wt%, Ar 3 = 750
After heating to 1100 ° C., hot rolling and annealing were performed under the conditions shown in Table 3 to obtain a high carbon hot rolled steel sheet. Table 3 shows the results of an examination of the characteristics and characteristic values of the obtained steel sheet structure in the same manner as in Example 1.
【0034】[0034]
【表3】 [Table 3]
【0035】表3より明らかなように、この発明に従っ
て製造したものでは、曲げ特性、打ち抜き特性とも優れ
た良好な加工性を示しており、フェライトと炭化物から
なる組織も鋼板表層の所定の板厚割合について微細均一
な球状炭化物分散組織となっている。As is clear from Table 3, the product manufactured according to the present invention exhibits excellent workability with excellent bending properties and punching properties, and the structure composed of ferrite and carbide has a predetermined plate thickness of the steel plate surface layer. The ratio is a fine and uniform spherical carbide dispersion structure.
【0036】・実施例3 JIS規格SK2相当(表1のc鋼、C:1.20wt%,S
i:0.23wt%,Mn:0.32wt%,P:0.018wt %,S:0.0
05 wt%,Al:0.05wt%, N:0.01wt%,Ar3=730
℃)の素材を用い、1250℃に加熱後、表4に示す条件で
熱間圧延、焼鈍を行い、高炭素熱延鋼板とした。得られ
た鋼板組織の特徴および特性値について、実施例1と同
様に調査した結果を表4に示す。Example 3 JIS standard SK2 equivalent (c steel in Table 1, C: 1.20 wt%, S
i: 0.23 wt%, Mn: 0.32 wt%, P: 0.018 wt%, S: 0.0
05 wt%, Al: 0.05 wt%, N: 0.01 wt%, Ar 3 = 730
C.) material, after heating to 1250 ° C., hot rolling and annealing were performed under the conditions shown in Table 4 to obtain a high carbon hot rolled steel sheet. Table 4 shows the results of investigating the characteristics and characteristic values of the obtained steel sheet structure in the same manner as in Example 1.
【0037】[0037]
【表4】 [Table 4]
【0038】表4より明らかなように、この発明に従っ
て製造したものでは、曲げ特性、打ち抜き特性とも優れ
た良好な加工性を示しており、フェライトと炭化物から
なる組織も鋼板表層の所定の板厚割合について微細均一
な球状炭化物分散組織となっている。As is clear from Table 4, the products manufactured according to the present invention show good workability with excellent bending properties and punching properties, and the structure composed of ferrite and carbide also has a predetermined plate thickness of the surface layer of the steel plate. The ratio is a fine and uniform spherical carbide dispersion structure.
【0039】・実施例4 表1のd鋼〜i鋼の素材を用い、1250℃に加熱後、表5
に示す条件で熱間圧延、焼鈍を行い、高炭素熱延鋼板と
した。得られた鋼板組織の特徴および特性値について、
実施例1と同様に調査した結果を表5に示す。Example 4 Using the materials d steel to i steel in Table 1, after heating to 1250 ° C., Table 5
Hot rolling and annealing were performed under the conditions shown in to obtain a high carbon hot rolled steel sheet. Regarding the characteristics and characteristic values of the obtained steel sheet structure,
Table 5 shows the results of the investigation conducted in the same manner as in Example 1.
【0040】[0040]
【表5】 [Table 5]
【0041】表5より明らかなように、この発明に従っ
て製造したものでは、曲げ特性、打ち抜き特性とも優れ
た良好な加工性を示しており、フェライトと炭化物から
なる組織も鋼板表層の所定の板厚割合について微細均一
な球状炭化物分散組織となっている。As is clear from Table 5, the products manufactured according to the present invention show excellent workability with excellent bending properties and punching properties, and the structure composed of ferrite and carbide also has a predetermined plate thickness of the steel plate surface layer. The ratio is a fine and uniform spherical carbide dispersion structure.
【0042】[0042]
【発明の効果】かくしてこの発明によれば、熱間圧延工
程と短時間の焼鈍工程のみで、鋼板表層部のみに球状炭
化物が微細かつ均一に分散した微細炭化物分散組織を形
成することができるので、焼入れ性に優れるのは勿論、
従来の問題点であった精密打ち抜き加工性ならびに曲げ
加工性にも優れた高炭素熱延鋼板を得ることができる。As described above, according to the present invention, it is possible to form a fine carbide dispersion structure in which spherical carbides are finely and uniformly dispersed only in the surface layer of the steel sheet only by the hot rolling step and the short-time annealing step. , Of course, has excellent hardenability,
It is possible to obtain a high-carbon hot-rolled steel sheet excellent in precision punching workability and bending workability, which have been problems in the past.
【図面の簡単な説明】[Brief description of drawings]
【図1】短時間加熱−焼入れにおける加熱時間と表面硬
さとの関係を示すグラフである。FIG. 1 is a graph showing a relationship between heating time and surface hardness in short-time heating-quenching.
【図2】微細炭化物分散組織層の板厚に占める割合とそ
の鋼板の焼き入れ性および打ち抜き加工性との関係を示
すグラフである。FIG. 2 is a graph showing the relationship between the ratio of the fine carbide dispersed structure layer to the plate thickness and the hardenability and punching workability of the steel plate.
Claims (2)
wt%、 Mn:0.05〜2.0 wt%、 P:0.05wt%以下、 S:0.05wt%以下、 Al:0.01〜0.2 wt%、 N:0.05wt%以下を含有し、残部はFeおよび不可避的不
純物の組成になる高炭素鋼素材を、1000〜1300℃の温度
に加熱後、Ar3点以上、950 ℃以下の温度範囲で圧下
率:50%以上の粗圧延を施し、ついで圧延終了温度が60
0 ℃以上で、かつ600 ℃以上、Ar1点未満の温度範囲で
圧下率:10%以上、30%未満で仕上げ圧延し、その際、
仕上げ圧延機の少なくとも最終スタンドについては摩擦
係数μが0.15以上の条件下で圧延を行い、引き続き 450
〜700 ℃の温度範囲で巻き取り、さらに500 〜740 ℃の
温度範囲で10 sec〜8hr保持する焼鈍を行うことを特徴
とする焼入れ性と加工性に優れた高炭素熱延鋼板の製造
方法。1. C: 0.2-1.3 wt%, Si: 0.1-1.0
wt%, Mn: 0.05 to 2.0 wt%, P: 0.05 wt% or less, S: 0.05 wt% or less, Al: 0.01 to 0.2 wt%, N: 0.05 wt% or less, and the balance Fe and unavoidable impurities After heating the high carbon steel material having the composition of 1000 to 1300 ° C, rough rolling is performed at a rolling reduction of 50% or more in the temperature range of Ar 3 points or more and 950 ° C or less, and then the rolling end temperature is 60.
Finish rolling at a rolling reduction of 10% or more and less than 30% in a temperature range of 0 ° C or more and 600 ° C or more and less than Ar 1 point.
At least the final stand of the finishing mill is rolled under the condition that the friction coefficient μ is 0.15 or more, and then 450
A method for producing a high-carbon hot-rolled steel sheet excellent in hardenability and workability, which comprises winding in a temperature range of to 700 ° C and further annealing at a temperature range of 500 to 740 ° C for 10 seconds to 8 hours.
ちから選ばれる1種または2種以上を含有し、残部はFe
および不可避的不純物の組成になる焼入れ性と加工性に
優れた高炭素熱延鋼板の製造方法。2. The composition according to claim 1, wherein the composition of the material is C: 0.2 to 1.3 wt%, Si: 0.1 to 1.0 wt%, Mn: 0.05 to 2.0 wt%, P: 0.05 wt% or less, S: 0.05 wt%. % Or less, Al: 0.01 to 0.2 wt%, N: 0.05 wt% or less, and Ni: 0.1 to 5.0 wt%, Cr: 0.1 to 5.0 wt% Mo: 0.1 to 1.0 wt%, B: 0.0005 to 0.0100. Contains one or more selected from wt%, with the balance being Fe
And a method for producing a high carbon hot-rolled steel sheet which has an inevitable impurity composition and is excellent in hardenability and workability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7592395A JPH08269541A (en) | 1995-03-31 | 1995-03-31 | Production of hot rolled high carbon steel plate excellent in hardenability and workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7592395A JPH08269541A (en) | 1995-03-31 | 1995-03-31 | Production of hot rolled high carbon steel plate excellent in hardenability and workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08269541A true JPH08269541A (en) | 1996-10-15 |
Family
ID=13590316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7592395A Pending JPH08269541A (en) | 1995-03-31 | 1995-03-31 | Production of hot rolled high carbon steel plate excellent in hardenability and workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08269541A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100479993B1 (en) * | 1999-11-23 | 2005-03-30 | 주식회사 포스코 | A method for producing a high carbon steel strip with high elongation and hardenability |
KR100815748B1 (en) * | 2001-12-12 | 2008-03-20 | 주식회사 포스코 | Manufacturing method of high carbon steel bars for thick materials with excellent hardenability and impact resistance |
JP2011012316A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | Soft high-carbon steel sheet superior in punchability and method for manufacturing the same |
-
1995
- 1995-03-31 JP JP7592395A patent/JPH08269541A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100479993B1 (en) * | 1999-11-23 | 2005-03-30 | 주식회사 포스코 | A method for producing a high carbon steel strip with high elongation and hardenability |
KR100815748B1 (en) * | 2001-12-12 | 2008-03-20 | 주식회사 포스코 | Manufacturing method of high carbon steel bars for thick materials with excellent hardenability and impact resistance |
JP2011012316A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | Soft high-carbon steel sheet superior in punchability and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5050433B2 (en) | Method for producing extremely soft high carbon hot-rolled steel sheet | |
JP5292698B2 (en) | Extremely soft high carbon hot-rolled steel sheet and method for producing the same | |
JP2008069452A (en) | Hot-rolled high-carbon steel sheet and process for production of the same | |
JP2017179596A (en) | High carbon steel sheet and manufacturing method therefor | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JP3879459B2 (en) | Manufacturing method of high hardenability high carbon hot rolled steel sheet | |
JP3879446B2 (en) | Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability | |
JP2005290547A (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
KR20130035276A (en) | Steel sheets and process for manufacturing the same | |
JP3468048B2 (en) | Manufacturing method of high carbon cold rolled steel sheet with excellent formability | |
JP3879447B2 (en) | Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability | |
JP4696853B2 (en) | Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet | |
JP3249700B2 (en) | High carbon hot rolled steel sheet excellent in hardenability and punching workability and method for producing the same | |
JPH09324212A (en) | Production of hot rolled high carbon steel strip excellent in hardenability and cold workability | |
JP3909939B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability | |
JPH08269541A (en) | Production of hot rolled high carbon steel plate excellent in hardenability and workability | |
JPH0987805A (en) | High carbon thin steel sheet and method of manufacturing the same | |
JPH08269619A (en) | High carbon hot rolled steel sheet excellent in hardenability and cold workability | |
JP2003073740A (en) | Method for manufacturing high-carbon cold rolled steel sheet with high hardenability | |
WO2020203445A1 (en) | Medium-carbon steel sheet and method for manufacturing same | |
JP4622609B2 (en) | Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability | |
JPH0213004B2 (en) | ||
KR102494554B1 (en) | Steel for tool and manufacturing method for the same | |
JP2937346B2 (en) | Method for producing high carbon steel for spheroidizing annealing | |
JPH1088237A (en) | Manufacturing method of high carbon cold rolled steel strip |