JPH08264766A - Field effect transistor and method of manufacturing the same - Google Patents
Field effect transistor and method of manufacturing the sameInfo
- Publication number
- JPH08264766A JPH08264766A JP7067520A JP6752095A JPH08264766A JP H08264766 A JPH08264766 A JP H08264766A JP 7067520 A JP7067520 A JP 7067520A JP 6752095 A JP6752095 A JP 6752095A JP H08264766 A JPH08264766 A JP H08264766A
- Authority
- JP
- Japan
- Prior art keywords
- diffusion region
- type
- conductivity
- type diffusion
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/637—Lateral IGFETs having no inversion channels, e.g. buried channel lateral IGFETs, normally-on lateral IGFETs or depletion-mode lateral IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/152—Source regions of DMOS transistors
- H10D62/153—Impurity concentrations or distributions
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】
【目的】 耐圧が従来より高い拡散型のかつデプリーシ
ョン型の電界効果トランジスタを提供する。
【構成】 N- 型シリコン基板11と、該基板11の一部に
形成されたP型拡散領域13と、該P型拡散領域13の一部
表面から該領域より浅い深さで形成されたソースコンタ
クト用のN+ 型拡散領域15と、前記P型拡散領域13の、
前記ソースコンタクト用のN+ 型拡散領域15が形成され
た部分以外の部分の表層部に形成されチャネル部を構成
するN+ 型拡散領域17と、該N+ 型拡散領域17上に形成
されたゲート絶縁膜19と、を具えたデプリーション型の
電界効果トランジスタにおいて、P型拡散領域13および
N+ 型拡散領域17おのおのの横方向の終端が略一致の状
態となるように、これら拡散領域13,17 を具える。
(57) [Abstract] [Purpose] To provide a diffusion-type and depletion-type field-effect transistor having a higher breakdown voltage than ever before. An N − -type silicon substrate 11, a P-type diffusion region 13 formed on a part of the substrate 11, and a source formed at a depth shallower than a partial surface of the P-type diffusion region 13 Of the N + type diffusion region 15 for contact and the P type diffusion region 13;
The N + -type diffusion region 17 constituting the formed in the surface layer portion of the N + -type diffusion region 15 is the portion other than the forming portions for the source contact channel portion, formed on the N + -type diffusion region 17 In the depletion type field effect transistor including the gate insulating film 19, the P-type diffusion region 13 and the N + -type diffusion region 17 are arranged so that the lateral ends thereof are substantially coincident with each other. It is equipped with 17.
Description
【0001】[0001]
【産業上の利用分野】この発明は、VD(Vertical Dif
fusion:縦拡散)MOSFET(Metal Oxide Semicond
uctor Field Effect Transistor)に代表される拡散型の
電界効果トランジスタでかつデプリーション型の電界効
果トランジスタの構造およびその製造方法に関するもの
である。BACKGROUND OF THE INVENTION This invention, VD (V ertical D if
fusion: Vertical diffusion MOSFET (Metal Oxide Semicond)
The present invention relates to a structure of a diffusion type field effect transistor represented by uctor field effect transistor and a depletion type field effect transistor, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】拡散型の電界効果トランジスタが例えば
高耐圧用の素子として注目されている(例えば文献I:
電子技術1989−6第18〜20頁)。このような拡
散型の電界効果トランジスタにも、デプリーション型お
よびエンハンスメント型おのおのがあり(上記文献Iの
第29〜31頁)、これらは用途に応じ使い分けられて
いる。2. Description of the Related Art Diffusion type field effect transistors have been attracting attention as, for example, elements for high breakdown voltage (for example, Document I:
Electronic Technology 1989-6, pages 18-20). Such diffusion type field effect transistors are also of depletion type and enhancement type (page 29 to 31 of the above-mentioned document I), and these are properly used according to the application.
【0003】[0003]
【発明が解決しようとする課題】拡散型のかつデプリー
ション型の電界効果トランジスタの一例として、例えば
図9(A)の断面図および、拡散領域の位置関係に着目
して示した図9(B)の要部平面図にそれぞれ示した構
造を有したものが、考えられる。すなわち、第1導電型
の半導体下地としてのN- 型シリコン基板11と、この
基板11の一部に形成された第2導電型の拡散領域とし
てのP型拡散領域13と、このP型拡散領域13の一部
表面からこの領域13より浅い深さで形成された高濃度
の第1導電型の拡散領域としてのソースコンタクト用の
N+ 型拡散領域15と、P型拡散領域13の、前記ソー
スコンタクト用のN+ 型の拡散領域15が形成された部
分以外の部分の表層部の少なくとも一部(この例では全
部)に形成されチャネル部を構成するN+ 型拡散領域1
7と、該N+ 型拡散領域17上に形成されたゲート絶縁
膜19と、を具えた電界効果トランジスタである。な
お、図9において、21はゲート電極、23は中間絶縁
膜、25は配線この例ではソース電極、27は主にソー
スコンタクト抵抗の低減および耐圧向上のために設けた
P+ 型の拡散領域をそれぞれ示す。As an example of a diffusion-type and depletion-type field effect transistor, for example, the sectional view of FIG. 9A and FIG. 9B showing the positional relationship of diffusion regions are shown. Those having the structures respectively shown in the plan views of the relevant parts of FIG. That is, the N − type silicon substrate 11 as a first conductive type semiconductor base, the P type diffusion region 13 as a second conductive type diffusion region formed in a part of the substrate 11, and the P type diffusion region. The N + type diffusion region 15 for source contact as a high-concentration first conductivity type diffusion region formed at a depth shallower than a partial surface of the region 13 and the source of the P type diffusion region 13. at least a portion of the surface layer portion of the N + -type portions other than the portion where the diffusion regions 15 are formed in the contact N + -type diffusion region 1 which constitutes the channel part is formed (total in this example)
7 and a gate insulating film 19 formed on the N + type diffusion region 17 are field effect transistors. In FIG. 9, 21 is a gate electrode, 23 is an intermediate insulating film, 25 is a wiring in this example, and 27 is a P + -type diffusion region mainly provided for reducing source contact resistance and improving withstand voltage. Shown respectively.
【0004】この図9を用いて説明した電界効果トラン
ジスタでは、チャネル部を構成しているN+ 型拡散領域
17の横方向の張り出しがP型拡散領域13のそれより
少ないと、図10(A)に示した様に、チャネル部の一
部にP層が含まれることとなるため(図10(A)中S
で示した部分参照)、ゲート電極21に所定の正の値以
上の電圧をかけないとソース・ドレイン間に電流が流れ
なくなってしまう(すなわち、エンハンスメント型のV
DMOSFETになってしまう)。そこで、これを防止
するため、図9および図10(B)にそれぞれ示した様
に、チャネル部を構成しているN+ 型拡散領域17の横
方向の張り出しがP型拡散領域13のそれより大きくな
るようにしている。一般には、マスクルールの点から、
チャネル部を構成しているN型拡散領域17の横方向の
終端がP型拡散領域13の横方向の終端より2μm程度
張り出している。In the field-effect transistor described with reference to FIG. 9, when the lateral extension of the N + type diffusion region 17 forming the channel portion is smaller than that of the P type diffusion region 13, FIG. ), The P layer is included in a part of the channel portion (S in FIG. 10A).
(Refer to the portion indicated by (1)), no current flows between the source and the drain unless a voltage higher than a predetermined positive value is applied to the gate electrode 21 (that is, enhancement type V
It becomes a DMOSFET). Therefore, in order to prevent this, as shown in FIGS. 9 and 10B, the lateral extension of the N + type diffusion region 17 forming the channel portion is larger than that of the P type diffusion region 13 as compared with that of the P type diffusion region 13. I am trying to grow. Generally, in terms of mask rules,
The lateral end of the N-type diffusion region 17 forming the channel portion is projected by about 2 μm from the lateral end of the P-type diffusion region 13.
【0005】しかしながら、この出願に係る発明者の研
究によれば、チャネル部を構成しているN+ 型拡散領域
17の横方向の張り出しがP型拡散領域13のそれより
必要以上に大きくなると、拡散型のかつデプリーション
型の電界効果トランジスタの耐圧を向上させる点で好ま
しくないことが分かった(後の図2参照)。その理由
は、N+ 型拡散領域17の横方向の張り出しがP型拡散
領域13のそれより必要以上に大きくなると、図10
(B)のQ部分を拡大した図11からも理解できる様
に、P型拡散領域13の端の部分13xの周囲のかなり
の部分が高濃度のN型拡散領域17となってしまうた
め、ゲート電極21(図10参照)にしきい値以上のマ
イナスの電位、ドレイン(N- 型シリコン基板11)に
プラスの電位をそれぞれかけると、P型拡散領域13の
端の部分13xで電界集中が起こるためと考えられる。However, according to the research conducted by the inventor of the present application, when the lateral extension of the N + type diffusion region 17 forming the channel portion is larger than that of the P type diffusion region 13, it is found that It was found that it is not preferable in terms of improving the breakdown voltage of the diffusion type and depletion type field effect transistor (see FIG. 2 below). The reason is that if the lateral extension of the N + -type diffusion region 17 becomes larger than that of the P-type diffusion region 13 than necessary, FIG.
As can be understood from FIG. 11 in which the Q portion of (B) is enlarged, a considerable portion around the end portion 13x of the P-type diffusion region 13 becomes the high-concentration N-type diffusion region 17, so that the gate is formed. When a negative potential equal to or higher than the threshold value is applied to the electrode 21 (see FIG. 10) and a positive potential is applied to the drain (N − type silicon substrate 11), electric field concentration occurs at the end portion 13x of the P type diffusion region 13. it is conceivable that.
【0006】[0006]
【課題を解決するための手段】そこで、この出願の第一
発明によれば、第1導電型の半導体下地と、該下地の一
部に形成された第2導電型の拡散領域と、該第2導電型
の拡散領域の一部表面から該領域より浅い深さで形成さ
れた高濃度の第1導電型の拡散領域と、前記第2導電型
の拡散領域の、前記高濃度の第1導電型の拡散領域が形
成された部分以外の部分の表層部の少なくとも一部に形
成されチャネル部を構成する第1導電型の拡散領域と、
該第1導電型の拡散領域上に形成されたゲート絶縁膜
と、を具えたデプリーション型の電界効果トランジスタ
において、前記第2導電型の拡散領域およびチャネル部
を構成する前記第1導電型の拡散領域おのおのの横方向
の終端が略一致の状態となるように、これら拡散領域を
具えたことを特徴とする。According to the first invention of this application, therefore, a first conductive type semiconductor base, a second conductive type diffusion region formed in a part of the base, and a second conductive type diffusion region A high-concentration first-conductivity-type diffusion region formed at a depth shallower than a part of the surface of the second-conductivity-type diffusion region, and the high-concentration first conductivity of the second-conductivity-type diffusion region. A diffusion region of a first conductivity type which is formed on at least a part of a surface layer part other than a part where a diffusion region of
A depletion-type field effect transistor comprising: a gate insulating film formed on the diffusion region of the first conductivity type, wherein the diffusion region of the second conductivity type and the diffusion of the first conductivity type forming a channel portion are provided. It is characterized in that these diffusion regions are provided so that the lateral ends of the regions are substantially in agreement with each other.
【0007】また、この出願の第二発明によれば、第一
発明のデプリーション型の電界効果トランジスタを製造
するに当たり、第1導電型の半導体下地上に、該下地の
第2導電型の拡散領域を形成する予定領域に当たる部分
を露出する開口部を有した拡散マスクを、形成する工程
と、該拡散マスクの形成の済んだ第1導電型の半導体下
地に第2導電型の拡散領域を形成するための不純物を導
入する工程と、該不純物を導入する工程を終えた後、前
記拡散マスクに対しその開口部の開口寸法が所定寸法広
がるようにエッチング処理する工程と、該エッチング処
理の済んだ拡散マスクを有した状態の半導体下地に、チ
ャネル部を構成する第1導電型の拡散領域を形成するた
めの不純物を導入する工程とを含むことを特徴とする。According to the second invention of this application, in manufacturing the depletion type field effect transistor of the first invention, the second conductivity type diffusion region of the first conductivity type semiconductor base is formed on the base. And a step of forming a diffusion mask having an opening for exposing a portion corresponding to a region to be formed, and a diffusion region of the second conductivity type is formed on the semiconductor substrate of the first conductivity type on which the diffusion mask is formed. A step of introducing impurities for the purpose of, and a step of etching the diffusion mask after the step of introducing the impurities so that the opening size of the opening of the diffusion mask expands by a predetermined dimension, and the diffusion after the etching process. And a step of introducing an impurity for forming a diffusion region of the first conductivity type forming a channel portion into the semiconductor underlayer having the mask.
【0008】[0008]
【作用】この出願の第一発明の電界効果トランジスタに
よれば、第2導電型の拡散領域およびチャネル部を構成
する第1導電型の拡散領域おのおのの横方向の端が略一
致の関係となるように、これら拡散領域を具えたので、
第2導電型の拡散領域の端部の周囲が高濃度の第1導電
型拡散領域となる程度が従来より軽減される。According to the field effect transistor of the first invention of this application, the lateral ends of the diffusion regions of the second conductivity type and the diffusion regions of the first conductivity type forming the channel portion are substantially in agreement. Since we have these diffusion regions,
The extent to which the periphery of the end portion of the second-conductivity-type diffusion region becomes the high-concentration first-conductivity-type diffusion region is reduced as compared with the related art.
【0009】また、この出願の第二発明の電界効果トラ
ンジスタの製造方法によれば、第2導電型の拡散領域を
形成する際に用いた拡散マスク自体の開口部をエッチン
グによって所定寸法広げた拡散マスクを、チャネル部を
構成する第1導電型の拡散領域形成時の拡散マスクとし
て利用する。このため、チャネル部を構成する第1導電
型の拡散領域を第2導電型の拡散領域に対し所定の大き
さ関係でかつセルフアライン的に形成出来る。According to the method of manufacturing a field effect transistor of the second invention of this application, the diffusion of the diffusion mask itself used when forming the diffusion region of the second conductivity type is enlarged by a predetermined dimension by etching. The mask is used as a diffusion mask when forming the diffusion region of the first conductivity type that forms the channel portion. Therefore, the first conductivity type diffusion region forming the channel portion can be formed in a predetermined size relationship with the second conductivity type diffusion region in a self-aligned manner.
【0010】[0010]
【実施例】以下、図面を参照してこの出願の電界効果ト
ランジスタおよびその製造方法の実施例についてそれぞ
れ説明する。しかしながら、説明に用いる各図はこれら
の発明が理解出来る程度に概略的に示してあるにすぎな
い。また、各図において同様な構成成分については同一
の番号を付して示し、その重複する説明を省略すること
もある。Embodiments of the field effect transistor and the manufacturing method thereof according to the present application will be described below with reference to the drawings. However, the drawings used for the explanation are only shown schematically so that these inventions can be understood. Further, in each drawing, the same constituent components are denoted by the same reference numerals, and the duplicated description thereof may be omitted.
【0011】1.構造の説明 1−1.構造の第1の実施例 図1(A)は、第1の実施例の電界効果トランジスタの
構造説明に供する断面図、図1(B)は、図1(A)中
の拡散領域13、15、17、27の位置関係が分かる
ようこれら拡散領域に着目して示した要部平面図であ
る。1. Description of structure 1-1. First Embodiment of Structure FIG. 1 (A) is a sectional view for explaining the structure of a field effect transistor of the first embodiment, and FIG. 1 (B) is a diffusion region 13, 15 in FIG. 1 (A). , 17, and 27 are plan views of relevant parts focusing on these diffusion regions so that the positional relationship between them can be understood.
【0012】この第1の実施例の電界効果トランジスタ
は、N- 型シリコン基板11と、この基板11の一部に
形成されたP型拡散領域13と、このP型拡散領域13
の一部表面からこの領域13より浅い深さで形成された
ソースコンタクト用のN+ 型拡散領域15と、P型拡散
領域13の、前記ソースコンタクト用のN+ 型の拡散領
域15が形成された部分以外の部分の表層部の少なくと
も一部(この第1の実施例では全部)に形成されチャネ
ル部を構成するN+ 型拡散領域17と、該N+型拡散領
域17上に形成されたゲート絶縁膜19と、を具える。
さらに、この実施例の電界効果トランジスタでは、P型
拡散領域13を、第1のP型拡散領域13aと、該第1
のP型拡散領域13aの表層部に形成されかつ前記チャ
ネル部を構成するN+ 型拡散領域17よりは深い深さの
第2のP型拡散領域13bとで構成してある。そして、
P型拡散領域13の横方向の終端この場合はP型拡散領
域13のうちの第2のP型拡散領域13bの横方向の終
端と、チャネル部を構成するN+ 型拡散領域17の横方
向の終端とが略一致の状態となるように、これら拡散領
域13b,17を基板11に具えている。なお、図1に
おいて、21はゲート電極、23は中間絶縁膜、25は
配線この場合はソース電極、27は主にソースコンタク
ト抵抗の低減および耐圧向上のために設けたP+ 型の拡
散領域をそれぞれ示す。The field effect transistor according to the first embodiment has an N − type silicon substrate 11, a P type diffusion region 13 formed in a part of the substrate 11, and a P type diffusion region 13.
The N + -type diffusion region 15 for source contacts formed at a shallow depth from the region 13 from the portion of the surface of the P-type diffusion region 13, N + -type diffusion region 15 for the source contact is formed The N + -type diffusion region 17 which is formed on at least a part of the surface layer portion other than the above-mentioned portion (all in the first embodiment) and constitutes the channel portion, and the N + -type diffusion region 17 which is formed on the N + -type diffusion region 17 And a gate insulating film 19.
Further, in the field-effect transistor of this embodiment, the P-type diffusion region 13 is formed into the first P-type diffusion region 13a and the first P-type diffusion region 13a.
The second P-type diffusion region 13b is formed in the surface layer portion of the P-type diffusion region 13a and has a deeper depth than the N + type diffusion region 17 forming the channel portion. And
Lateral termination of the P-type diffusion region 13 In this case, the lateral termination of the second P-type diffusion region 13b of the P-type diffusion region 13 and the lateral direction of the N + -type diffusion region 17 forming the channel portion. The diffusion regions 13b and 17 are provided on the substrate 11 so that the ends of the diffusion regions 13b and 17 substantially coincide with each other. In FIG. 1, 21 is a gate electrode, 23 is an intermediate insulating film, 25 is a wiring, in this case, a source electrode, and 27 is a P + -type diffusion region mainly provided for reducing source contact resistance and improving withstand voltage. Shown respectively.
【0013】次に、この第1の実施例の電界効果トラン
ジスタにおいて、第2のP型拡散領域13bの横方向の
終端と、チャネル部を構成するN+ 型拡散領域17の横
方向の終端とを略一致させる範囲をどの程度とするのが
良いかについて説明する。このため、第2のP型拡散領
域13bの横方向の終端に対しチャネル部を構成するN
+ 型拡散領域17の横方向の終端の張り出し寸法を両終
端が一致している状態から4μm程度まで徐々に違えた
(詳細には上記張り出し寸法を、0,0.5,0.8,
1,2,3,4μmとそれぞれ違えた)こと以外は同様
にして、複数の実験用の電界効果トランジスタをそれぞ
れ作製し、それぞれでの耐圧を測定する。なお、実験に
おいては、N- 型のシリコン基板11としてN型不純物
濃度が3.0×1015ions/cm3 以下のもの、こ
こでは2×1014ions/cm3 のものを用いる。ま
た、耐圧は、ゲート電極21(図10参照)にマイナス
の電位、ドレイン(N- 型シリコン基板11)にプラス
の電位をそれぞれかけた状態で印加電圧を可変してゆく
ことで測定する。Next, in the field effect transistor of the first embodiment, the lateral end of the second P-type diffusion region 13b and the lateral end of the N + -type diffusion region 17 forming the channel portion are formed. A description will be given of how much the range of substantially matching should be set. Therefore, N constituting the channel portion is formed with respect to the lateral end of the second P-type diffusion region 13b.
The overhanging dimension of the lateral ends of the + type diffusion region 17 was gradually changed from a state in which both ends are coincident to about 4 μm (specifically, the overhanging dimension is 0, 0.5, 0.8,
A plurality of field effect transistors for experiments are manufactured in the same manner except that they are different from each other (1, 2, 3, 4 μm), and the breakdown voltage of each is measured. In the experiment, as the N − type silicon substrate 11, one having an N type impurity concentration of 3.0 × 10 15 ions / cm 3 or less, here 2 × 10 14 ions / cm 3 is used. The breakdown voltage is measured by varying the applied voltage with the gate electrode 21 (see FIG. 10) being applied with a negative potential and the drain (N − type silicon substrate 11) being applied with a positive potential.
【0014】図2は、上記張り出し寸法を横軸にとり、
上記耐圧を縦軸にとって両者の関係を示した特性図であ
る。この図2から理解出来る様に、第2のP型拡散領域
13bの横方向の終端に対しチャネル部を構成するN+
型拡散領域17の横方向の終端の張り出し寸法を1μm
以内にすると、耐圧を向上し得る効果が顕著になること
が分かる。一方、第2のP型拡散領域13bの横方向の
終端がチャネル部を構成するN+ 型拡散領域17の横方
向の終端より張り出した場合は、図10(A)を用いて
既に説明した様に、素子自体がエンハンスメント型の電
界効果トランジスタとして動作してしまう危険が高い。
これらの点から、この実施例の場合、第2のP型拡散領
域13bの横方向の終端に対しチャネル部を構成するN
+ 型拡散領域17の横方向の終端が一致している状態か
ら1μm張り出した状態までの範囲となるように、第2
のP型拡散領域13bおよびN+ 型拡散領域17それぞ
れを基板11に具えるのが良いことが分かる。FIG. 2 shows the above-mentioned overhanging dimension on the horizontal axis.
FIG. 7 is a characteristic diagram showing the relationship between the two with the breakdown voltage taken on the vertical axis. As can be understood from FIG. 2, N + which constitutes a channel portion with respect to the lateral end of the second P type diffusion region 13b.
The overhanging dimension of the lateral end of the mold diffusion region 17 is 1 μm.
It can be seen that the effect of improving the breakdown voltage becomes remarkable when the content is within the range. On the other hand, in the case where the lateral end of the second P-type diffusion region 13b extends beyond the lateral end of the N + -type diffusion region 17 forming the channel portion, as described above with reference to FIG. In addition, there is a high risk that the device itself operates as an enhancement type field effect transistor.
From these points, in the case of this embodiment, N which constitutes the channel portion with respect to the lateral end of the second P-type diffusion region 13b.
The second region is formed so that the range from the state in which the lateral ends of the + type diffusion regions 17 are aligned to the state in which they are overhanging by 1 μm is
It can be seen that the P-type diffusion region 13b and the N + -type diffusion region 17 are preferably provided in the substrate 11.
【0015】また、P型拡散領域13を第1のP型拡散
領域13aおよび第2のP型拡散領13bの2つの領域
で構成している理由は次のようなことである。拡散深さ
が深いP型領域13を1度に形成しようとすると表層部
の特に終端の濃度プロファイルが不明確になり易くなる
ためチャネル部を構成するN+ 型拡散領域17とP型領
域13との関係を明確にできなくなる。これに対し、こ
の実施例のように、P型拡散領域13を第1および第2
のP型拡散領域13a,13bで構成すると、P型拡散
領域13の表層部での濃度プロファイルは第2のP型拡
散領域13bによって明確にできるので、好ましい。The reason why the P-type diffusion region 13 is composed of two regions, the first P-type diffusion region 13a and the second P-type diffusion region 13b, is as follows. If it is attempted to form the P-type region 13 having a deep diffusion depth at one time, the concentration profile of the surface layer portion, particularly at the terminal end, tends to become unclear, so that the N + -type diffusion region 17 and the P-type region 13 forming the channel portion are formed. It becomes impossible to clarify the relationship. On the other hand, as in this embodiment, the P-type diffusion region 13 is formed in the first and second regions.
The second P-type diffusion regions 13a and 13b are preferable because the concentration profile in the surface layer portion of the P-type diffusion regions 13 can be made clear by the second P-type diffusion regions 13b.
【0016】この第1実施例の電界効果トランジスタで
は、ゲート電極21に電圧をかけないか、正の電圧をか
けるかまたはしきい値以上の負の電圧をかけるかし、か
つ、ドレインとしてのN- シリコン基板11に正の電圧
をかけたとき、図3(A)に示した様に、N- シリコン
基板21、チャネル部を構成するN+ 型拡散領域17、
N+ 型拡散領域15およびソース電極25で構成される
経路を、電流Iが流れる。一方、ゲート電極21にしき
い値以上の負の電圧をかけたとき、図3(B)に示した
様に、ゲート電極21下に存在していたN+ 型拡散領域
は反転してしまいP型領域となってしまうので、ドレイ
ンからソースに電流が流れなくなる。In the field effect transistor of the first embodiment, no voltage is applied to the gate electrode 21, a positive voltage is applied, or a negative voltage higher than the threshold value is applied, and N as a drain is used. - when subjected to a positive voltage to the silicon substrate 11, as shown in FIG. 3 (a), N - silicon substrate 21, N + -type diffusion region 17 constituting the channel unit,
The current I flows through the path formed by the N + type diffusion region 15 and the source electrode 25. On the other hand, when a negative voltage equal to or higher than the threshold value is applied to the gate electrode 21, the N + type diffusion region existing under the gate electrode 21 is inverted as shown in FIG. Since it becomes a region, no current flows from the drain to the source.
【0017】1−2.構造の第2の実施例 上述の第1の実施例ではドレイン領域がN- 型シリコン
基板11の下部部分に存在する例を説明したが、ドレイ
ン領域が、N- 型シリコン基板11のチャネル部より少
し離れた表面部分に存在する電界効果トランジスタに対
してもこの第一発明は適用出来る。図4はその構造例を
示した断面図である。N- 型シリコン基板11の、チャ
ネル部より少し離れた表面部分にドレイン領域31を具
え、該ドレイン領域31上にドレイン電極33を具えた
例を示している。平面図を省略するが、この場合のドレ
イン領域31は、P型拡散領域13を取り囲むように基
板11に設けてある。1-2. Second Embodiment of Structure Although an example in which the drain region exists in the lower portion of the N − type silicon substrate 11 has been described in the above-mentioned first example, the drain region is formed from the channel portion of the N − type silicon substrate 11. The first invention can also be applied to a field effect transistor existing on a surface portion slightly apart. FIG. 4 is a sectional view showing an example of the structure. An example is shown in which the drain region 31 is provided on the surface portion of the N − type silicon substrate 11 slightly apart from the channel portion, and the drain electrode 33 is provided on the drain region 31. Although the plan view is omitted, the drain region 31 in this case is provided on the substrate 11 so as to surround the P-type diffusion region 13.
【0018】1−3.構造の第3の実施例 上述の第1の実施例では、P型拡散領域13の、ソース
コンタクト用のN+ 型拡散領域15が形成された部分以
外の部分の表層部の全部にチャネル部を構成するN+ 型
拡散領域17を具えた例を説明したが、当該表層部の一
部分にチャネル部を構成するN+ 型拡散領域17を具え
た構造に対しても、この第一発明は適用出来る。図5は
その説明に供する平面図および断面図である。特に平面
図は、各拡散領域の位置関係に着目して示した要部の図
としてある。この第3の実施例では、P型拡散領域1
3、ソースコンタクト用のN+ 型拡散領域15およびP
+ 型拡散領域27、ゲート絶縁膜19およびゲート電極
21で構成される部分それぞれを、N- 型シリコン基板
11に、ロの字状に設けてある(特に平面図参照)。そ
して、チャネル部を構成するN+ 型の拡散領域17は内
側に位置している第2のP型拡散領域13b上にのみ設
けてある(特に断面図参照)。1-3. Third Embodiment of Structure In the above-described first embodiment, a channel portion is formed in the entire surface layer portion of the P-type diffusion region 13 other than the portion where the N + -type diffusion region 15 for the source contact is formed. Although the example including the N + type diffusion region 17 constituting the above has been described, the first invention can be applied to the structure including the N + type diffusion region 17 constituting the channel portion in a part of the surface layer portion. . FIG. 5 is a plan view and a sectional view used for the explanation. In particular, the plan view is a diagram of the main part focusing on the positional relationship of the diffusion regions. In the third embodiment, the P type diffusion region 1
3, N + type diffusion region 15 and P for source contact
Each of the + diffusion region 27, the gate insulating film 19 and the gate electrode 21 is provided on the N − type silicon substrate 11 in a square shape (see especially the plan view). The N + type diffusion region 17 forming the channel portion is provided only on the second P type diffusion region 13b located inside (see particularly the cross-sectional view).
【0019】2.製造方法の説明 次に、第二発明としての電界効果トランジスタの製造方
法の実施例について、図6〜図8を参照して説明する。
ここで、図6〜図8は、実施例の製造工程中の主な工程
での試料の様子を図1と同様な位置での断面図によって
示した工程図である。2. Description of Manufacturing Method Next, an example of a method of manufacturing the field effect transistor according to the second invention will be described with reference to FIGS.
Here, FIG. 6 to FIG. 8 are process diagrams showing the state of the sample in the main steps of the manufacturing process of the embodiment by a cross-sectional view at the same position as in FIG.
【0020】先ず、第1導電型の半導体下地として、N
- 型のシリコン基板11であって例えばN型の不純物濃
度が3.0×1015ions/cm3 以下の基板、例え
ばここでは2×1014ions/cm3 の基板を用意す
る。次に、この基板11上に、該基板11のP型拡散領
域13を形成する予定領域に当たる部分を露出する開口
部41aを有した拡散マスク41を形成する(図6
(A))。この拡散マスク41の形成をこの実施例では
次の手順で行なう。先ず、基板11の表面に例えば熱酸
化法により厚さが例えば少なくとも300nmの酸化膜
(シリコン酸化膜)を成長させる。次に、この酸化膜
に、基板11の、P型拡散領域13を形成する予定領域
に当たる部分を露出する開口部41aを公知のフォトリ
ソグラフィ技術およびエッチング技術により形成する。
これにより、上記拡散マスク41を得る。First, as a first conductive type semiconductor base, N
A − type silicon substrate 11 having an N type impurity concentration of 3.0 × 10 15 ions / cm 3 or less, for example, a substrate having 2 × 10 14 ions / cm 3 is prepared. Next, on this substrate 11, a diffusion mask 41 having an opening 41a exposing a portion corresponding to a region where the P-type diffusion region 13 of the substrate 11 is to be formed is formed (FIG. 6).
(A)). The diffusion mask 41 is formed by the following procedure in this embodiment. First, an oxide film (silicon oxide film) having a thickness of, for example, at least 300 nm is grown on the surface of the substrate 11 by, for example, a thermal oxidation method. Next, in this oxide film, an opening 41a exposing a portion of the substrate 11 corresponding to a region where the P-type diffusion region 13 is to be formed is formed by a known photolithography technique and etching technique.
As a result, the diffusion mask 41 is obtained.
【0021】拡散マスク41の形成の済んだ基板11に
P型拡散領域13を形成するための不純物を導入する。
これをこの実施例では次の手順で行なう。先ず、基板1
1表面に拡散制御用膜として膜厚が10〜100nm程
度の酸化膜(図示せず)を形成する。次に、拡散マスク
41の開口より狭い開口を有した例えばレジストパタン
43をマスクとして、基板11に例えば5.0×1012
〜2.0×1014ions/cm2 のドーズ量で例えば
ボロンをインプラする。次に、レジストパターンを除去
した後、この試料に対しアニールを例えば900〜12
00℃の温度範囲の好適な温度でかつ例えば30〜24
0分の範囲の好適な時間実施して、第1のP型拡散領域
13aを形成する(図6(B))。次に、この試料の表
面に拡散制御用膜として膜厚が10〜100nm程度の
酸化膜(図示せず)を再び形成する。次に、拡散マスク
41をマスクとして、この試料に例えば1.0×1013
〜2.0×1014ions/cm2 のドーズ量で例えば
ボロンをインプラする。次に、この試料に対しアニール
を例えば900〜1200℃の温度範囲の好適な温度で
かつ例えば30〜240分の範囲の好適な時間実施し
て、第2のP型拡散領域13bを形成する。これによ
り、第1のP型拡散領域13aと第2のP型拡散領域1
3bとで構成された、P型拡散領域13が得られる(図
6(C))。P型拡散領域13の形成を上述のように第
1および第2のP型拡散領域13a、13bに分けて行
なうと、表層部においても濃度プロファイルが鮮明なP
型拡散領域13が得られ易い。Impurities for forming the P type diffusion region 13 are introduced into the substrate 11 on which the diffusion mask 41 has been formed.
This is done in the following procedure in this embodiment. First, substrate 1
An oxide film (not shown) having a film thickness of about 10 to 100 nm is formed as a diffusion control film on one surface. Next, using, for example, a resist pattern 43 having an opening narrower than the opening of the diffusion mask 41 as a mask, the substrate 11 is exposed to, for example, 5.0 × 10 12.
Boron, for example, is implanted at a dose of about 2.0 × 10 14 ions / cm 2 . Next, after removing the resist pattern, the sample is annealed, for example, 900 to 12
At a suitable temperature in the temperature range of 00 ° C. and for example 30 to 24
The first P-type diffusion region 13a is formed by performing a suitable time within the range of 0 minutes (FIG. 6 (B)). Next, an oxide film (not shown) having a film thickness of about 10 to 100 nm is formed again as a diffusion control film on the surface of this sample. Then, using the diffusion mask 41 as a mask, this sample is subjected to, for example, 1.0 × 10 13
Boron, for example, is implanted at a dose of about 2.0 × 10 14 ions / cm 2 . Next, this sample is annealed at a suitable temperature in the temperature range of 900 to 1200 ° C. for a suitable time in the range of 30 to 240 minutes to form the second P-type diffusion region 13b. As a result, the first P-type diffusion region 13a and the second P-type diffusion region 1 are formed.
A P-type diffusion region 13 composed of 3b and 3b is obtained (FIG. 6C). When the P-type diffusion region 13 is formed separately for the first and second P-type diffusion regions 13a and 13b as described above, P having a clear concentration profile also in the surface layer portion.
The mold diffusion region 13 is easily obtained.
【0022】P型拡散領域13の形成が済んだ後に、拡
散マスク41に対しその開口部41aの開口寸法が所定
寸法広がるようにエッチング処理する。このためこの実
施例では、拡散マスク41の開口部41aが各方向にお
いて所定寸法広がる様に、拡散マスク41をフッ酸を用
いたエッチング液によりエッチングする。この所定寸法
とは、P型拡散領域13の表層部にこれから形成するチ
ャネル部用のN+ 型の拡散領域の横方向の終端が、第2
のP型拡散領域13bの横方向の終端に対し1μm以内
で張り出すことができる拡散マスクとなり得る寸法であ
り、例えば1.4μm程度であることができる。濃度お
よび温度の管理されたフッ酸系のエッチング液では、シ
リコン酸化膜を50nm/分の精度で再現性良くエッチ
ングすることが可能であるので、拡散マスク41の開口
部41aを上述のように所定寸法制御良く広げることは
可能である。もちろん、エッチング手段は他の好適な方
法であっても良い。上記エッチング処理の済んだ拡散マ
スク41を、以下図において41xとして示す。After the P-type diffusion region 13 is formed, the diffusion mask 41 is subjected to an etching treatment so that the opening dimension of the opening 41a of the diffusion mask 41 expands by a predetermined dimension. Therefore, in this embodiment, the diffusion mask 41 is etched with an etching solution using hydrofluoric acid so that the opening 41a of the diffusion mask 41 expands by a predetermined dimension in each direction. This predetermined dimension means that the lateral end of the N + type diffusion region for the channel portion to be formed in the surface layer portion of the P type diffusion region 13 is the second
This is a dimension that can be a diffusion mask that can be projected within 1 μm with respect to the lateral end of the P-type diffusion region 13b, and can be, for example, about 1.4 μm. Since it is possible to etch the silicon oxide film with an accuracy of 50 nm / min with good reproducibility by using a hydrofluoric acid-based etching solution in which the concentration and temperature are controlled, the opening 41a of the diffusion mask 41 is formed in a predetermined manner as described above. It is possible to spread with good dimensional control. Of course, the etching means may be any other suitable method. The diffusion mask 41 that has been subjected to the etching treatment is shown as 41x in the following figures.
【0023】エッチング処理の済んだ拡散マスク41x
を有した状態の試料に、今度は、チャネル部を構成する
第1導電型の拡散領域を形成する。これをこの実施例で
は次の手順により行なう。先ず、エッチング処理の済ん
だ拡散マスク41xを有した試料の表面に拡散制御用膜
として膜厚が10〜100nm程度の酸化膜(図示せ
ず)を再び形成する。次に、エッチング処理の済んだ拡
散マスク41xをマスクとして、この試料に例えば5.
0×1012〜2.0×1014ions/cm2 のドーズ
量で例えばリンをインプラする。次に、この試料に対し
アニールを例えば900〜1200℃の温度範囲の好適
な温度でかつ例えば30〜240分の範囲の好適な時間
実施して、チャネル部を構成する第1導電型の拡散領域
としてのN+ 型拡散領域17を形成する(図7
(A))。エッチング処理の済んだ拡散マスク41x
は、拡散マスク41の開口部41aを所定寸法広げたも
ので(セルフアライン的に形成されたもの)であるの
で、N+ 型拡散領域17は、その横方向の終端が第2の
P型拡散領域13bの横方向の終端に対し略一致の位置
関係となって形成される。このため、P型拡散領域13
の端部の周囲に高濃度のN型部分が存在する程度を従来
より少なく出来るから、電界集中を従来より軽減でき
る。この結果、耐圧が改善された電界効果トランジスタ
を再現良く製造出来る。Diffusion mask 41x that has been etched
Then, the first conductivity type diffusion region forming the channel portion is formed in the sample in the state of having. In this embodiment, this is performed according to the following procedure. First, an oxide film (not shown) having a thickness of about 10 to 100 nm is formed again as a diffusion control film on the surface of the sample having the diffusion mask 41x that has been subjected to the etching process. Next, using the diffusion mask 41x that has been subjected to the etching process as a mask, this sample is subjected to, for example,
Phosphorus, for example, is implanted at a dose amount of 0 × 10 12 to 2.0 × 10 14 ions / cm 2 . Next, the sample is annealed at a suitable temperature in the temperature range of, for example, 900 to 1200 ° C. and for a suitable time in the range of, for example, 30 to 240 minutes to form a diffusion region of the first conductivity type forming the channel portion. Forming an N + type diffusion region 17 as shown in FIG.
(A)). Diffusion mask 41x that has been etched
Is the one in which the opening 41a of the diffusion mask 41 is widened by a predetermined dimension (formed in a self-aligned manner), so that the lateral end of the N + type diffusion region 17 is the second P type diffusion region. The region 13b is formed so as to have a substantially coincident positional relationship with the lateral end of the region 13b. Therefore, the P-type diffusion region 13
Since it is possible to reduce the degree of the presence of the high-concentration N-type portion around the end portion of 1) as compared with the conventional case, the electric field concentration can be reduced as compared with the conventional case. As a result, a field effect transistor having an improved breakdown voltage can be manufactured with good reproducibility.
【0024】その後、公知のフォトリソグラフィ技術お
よびイオン注入技術により、ソースコンタクト用のN+
型拡散領域15およびP+ 拡散領域27を、形成する
(図7(B))。次に、公知の成膜技術および微細加工
技術により、ゲート絶縁膜19およびゲート電極21を
それぞれ形成する(図8(A))。次に、公知の成膜技
術および微細加工技術により中間絶縁膜23とコンタク
トホール23aとを形成し、その後、配線(ソース電
極)25を形成する(図8(B))。ゲート電極21は
例えばポリシリコンにより、また、配線は例えばアルミ
ニウムにより形成出来る。After that, N + for the source contact is formed by a known photolithography technique and ion implantation technique.
The type diffusion region 15 and the P + diffusion region 27 are formed (FIG. 7B). Next, the gate insulating film 19 and the gate electrode 21 are respectively formed by a known film forming technique and fine processing technique (FIG. 8A). Next, the intermediate insulating film 23 and the contact hole 23a are formed by a known film forming technique and fine processing technique, and then the wiring (source electrode) 25 is formed (FIG. 8B). The gate electrode 21 can be formed of, for example, polysilicon, and the wiring can be formed of, for example, aluminum.
【0025】上述においては、この出願の電界効果トラ
ンジスタの構造および製造方法の実施例についてそれぞ
れ説明したが、これら発明は上述の実施例に限られな
い。Although the embodiments of the structure and manufacturing method of the field effect transistor of the present application have been described above, the present invention is not limited to the above embodiments.
【0026】例えば、上述の各実施例では、Nチャネル
型の電界効果トランジスタの例を示したが、第一および
第二発明いずれもPチャネル型の電界効果トランジスタ
に対し適用できる。その場合は、実施例の構成において
導電型をすべて反対導電型とすれば良い。For example, in each of the above-mentioned embodiments, the example of the N-channel type field effect transistor is shown, but both the first and second inventions can be applied to the P-channel type field effect transistor. In that case, in the configuration of the embodiment, all conductivity types may be opposite conductivity types.
【0027】また、上述の製造方法の実施例では、拡散
マスク41の開口部41aを全方向において所定寸法広
げる例を示した。これは、第2のP型拡散領域13b
の、ソースコンタクト用の高濃度拡散領域25、27を
形成した領域以外の表層部全部にチャネル部を形成する
例を考えたからであった。しかし、第2のP型拡散領域
13bの表層部の一部にチャネル部を形成する場合(例
えば図5に示した例のような場合)は、必要な方向の寸
法のみを広げるようにするのみで良い。また、その際
は、チャネル部形成のインプラにおいて第2のP型拡散
領域13bの一部をマスクするのが良い。Further, in the above-described embodiment of the manufacturing method, an example is shown in which the opening 41a of the diffusion mask 41 is widened by a predetermined dimension in all directions. This is the second P-type diffusion region 13b.
This is because the example in which the channel portion is formed in the entire surface layer portion other than the regions where the high-concentration diffusion regions 25 and 27 for the source contact are formed is considered. However, when forming a channel part in a part of the surface layer part of the second P-type diffusion region 13b (for example, in the case of the example shown in FIG. 5), it is only necessary to widen the dimension in the necessary direction. Good. In that case, it is preferable to mask a part of the second P-type diffusion region 13b in the implanter for forming the channel portion.
【0028】また、上述の製造方法の実施例ではインプ
ラの際に拡散制御膜を用いる例を示しているがインプラ
の際のドーズ量やアニール条件を工夫することにより拡
散制御膜を用いないで各拡散領域を形成することも可能
である。Further, in the above-mentioned embodiment of the manufacturing method, an example in which the diffusion control film is used in the implantation is shown, but by adjusting the dose amount and the annealing condition in the implantation, each diffusion control film is not used. It is also possible to form a diffusion region.
【0029】また、上述の製造方法の実施例では拡散マ
スク41の形成材料として成長させた酸化膜を用いる例
を示した。しかし、堆積させた酸化膜、成長させた窒化
膜、堆積させた窒化膜、成長させたシリコンオキシナイ
トライド(酸窒化膜)、または、堆積させたシリコンオ
キシナイトライドを拡散マスク形成材料として用いても
良い。Further, in the above-mentioned embodiment of the manufacturing method, the example in which the grown oxide film is used as the material for forming the diffusion mask 41 is shown. However, the deposited oxide film, the grown nitride film, the deposited nitride film, the grown silicon oxynitride (oxynitride film), or the deposited silicon oxynitride is used as a diffusion mask forming material. Is also good.
【0030】[0030]
【発明の効果】上述した説明から明らかなように、この
出願の第一発明の電界効果トランジスタによれば、第2
導電型の拡散領域およびチャネル部を構成する第1導電
型の拡散領域おのおのの横方向の端が略一致の関係とな
るように、これら拡散領域を具えたので、第2導電型の
拡散領域の端部の周囲が高濃度の第1導電型拡散領域と
なる程度が従来より軽減されるから、第2導電型の拡散
領域の端部での電界集中が従来より緩和される。これが
ため、従来より耐圧の優れた拡散型のかつデプリーショ
ン型の電界効果トランジスタを提供出来る。As is apparent from the above description, according to the field effect transistor of the first invention of this application,
Since these diffusion regions are provided so that the lateral ends of the diffusion regions of the conductivity type and the diffusion regions of the first conductivity type that form the channel portion are in substantially the same relationship, the diffusion regions of the second conductivity type are Since the extent to which the periphery of the end portion becomes the high-concentration first conductivity type diffusion region is reduced as compared with the related art, the electric field concentration at the end portion of the second conductivity type diffusion region is relaxed as compared with the related art. Therefore, it is possible to provide a diffusion-type and depletion-type field effect transistor having a higher breakdown voltage than before.
【0031】また、この出願の第二発明の電界効果トラ
ンジスタの製造方法によれば、第2導電型の拡散領域を
形成する際に用いた拡散マスク自体の開口部をエッチン
グによって所定寸法広げた拡散マスクを、チャネル部を
構成する第1導電型の拡散領域形成時の拡散マスクとし
て利用する。従って、チャネル部を構成する第1導電型
の拡散領域を第2導電型の拡散領域に対し所定の大きさ
関係でかつセルフアライン的に形成出来るので、第2導
電型の拡散領域およびチャネル部を構成する第1導電型
の拡散領域おのおのの横方向の端が略一致の関係となっ
た電界効果トランジスタを簡易に提供出来る。これがた
め、従来より耐圧の優れた拡散型のかつデプリーション
型の電界効果トランジスタを再現性良くかつ安価に製造
し得る方法を提供出来る。Further, according to the method of manufacturing a field effect transistor of the second invention of this application, the diffusion mask itself used for forming the diffusion region of the second conductivity type is diffused by a predetermined dimension by etching. The mask is used as a diffusion mask when forming the diffusion region of the first conductivity type that forms the channel portion. Therefore, the diffusion region of the first conductivity type forming the channel portion can be formed in a predetermined size relationship with the diffusion region of the second conductivity type in a self-aligned manner, so that the diffusion region of the second conductivity type and the channel portion can be formed. It is possible to easily provide the field effect transistor in which the lateral ends of the respective diffusion regions of the first conductivity type that are formed are in substantially the same relationship. Therefore, it is possible to provide a method capable of manufacturing a diffusion-type and depletion-type field-effect transistor, which has a higher withstand voltage than before, with good reproducibility and at low cost.
【図1】第一発明の第1の実施例の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the first invention.
【図2】第一発明の説明図であり、チャネル部の張り出
し寸法と耐圧との関係を示した図である。FIG. 2 is an explanatory diagram of the first invention, and is a diagram showing the relationship between the overhanging dimension of the channel portion and the breakdown voltage.
【図3】第一発明の第1の実施例のFETの動作説明図
である。FIG. 3 is an operation explanatory diagram of the FET according to the first embodiment of the first invention.
【図4】第一発明の第2の実施例の説明図である。FIG. 4 is an explanatory diagram of a second embodiment of the first invention.
【図5】第一発明の第3の実施例の説明図である。FIG. 5 is an explanatory diagram of a third embodiment of the first invention.
【図6】(A)〜(C)は、製造方法の実施例の説明に
供する工程図である。6 (A) to 6 (C) are process drawings for explaining an example of a manufacturing method.
【図7】(A)および(B)は、製造方法の実施例の説
明に供する図6に続く工程図である。7A and 7B are process diagrams following FIG. 6 for explaining an example of a manufacturing method.
【図8】(A)および(B)は、製造方法の実施例の説
明に供する図7に続く工程図である。8A and 8B are process drawings following FIG. 7 for explaining an example of a manufacturing method.
【図9】課題の説明図(その1)である。FIG. 9 is an explanatory diagram (1) of the problem.
【図10】課題の説明図(その2)である。FIG. 10 is an explanatory diagram (2) of the problem.
【図11】課題の説明図(その3)である。FIG. 11 is an explanatory diagram (3) of the problem.
11:第1導電型の半導体下地(N- 型シリコン基板) 13:第2導電型の拡散領域(P型拡散領域) 13a:第1の第2導電型の拡散領域 13b:第2の第2導電型の拡散領域 15:高濃度の第1導電型の拡散領域(ソースコンタク
ト用のN+ 型拡散領域) 17:チャネル部を構成する第1導電型の拡散領域(N
+ 型拡散領域) 19:ゲート絶縁膜 21:ゲート電極 23:中間絶縁膜 25:配線(ソース電極) 27:高濃度の第2導電型の拡散領域(ソースコンタク
ト用のP+ 型拡散領域) 41:拡散マスク 41x:エッチング処理の済んだ拡散マスク11: First conductivity type semiconductor base (N − type silicon substrate) 13: Second conductivity type diffusion region (P type diffusion region) 13a: First second conductivity type diffusion region 13b: Second second Conductive type diffusion region 15: High-concentration first conductive type diffusion region (N + type diffusion region for source contact) 17: First conductive type diffusion region (N
+ Type diffusion region) 19: gate insulating film 21: gate electrode 23: intermediate insulating film 25: wiring (source electrode) 27: high-concentration second conductivity type diffusion region (P + type diffusion region for source contact) 41 : Diffusion mask 41x: Diffusion mask that has been etched
Claims (5)
部に形成された第2導電型の拡散領域と、該第2導電型
の拡散領域の一部表面から該領域より浅い深さで形成さ
れた高濃度の第1導電型の拡散領域と、前記第2導電型
の拡散領域の、前記高濃度の第1導電型の拡散領域が形
成された部分以外の部分の表層部の少なくとも一部に形
成されチャネル部を構成する第1導電型の拡散領域と、
該第1導電型の拡散領域上に形成されたゲート絶縁膜
と、を具えたデプリーション型の電界効果トランジスタ
において、 前記第2導電型の拡散領域およびチャネル部を構成する
前記第1導電型の拡散領域おのおのの横方向の終端が略
一致の状態となるように、これら拡散領域を具えたこと
を特徴とする電界効果トランジスタ。1. A semiconductor substrate of the first conductivity type, a diffusion region of the second conductivity type formed in a part of the substrate, and a partial surface of the diffusion region of the second conductivity type and a depth shallower than the region. Of the high-concentration first-conductivity-type diffusion region and the second-conductivity-type diffusion region formed on the surface layer portion other than the portion where the high-concentration first-conductivity-type diffusion region is formed. A first-conductivity-type diffusion region which is formed in at least a part and constitutes a channel portion;
A depletion-type field effect transistor, comprising: a gate insulating film formed on the first-conductivity-type diffusion region, wherein the first-conductivity-type diffusion that constitutes the second-conductivity-type diffusion region and the channel portion. A field effect transistor characterized in that these diffusion regions are provided so that the lateral ends of the regions are substantially aligned with each other.
において、 前記略一致の範囲を、前記第2導電型の拡散領域の横方
向の終端に対しチャネル部を構成する前記第1導電型の
拡散領域の終端が一致している状態から1μm張り出し
た状態までの範囲としたことを特徴とする電界効果トラ
ンジスタ。2. The field effect transistor according to claim 1, wherein the substantially coincident range is a diffusion region of the first conductivity type that forms a channel portion with respect to a lateral end of the diffusion region of the second conductivity type. A field-effect transistor, characterized in that the range from the state where the ends of the regions are aligned to the state where the region ends are extended by 1 μm.
ンジスタにおいて、 前記第2導電型の拡散領域を、第1の第2導電型の拡散
領域と、該第1の第2導電型の拡散領域の表層部に形成
されかつ前記チャネル部を構成する第1導電型の拡散領
域よりは深い深さの第2の第2導電型の拡散領域とで構
成してあることを特徴とする電界効果トランジスタ。3. The field effect transistor according to claim 1, wherein the diffusion region of the second conductivity type includes a diffusion region of a first second conductivity type and a diffusion region of the first second conductivity type. The electric field effect is characterized in that the electric field effect is formed by a second conductive type diffusion region formed in a surface layer part of the region and having a depth deeper than the first conductive type diffusion region forming the channel part. Transistor.
部に形成された第2導電型の拡散領域と、該第2導電型
の拡散領域の一部表面から該領域より浅い深さで形成さ
れた高濃度の第1導電型の拡散領域と、前記第2導電型
の拡散領域の、前記高濃度の第1導電型の拡散領域が形
成された部分以外の部分の表層部の少なくとも一部に形
成されチャネル部を構成する第1導電型の拡散領域と、
該第1導電型の拡散領域上に形成されたゲート絶縁膜
と、を具えたデプリーション型の電界効果トランジスタ
を製造するに当たり、 第1導電型の半導体下地上に、該下地の第2導電型の拡
散領域を形成する予定領域に当たる部分を露出する開口
部を有した拡散マスクを、形成する工程と、 該拡散マスクの形成の済んだ第1導電型の半導体下地に
第2導電型の拡散領域を形成するための不純物を導入す
る工程と、 該不純物を導入する工程を終えた後、前記拡散マスクに
対しその開口部の開口寸法が所定寸法広がるようにエッ
チング処理する工程と、 該エッチング処理の済んだ拡散マスクを有した状態の半
導体下地に、チャネル部を構成する第1導電型の拡散領
域を形成するための不純物を導入する工程とを含むこと
を特徴とする電界効果トランジスタの製造方法。4. A first conductive type semiconductor base, a second conductive type diffusion region formed in a part of the base, and a partial surface of the second conductive type diffusion region having a depth shallower than the region. Of the high-concentration first-conductivity-type diffusion region and the second-conductivity-type diffusion region formed on the surface layer portion other than the portion where the high-concentration first-conductivity-type diffusion region is formed. A first-conductivity-type diffusion region which is formed in at least a part and constitutes a channel portion;
In manufacturing a depletion-type field effect transistor including a gate insulating film formed on the first-conductivity-type diffusion region, a first-conductivity-type semiconductor base is formed on the first-conductivity-type semiconductor base. A step of forming a diffusion mask having an opening that exposes a portion corresponding to a region where a diffusion region is to be formed, and a second conductivity type diffusion region on the first conductivity type semiconductor base on which the diffusion mask has been formed. A step of introducing impurities for forming, a step of performing an etching process so that the opening size of the opening of the diffusion mask is expanded by a predetermined size after finishing the step of introducing the impurities, and the etching process is completed. And a step of introducing an impurity for forming a first-conductivity-type diffusion region forming a channel portion into a semiconductor underlayer having a diffusion mask. Method of manufacturing a register.
の製造方法において、 前記第2導電型の拡散領域を形成するための不純物の導
入は、該不純物を前記下地の深い深さにまで導入する第
1の工程と前記下地の表層部に導入する第2の工程とを
この順に実施することにより行うことを特徴とする電界
効果トランジスタの製造方法。5. The method of manufacturing a field effect transistor according to claim 4, wherein the impurities for forming the diffusion region of the second conductivity type are introduced to a deep depth of the base. A method of manufacturing a field effect transistor, comprising: performing a first step and a second step of introducing into the surface layer portion of the base in this order.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06752095A JP3521246B2 (en) | 1995-03-27 | 1995-03-27 | Field effect transistor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06752095A JP3521246B2 (en) | 1995-03-27 | 1995-03-27 | Field effect transistor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264766A true JPH08264766A (en) | 1996-10-11 |
JP3521246B2 JP3521246B2 (en) | 2004-04-19 |
Family
ID=13347343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06752095A Expired - Fee Related JP3521246B2 (en) | 1995-03-27 | 1995-03-27 | Field effect transistor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3521246B2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002029900A3 (en) * | 2000-10-03 | 2002-10-31 | Cree Inc | Silicon carbide power mosfets having a shorting channel and methods of fabrication them |
US6610366B2 (en) | 2000-10-03 | 2003-08-26 | Cree, Inc. | Method of N2O annealing an oxide layer on a silicon carbide layer |
US6767843B2 (en) | 2000-10-03 | 2004-07-27 | Cree, Inc. | Method of N2O growth of an oxide layer on a silicon carbide layer |
US6972436B2 (en) | 1998-08-28 | 2005-12-06 | Cree, Inc. | High voltage, high temperature capacitor and interconnection structures |
US6979863B2 (en) | 2003-04-24 | 2005-12-27 | Cree, Inc. | Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same |
US7022378B2 (en) | 2002-08-30 | 2006-04-04 | Cree, Inc. | Nitrogen passivation of interface states in SiO2/SiC structures |
US7067176B2 (en) | 2000-10-03 | 2006-06-27 | Cree, Inc. | Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment |
US7074643B2 (en) | 2003-04-24 | 2006-07-11 | Cree, Inc. | Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same |
US7118970B2 (en) | 2004-06-22 | 2006-10-10 | Cree, Inc. | Methods of fabricating silicon carbide devices with hybrid well regions |
US7221010B2 (en) | 2002-12-20 | 2007-05-22 | Cree, Inc. | Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors |
US7414268B2 (en) | 2005-05-18 | 2008-08-19 | Cree, Inc. | High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities |
US7528040B2 (en) | 2005-05-24 | 2009-05-05 | Cree, Inc. | Methods of fabricating silicon carbide devices having smooth channels |
US7615801B2 (en) | 2005-05-18 | 2009-11-10 | Cree, Inc. | High voltage silicon carbide devices having bi-directional blocking capabilities |
US7727904B2 (en) | 2005-09-16 | 2010-06-01 | Cree, Inc. | Methods of forming SiC MOSFETs with high inversion layer mobility |
WO2011048804A1 (en) * | 2009-10-22 | 2011-04-28 | パナソニック株式会社 | Semiconductor device and process for production thereof |
WO2011089861A1 (en) * | 2010-01-19 | 2011-07-28 | パナソニック株式会社 | Semiconductor device and method for manufacturing same |
US8835987B2 (en) | 2007-02-27 | 2014-09-16 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
US9029945B2 (en) | 2011-05-06 | 2015-05-12 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9117739B2 (en) | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
US9142662B2 (en) | 2011-05-06 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9231122B2 (en) | 2011-09-11 | 2016-01-05 | Cree, Inc. | Schottky diode |
US9373617B2 (en) | 2011-09-11 | 2016-06-21 | Cree, Inc. | High current, low switching loss SiC power module |
US9548374B2 (en) | 2006-08-17 | 2017-01-17 | Cree, Inc. | High power insulated gate bipolar transistors |
US9640652B2 (en) | 2009-03-27 | 2017-05-02 | Cree, Inc. | Semiconductor devices including epitaxial layers and related methods |
US9640617B2 (en) | 2011-09-11 | 2017-05-02 | Cree, Inc. | High performance power module |
US9673283B2 (en) | 2011-05-06 | 2017-06-06 | Cree, Inc. | Power module for supporting high current densities |
US9984894B2 (en) | 2011-08-03 | 2018-05-29 | Cree, Inc. | Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions |
-
1995
- 1995-03-27 JP JP06752095A patent/JP3521246B2/en not_active Expired - Fee Related
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6972436B2 (en) | 1998-08-28 | 2005-12-06 | Cree, Inc. | High voltage, high temperature capacitor and interconnection structures |
US6998322B2 (en) | 1998-08-28 | 2006-02-14 | Cree, Inc. | Methods of fabricating high voltage, high temperature capacitor and interconnection structures |
US7067176B2 (en) | 2000-10-03 | 2006-06-27 | Cree, Inc. | Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment |
US6767843B2 (en) | 2000-10-03 | 2004-07-27 | Cree, Inc. | Method of N2O growth of an oxide layer on a silicon carbide layer |
US6956238B2 (en) | 2000-10-03 | 2005-10-18 | Cree, Inc. | Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel |
JP2004519842A (en) * | 2000-10-03 | 2004-07-02 | クリー インコーポレイテッド | Silicon carbide power metal oxide semiconductor field effect transistor with short channel and method for manufacturing silicon carbide metal oxide semiconductor field effect transistor with short channel |
US6610366B2 (en) | 2000-10-03 | 2003-08-26 | Cree, Inc. | Method of N2O annealing an oxide layer on a silicon carbide layer |
JP2011254119A (en) * | 2000-10-03 | 2011-12-15 | Cree Inc | Silicon carbide power metal-oxide semiconductor field effect transistor having shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistor having shorting channel |
WO2002029900A3 (en) * | 2000-10-03 | 2002-10-31 | Cree Inc | Silicon carbide power mosfets having a shorting channel and methods of fabrication them |
CN1319176C (en) * | 2000-10-03 | 2007-05-30 | 克里公司 | Silicon carbide power MOSFETS having shorting channel and methods of fabrication them |
US7022378B2 (en) | 2002-08-30 | 2006-04-04 | Cree, Inc. | Nitrogen passivation of interface states in SiO2/SiC structures |
US7221010B2 (en) | 2002-12-20 | 2007-05-22 | Cree, Inc. | Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors |
US6979863B2 (en) | 2003-04-24 | 2005-12-27 | Cree, Inc. | Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same |
US7074643B2 (en) | 2003-04-24 | 2006-07-11 | Cree, Inc. | Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same |
US7381992B2 (en) | 2003-04-24 | 2008-06-03 | Cree, Inc. | Silicon carbide power devices with self-aligned source and well regions |
US7118970B2 (en) | 2004-06-22 | 2006-10-10 | Cree, Inc. | Methods of fabricating silicon carbide devices with hybrid well regions |
US7705362B2 (en) | 2004-06-22 | 2010-04-27 | Cree, Inc. | Silicon carbide devices with hybrid well regions |
US7414268B2 (en) | 2005-05-18 | 2008-08-19 | Cree, Inc. | High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities |
US7615801B2 (en) | 2005-05-18 | 2009-11-10 | Cree, Inc. | High voltage silicon carbide devices having bi-directional blocking capabilities |
US9142663B2 (en) | 2005-05-24 | 2015-09-22 | Cree, Inc. | Silicon carbide devices having smooth channels |
US7528040B2 (en) | 2005-05-24 | 2009-05-05 | Cree, Inc. | Methods of fabricating silicon carbide devices having smooth channels |
US8188483B2 (en) | 2005-05-24 | 2012-05-29 | Cree, Inc. | Silicon carbide devices having smooth channels |
US8859366B2 (en) | 2005-05-24 | 2014-10-14 | Cree, Inc. | Methods of fabricating silicon carbide devices having smooth channels |
US7727904B2 (en) | 2005-09-16 | 2010-06-01 | Cree, Inc. | Methods of forming SiC MOSFETs with high inversion layer mobility |
US8536066B2 (en) | 2005-09-16 | 2013-09-17 | Cree, Inc. | Methods of forming SiC MOSFETs with high inversion layer mobility |
US9548374B2 (en) | 2006-08-17 | 2017-01-17 | Cree, Inc. | High power insulated gate bipolar transistors |
US9064840B2 (en) | 2007-02-27 | 2015-06-23 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
US8835987B2 (en) | 2007-02-27 | 2014-09-16 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
US9640652B2 (en) | 2009-03-27 | 2017-05-02 | Cree, Inc. | Semiconductor devices including epitaxial layers and related methods |
JP4938157B2 (en) * | 2009-10-22 | 2012-05-23 | パナソニック株式会社 | Semiconductor device and manufacturing method thereof |
WO2011048804A1 (en) * | 2009-10-22 | 2011-04-28 | パナソニック株式会社 | Semiconductor device and process for production thereof |
US8421151B2 (en) | 2009-10-22 | 2013-04-16 | Panasonic Corporation | Semiconductor device and process for production thereof |
WO2011089861A1 (en) * | 2010-01-19 | 2011-07-28 | パナソニック株式会社 | Semiconductor device and method for manufacturing same |
US9117739B2 (en) | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
US9595618B2 (en) | 2010-03-08 | 2017-03-14 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
US9142662B2 (en) | 2011-05-06 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9029945B2 (en) | 2011-05-06 | 2015-05-12 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9673283B2 (en) | 2011-05-06 | 2017-06-06 | Cree, Inc. | Power module for supporting high current densities |
US9984894B2 (en) | 2011-08-03 | 2018-05-29 | Cree, Inc. | Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions |
US9640617B2 (en) | 2011-09-11 | 2017-05-02 | Cree, Inc. | High performance power module |
US9373617B2 (en) | 2011-09-11 | 2016-06-21 | Cree, Inc. | High current, low switching loss SiC power module |
US9865750B2 (en) | 2011-09-11 | 2018-01-09 | Cree, Inc. | Schottky diode |
US9231122B2 (en) | 2011-09-11 | 2016-01-05 | Cree, Inc. | Schottky diode |
US10141302B2 (en) | 2011-09-11 | 2018-11-27 | Cree, Inc. | High current, low switching loss SiC power module |
US10153364B2 (en) | 2011-09-11 | 2018-12-11 | Cree, Inc. | Power module having a switch module for supporting high current densities |
US11024731B2 (en) | 2011-09-11 | 2021-06-01 | Cree, Inc. | Power module for supporting high current densities |
US11171229B2 (en) | 2011-09-11 | 2021-11-09 | Cree, Inc. | Low switching loss high performance power module |
Also Published As
Publication number | Publication date |
---|---|
JP3521246B2 (en) | 2004-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521246B2 (en) | Field effect transistor and method of manufacturing the same | |
US6429055B2 (en) | Method for making SOI MOSFETS | |
US6300207B1 (en) | Depleted sidewall-poly LDD transistor | |
US5654215A (en) | Method for fabrication of a non-symmetrical transistor | |
KR950025920A (en) | Semiconductor device manufacturing method | |
JP3170610B2 (en) | Manufacturing method of vertical field effect transistor | |
JP2924947B2 (en) | Method for manufacturing semiconductor device | |
JP3049496B2 (en) | Method of manufacturing MOSFET | |
JPH02196434A (en) | Manufacture of mos transistor | |
JPS6246570A (en) | Vertical type semiconductor device and manufacture thereof | |
EP0817247A1 (en) | Process for the fabrication of integrated circuits with contacts self-aligned to active areas | |
KR100390153B1 (en) | Semiconductor device and manufacturing method thereof | |
KR100329749B1 (en) | A method for forming MOSFET using to cobalt silicide of semiconductor device | |
JP2956538B2 (en) | Method for manufacturing semiconductor device | |
JPH05152329A (en) | Method of manufacturing thin film transistor | |
KR100228334B1 (en) | Method for fabricating mosfet in semiconductor device | |
KR0125296B1 (en) | Fabrication method of mosfet | |
JPS6072274A (en) | Manufacture of semiconductor device | |
KR0147678B1 (en) | Semiconductor device manufacturing method | |
JPS6020578A (en) | Insulated gate semiconductor device and manufacture thereof | |
JPH03145137A (en) | Manufacture of semiconductor device | |
JPS61166154A (en) | Manufacturing method of MIS type semiconductor device | |
JPH0878698A (en) | Method of manufacturing semiconductor device | |
JPH021941A (en) | Manufacture of semiconductor device | |
JPH0458562A (en) | Mas transistor and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031212 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040120 |
|
LAPS | Cancellation because of no payment of annual fees |