[go: up one dir, main page]

JPH08264310A - Manufacture of rare earth-iron-boron permanent magnet - Google Patents

Manufacture of rare earth-iron-boron permanent magnet

Info

Publication number
JPH08264310A
JPH08264310A JP7065517A JP6551795A JPH08264310A JP H08264310 A JPH08264310 A JP H08264310A JP 7065517 A JP7065517 A JP 7065517A JP 6551795 A JP6551795 A JP 6551795A JP H08264310 A JPH08264310 A JP H08264310A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
boron
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7065517A
Other languages
Japanese (ja)
Inventor
Munehisa Hasegawa
統久 長谷川
Takashi Sasaki
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7065517A priority Critical patent/JPH08264310A/en
Priority to US08/604,927 priority patent/US5876518A/en
Publication of JPH08264310A publication Critical patent/JPH08264310A/en
Priority to US09/176,724 priority patent/US6254694B1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a manufacturing method of a rare earth-iron-boron permanent magnet with which the deterioration in magnetic characteristics, owing to the formation of an anti-corrosion film on the surface of a sintered magnet body, can be prevented and the close contact between the anti-corrosion film and the sintered body can be improved. CONSTITUTION: After an anti-corrosion film has been formed on the surface of a sintered magnet body consisting of R (R indicates one or two or more kinds of rare earth element cont aining Y) of 20 to 45wt.%, Fe of 50 to 80wt.%, Co of 0.1 to 15wt.% and B of 0.5 to 6wt.%, a heat treatment is conducted at 500 to 600 deg.C in an inert gas atmosphere, a non-oxidizing atmosphere or in a vacuum atmosphere in the rare earth-iron-boron permanent magnet manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、残留磁束密度の温度係
数および耐食性の改善を行った希土類−鉄−ボロン系永
久磁石に耐食性皮膜を形成した後熱処理を行うことによ
り、切削加工あるいは電解めっき等による磁気特性の劣
化を改善し、皮膜と磁石体との密着性をも向上させた希
土類−鉄−ボロン系永久磁石の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting process or electrolytic plating by forming a corrosion resistant coating on a rare earth-iron-boron permanent magnet having improved temperature coefficient of residual magnetic flux density and corrosion resistance, and then performing heat treatment. The present invention relates to a method for manufacturing a rare earth-iron-boron-based permanent magnet, which improves the deterioration of magnetic properties due to the above, and also improves the adhesion between the coating and the magnet body.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型、軽量
化の市場傾向に伴い、永久磁石においては従来のアルニ
コやフェライト磁石に代わり希土類磁石が多くの分野で
利用されるようになってきた。希土類永久磁石の中で
も、特に、高いエネルギー積が得られる希土類−鉄−ボ
ロン系永久磁石の需要が増加しており、従来以上に高エ
ネルギー積でかつ高保磁力が要求される傾向にある。し
かしながら、この希土類−鉄−ボロン系永久磁石はキュ
リー温度が低いために残留磁束密度の温度係数が大きく
高温減磁する欠点を有している。また、酸化しやすい希
土類元素および鉄を主成分としているために錆びやすい
という欠点も有している。これらの低キュリー温度、低
耐食性を克服するために、Co、Ga、Ni、Sn等の
元素を添加する方法が種々提案されており、従来よりも
キュリー温度および耐食性の向上がはかられている。
2. Description of the Related Art In recent years, along with the market trend toward smaller and lighter electronic equipment and precision equipment, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. . Among rare earth permanent magnets, there is an increasing demand for rare earth-iron-boron-based permanent magnets that can obtain a high energy product, and there is a tendency for higher energy products and higher coercive force to be required than ever. However, this rare earth-iron-boron-based permanent magnet has a drawback that the temperature coefficient of residual magnetic flux density is large and demagnetization occurs at high temperature because of its low Curie temperature. In addition, it has a defect that it is easily rusted because it contains a rare earth element that is easily oxidized and iron as main components. In order to overcome these low Curie temperature and low corrosion resistance, various methods of adding elements such as Co, Ga, Ni and Sn have been proposed, and the Curie temperature and the corrosion resistance are improved more than ever before. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の元素を添加した希土類−鉄−ボロン系永久磁石であっ
ても、完全な耐食性を付与することはできない。従っ
て、耐食性皮膜を有しない希土類−鉄−ボロン系永久磁
石を電子機器等の磁気回路に組み込むと、酸化が磁石体
表面から発生し磁石体内部に進行する。その結果、磁気
特性が劣化し電子機器等の性能を低下させたり、磁石体
表面の酸化物の脱落により周辺機器への磁性体による汚
染が発生する。このような理由で、希土類−鉄−ボロン
系永久磁石体表面の酸化を防止するために、各種の表面
処理方法が提案されている。例えば、スプレーまたは電
着塗装による樹脂塗装、真空蒸着、イオンスパッタリン
グ、イオンプレーティングによる気相めっき法、Cr、
Ni等の金属あるいは合金をめっきをする電解めっき法
あるいは無電解めっき法がある。これらのうち、電解め
っき法あるいは無電解めっき法では、めっきの前処理と
してアルカリ、酸による脱脂あるいは活性化処理等を行
うために、前処理時に磁石体表面部分から保磁力を担う
粒界相が溶出し、その結果、磁石体表面部で磁気特性の
劣化した層が生成し磁石体の磁気特性が低下する。特
に、薄型の磁石では磁気特性における劣化の割合が大き
くなるという問題点がある。
However, even a rare earth-iron-boron-based permanent magnet containing these elements cannot provide complete corrosion resistance. Therefore, when a rare earth-iron-boron-based permanent magnet having no corrosion resistant coating is incorporated into a magnetic circuit of an electronic device or the like, oxidation occurs from the surface of the magnet body and progresses inside the magnet body. As a result, the magnetic characteristics are deteriorated and the performance of electronic devices and the like is deteriorated, and oxides on the surface of the magnet body fall off, so that the peripheral devices are contaminated with the magnetic substance. For this reason, various surface treatment methods have been proposed in order to prevent oxidation of the surface of the rare earth-iron-boron-based permanent magnet body. For example, resin coating by spraying or electrodeposition coating, vacuum deposition, ion sputtering, vapor phase plating method by ion plating, Cr,
There are an electrolytic plating method and an electroless plating method for plating a metal or alloy such as Ni. Among these, in the electrolytic plating method or the electroless plating method, in order to perform degreasing or activation treatment with an alkali or an acid as a pretreatment for plating, the grain boundary phase responsible for the coercive force from the magnet body surface portion during the pretreatment is It elutes, and as a result, a layer having deteriorated magnetic characteristics is generated on the surface of the magnet body, and the magnetic characteristics of the magnet body deteriorate. In particular, a thin magnet has a problem that the rate of deterioration in magnetic characteristics is large.

【0004】また、希土類−鉄−ボロン系永久磁石体を
電子機器に組み込むためには、コーティング前に磁石体
の全面あるいは所要表面を切削加工する必要があるが、
この時にも、磁石体表面が荒らされて加工劣化層が生成
し磁気特性が低下する。そして、この加工劣化層の上に
コーティングを施すと、この加工劣化層部分でコーティ
ング剥離が発生しやすくなりコーティングの密着性も悪
くなるという問題点がある。このような切削加工等に伴
う磁気特性の劣化を改善するために、Ti、W等の金属
元素とCe、La、Nd等の希土類元素との合金薄膜層
を真空蒸着、イオンスパッタリング等の気相めっき法で
形成した後、真空あるいは不活性雰囲気中で400〜9
00℃、1分〜3時間の熱処理をすることが提案されて
いる(特開昭62−192566号)。しかしながら、
活性な希土類元素を50at.%以上含むために耐食性
が悪いと同時に、コスト的にも高くなる。また、内穴、
溝部へのコーティングができないという問題点もある。
また、特開昭63−211703号では、耐食性、密着
力、耐磨耗性を向上させるために、電気めっき法あるい
は無電解めっき法でNi−Pの合金層を形成した後10
0〜500℃の温度、10分〜数時間の熱処理をする方
法が提案されており、実施例でもNi−Pめっき層を形
成した後150、180℃の温度で熱処理する方法が示
されている。しかしながら、この実施例に示される温度
での熱処理は、一般的に知られているようなめっきで吸
蔵された水素を除くための熱処理である。また、500
℃よりも低い温度であるために、希土類−鉄−ボロン系
永久磁石内に液相が十分に生成せず、切削加工等による
磁気特性の劣化を回復させたり、磁石体とめっき層との
密着性を向上させたりすることができないという問題点
がある。特開平1−139705号では、耐酸化性皮膜
と磁石体との密着性向上を目的として、磁石体表面にP
d、Pt等の貴金属層と、Ni等の卑金属層とを積層
し、400〜700℃で拡散熱処理することが提案され
ている。しかしながら、Pd、Pt等の貴金属を10〜
100オングストロームの膜厚で磁石体表面に形成する
気相めっき法あるいは貴金属コロイドを吸着させる方法
では、貴金属層が薄く多孔性になりやすく、これが原因
でその上に付ける卑金属層にピンホールが発生しやすく
なり耐食性が低下する。また、貴金属はコスト的にも高
くなるという問題点がある。したがって、本発明は、焼
結磁石体表面への耐食性皮膜形成による磁気特性の低下
を防止し、耐食性皮膜と焼結磁石体との密着性を向上で
きる希土類−鉄−ボロン系永久磁石の製造方法を提供す
ることを目的とする。
Further, in order to incorporate a rare earth-iron-boron permanent magnet body into an electronic device, it is necessary to cut the entire surface of the magnet body or a required surface before coating.
At this time as well, the surface of the magnet body is roughened and a processing deterioration layer is generated to deteriorate the magnetic characteristics. When a coating is applied on the processing-deteriorated layer, coating peeling easily occurs at the processing-deteriorated layer portion, and the adhesion of the coating deteriorates. In order to improve the deterioration of magnetic properties due to such cutting work, an alloy thin film layer of a metal element such as Ti and W and a rare earth element such as Ce, La, and Nd is formed by vapor deposition such as vacuum deposition or ion sputtering. After forming by plating method, 400 to 9 in vacuum or inert atmosphere
It has been proposed to perform heat treatment at 00 ° C for 1 minute to 3 hours (Japanese Patent Laid-Open No. 62-192566). However,
Active rare earth element at 50 at. %, The corrosion resistance is poor and the cost is high. Also, the inner hole,
There is also a problem that the groove cannot be coated.
Further, in Japanese Patent Laid-Open No. 63-211703, in order to improve corrosion resistance, adhesion, and abrasion resistance, a Ni-P alloy layer is formed by an electroplating method or an electroless plating method.
A method of performing heat treatment at a temperature of 0 to 500 ° C. for 10 minutes to several hours has been proposed, and the examples also show a method of performing heat treatment at a temperature of 150 to 180 ° C. after forming a Ni—P plating layer. . However, the heat treatment at the temperature shown in this example is a heat treatment for removing hydrogen occluded by plating as is generally known. Also, 500
Since the temperature is lower than ℃, the liquid phase is not sufficiently generated in the rare earth-iron-boron permanent magnet, and the deterioration of the magnetic properties due to cutting, etc. is recovered, and the adhesion between the magnet body and the plating layer is improved. There is a problem that it is impossible to improve the sex. In JP-A-1-139705, in order to improve the adhesion between the oxidation resistant film and the magnet body, P is formed on the surface of the magnet body.
It has been proposed that a noble metal layer such as d or Pt and a base metal layer such as Ni be stacked and subjected to diffusion heat treatment at 400 to 700 ° C. However, 10 to 10 precious metals such as Pd and Pt
In the vapor-phase plating method or the method of adsorbing the noble metal colloid, which is formed on the surface of the magnet with a film thickness of 100 angstrom, the noble metal layer is apt to be thin and porous, which causes pinholes in the base metal layer to be attached thereon. It becomes easier and corrosion resistance decreases. In addition, there is a problem in that the cost of precious metals is high. Therefore, the present invention is a method for producing a rare earth-iron-boron-based permanent magnet capable of preventing the deterioration of magnetic properties due to the formation of a corrosion resistant coating on the surface of a sintered magnet body and improving the adhesion between the corrosion resistant coating and the sintered magnet body. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本永久磁石の製造方法は、希土類元素R(RはYを含
む希土類元素のうち少なくとも1種または2種以上の組
合せ)が20〜45wt.%、Feが50〜80wt.
%、Coが0.1〜15wt.%、Bが0.5〜6w
t.%からなる焼結磁石体表面に、耐食性皮膜を形成し
た後、不活性ガス雰囲気、非酸化性雰囲気あるいは真空
中、500〜600℃の温度で熱処理する希土類−鉄−
ボロン系永久磁石の製造方法、あるいは希土類元素R
(RはYを含む希土類元素のうち少なくとも1種または
2種以上の組合せ)が20〜45wt.%、Feが50
〜80wt.%、Coが0.1〜15wt.%、Bが
0.5〜6wt.%およびM(MはAl、Si、Nb、
Mo、V、Mn、Sn、Ni、Zn、Ti、Cr、T
a、W、Ge、Zr、Hf、Gaのうち少なくとも1種
あるいは2種以上の組合せ)が10wt.%以下からな
る焼結磁石体表面に耐食性皮膜を形成した後、不活性ガ
ス雰囲気、非酸化性雰囲気あるいは真空中、500〜6
00℃の温度で熱処理する希土類−鉄−ボロン系永久磁
石の製造方法であり、前記耐食性皮膜はZn、Cr、N
i、Cu、Sn、Pb、Cd、Ti、W、Co、Al、
Taのうち少なくとも1種または2種以上の元素からな
る単層膜または多層膜、あるいは該耐食性皮膜がC、
P、S、O、B、Hの少なくとも1種または2種以上の
元素とZn、Cr、Ni、Cu、Sn、Pb、Cd、T
i、W、Co、Al、Taのうち少なくとも1種または
2種以上の元素からなる単層膜または多層膜とするのが
好ましい。本発明において、耐食性皮膜は単層膜または
多層膜いづれでもよい。単層膜とする場合、皮膜の厚さ
は10μm以上とする。また、多層膜とする場合、磁石
体と接する皮膜の膜厚を0.1μm以上とし、耐食性皮
膜全体の厚さを10μm以上とするのが好ましい。ま
た、本発明においては、磁石体と耐食性皮膜との密着性
を向上させるために耐食性皮膜形成前に磁石体表面の脱
脂、活性化処理等の前処理を行うことが好ましい。
A method for manufacturing a permanent magnet according to the present invention for solving the above-mentioned problems includes a rare earth element R (R is at least one kind or a combination of two or more kinds of rare earth elements including Y) of 20 to 20%. 45 wt. %, Fe 50 to 80 wt.
%, Co 0.1 to 15 wt. %, B is 0.5-6w
t. %, A heat-resistant film is formed on the surface of a sintered magnet body containing 100% and then heat-treated at a temperature of 500 to 600 ° C. in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum.
Boron-based permanent magnet manufacturing method or rare earth element R
(R is at least one kind or a combination of two or more kinds of rare earth elements including Y) is 20 to 45 wt. %, Fe is 50
~ 80 wt. %, Co 0.1 to 15 wt. %, B is 0.5 to 6 wt. % And M (M is Al, Si, Nb,
Mo, V, Mn, Sn, Ni, Zn, Ti, Cr, T
a, W, Ge, Zr, Hf, and Ga) of 10 wt. % Or less, a corrosion-resistant coating is formed on the surface of the sintered magnet body, and then 500 to 6 in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum.
A method of manufacturing a rare earth-iron-boron-based permanent magnet in which heat treatment is performed at a temperature of 00 ° C., wherein the corrosion-resistant coating is Zn, Cr, N.
i, Cu, Sn, Pb, Cd, Ti, W, Co, Al,
A single-layer film or a multi-layer film composed of at least one element or two or more elements of Ta, or the corrosion-resistant film is C,
Zn, Cr, Ni, Cu, Sn, Pb, Cd, T and at least one or more elements of P, S, O, B and H
It is preferable to use a single-layer film or a multi-layer film made of at least one element or two or more elements out of i, W, Co, Al, and Ta. In the present invention, the corrosion resistant film may be either a single layer film or a multilayer film. In the case of a single layer film, the thickness of the film is 10 μm or more. In the case of a multilayer film, it is preferable that the thickness of the coating in contact with the magnet body is 0.1 μm or more, and the thickness of the entire corrosion resistant coating is 10 μm or more. Further, in the present invention, in order to improve the adhesion between the magnet body and the corrosion resistant coating, it is preferable to perform pretreatment such as degreasing and activation treatment on the surface of the magnet body before forming the corrosion resistant coating.

【0006】[0006]

【作用】本発明は、残留磁束密度の温度係数および耐食
性の改善を行った希土類−鉄−ボロン系永久磁石に耐食
性皮膜を形成した後熱処理を行うことにより、切削加工
あるいは電解めっき等による磁気特性の劣化を改善し、
コーティング膜と磁石体との密着性をも向上させた希土
類−鉄−ボロン系永久磁石の製造方法に関するものであ
る。すなわち、希土類−鉄−ボロン系永久磁石の保磁力
機構はニュークリエーションタイプに属しているため
に、保磁力の大きさは逆磁区の芽となる主相R2F14B
内にある格子欠陥や転位の数あるいは逆磁区の芽をピン
止めしていると考えられる主相R2F14Bを囲む粒界相
の結晶組織や量等により決定される。それゆえ、切削加
工により主相内にクラックや歪みが生成したり、粒界相
を持たない主相が露出すると、逆磁区の芽が発生しやす
くなったり、磁壁が動きやすくなり保磁力が低下する。
また、耐食性皮膜コーティング時に行う酸あるいはアル
カリを用いた前処理では、磁石体表面部分の粒界相が溶
出するために、磁石体表面部分の保磁力は低下し、その
結果、磁石体全体での磁気特性も低下する。特に、薄物
の磁石体ではこれら切削加工あるいはめっきの前処理に
よる磁気特性の劣化は大きくなる。
The present invention provides a magnetic property by cutting or electrolytic plating by forming a corrosion resistant film on a rare earth-iron-boron permanent magnet with improved temperature coefficient of residual magnetic flux density and corrosion resistance, and then performing heat treatment. Improve the deterioration of
The present invention relates to a method for producing a rare earth-iron-boron-based permanent magnet having improved adhesion between a coating film and a magnet body. That is, since the coercive force mechanism of the rare earth-iron-boron permanent magnet belongs to the nucleation type, the magnitude of the coercive force is the main phase R2F14B, which is a bud of the reverse magnetic domain.
It is determined by the number of lattice defects and dislocations inside, or the crystal structure and amount of the grain boundary phase surrounding the main phase R2F14B which is considered to pin the reverse magnetic domain buds. Therefore, if cracks or strains are generated in the main phase due to cutting, or if the main phase that does not have a grain boundary phase is exposed, buds in the reverse magnetic domain are likely to occur and the domain wall becomes easy to move and the coercive force is reduced. To do.
In addition, in the pretreatment with acid or alkali that is performed at the time of coating the corrosion resistant film, the coercive force of the magnet body surface portion decreases because the grain boundary phase of the magnet body surface portion elutes, and as a result, The magnetic properties are also reduced. In particular, in the case of a thin magnet body, the deterioration of the magnetic characteristics due to these cutting or pretreatments for plating becomes large.

【0007】そこで、本発明は、粒界相に余剰に存在す
る希土類リッチ相、Bリッチ相等を活用したもので、耐
食性皮膜を形成した後不活性雰囲気、非酸化性雰囲気あ
るいは真空中、500〜600℃で熱処理することを特
徴とする。熱処理温度は500〜550℃とするのが特
に好ましい。本発明は、Coを含有させることにより焼
結磁石体の温度特性および耐食性を向上させるととも
に、耐酸化性あるいは耐食性皮膜を形成した後液相が出
現ししかも保磁力が向上する温度500〜600℃で熱
処理することにより、粒界に存在する希土類リッチ相を
磁石体表面部分と耐食性皮膜との界面に一部吐き出さ
せ、切削加工により生成した加工劣化層部分あるいは
酸、アルカリの前処理で溶出した粒界相部分を修復し磁
気特性を回復させる永久磁石の製造方法である。本発明
において、耐食性皮膜の厚さを10μm以上としたの
は、耐食性皮膜の厚さが10μm未満であるとピンホー
ルが形成しやすく、熱処理によりピンホールから希土類
リッチ相がしみ出し、充分な耐食性が得られないからで
ある。また、厚さが50μmを越えると耐食性皮膜の平
滑性が低下するので、耐食性皮膜の厚さは50μm以下
とするのが好ましい。耐食性皮膜は単層膜でもよいが、
多層膜とし、磁石体と接する皮膜の厚さを0.1μm以
上とするのが好ましい。多層膜とすることにより、耐食
性皮膜表面から磁石体表面に貫通するピンホールが減少
し、ピンホールからの腐食を防止することができる。ま
た、磁石体と接する皮膜の厚さが0.1μm未満である
と皮膜が薄く多孔性となりやすく、それが原因でその上
に付ける皮膜にピンホールが生成しやすくなるので、磁
石体に接する皮膜の厚さは0.1μm以上とするのが好
ましい。
Therefore, the present invention makes use of the rare earth-rich phase, the B-rich phase, and the like, which are excessively present in the grain boundary phase, and after the corrosion-resistant film is formed, the inert gas, the non-oxidizing atmosphere, or the vacuum is used for 500 to It is characterized by heat treatment at 600 ° C. The heat treatment temperature is particularly preferably 500 to 550 ° C. The present invention improves the temperature characteristics and corrosion resistance of a sintered magnet body by containing Co, and a temperature of 500 to 600 ° C. at which a liquid phase appears after forming an oxidation resistant or corrosion resistant film and the coercive force is improved. Part of the rare earth-rich phase existing at the grain boundaries was discharged to the interface between the surface of the magnet body and the corrosion-resistant coating by heat treatment at, and it was eluted by the processing-deteriorated layer portion generated by cutting or pretreatment with acid or alkali. This is a method of manufacturing a permanent magnet that restores the grain boundary phase portion and restores the magnetic properties. In the present invention, the thickness of the corrosion-resistant coating is set to 10 μm or more because when the thickness of the corrosion-resistant coating is less than 10 μm, pinholes are easily formed, and the rare earth-rich phase is exuded from the pinholes by heat treatment to provide sufficient corrosion resistance. Because I can't get it. Further, if the thickness exceeds 50 μm, the smoothness of the corrosion-resistant coating deteriorates, so the thickness of the corrosion-resistant coating is preferably 50 μm or less. The corrosion resistant film may be a single layer film,
It is preferable that the film is a multilayer film and the thickness of the film in contact with the magnet body is 0.1 μm or more. By forming the multilayer film, the number of pinholes penetrating from the surface of the corrosion resistant film to the surface of the magnet body is reduced, and the corrosion from the pinholes can be prevented. If the thickness of the coating in contact with the magnet body is less than 0.1 μm, the coating tends to be thin and porous, which easily causes pinholes in the coating to be applied on top of it, so that the coating in contact with the magnet body The thickness is preferably 0.1 μm or more.

【0008】以下、本発明の限定理由について示す。本
発明の永久磁石に用いる希土類元素Rは、20〜45w
t.%を占めるが、Yを含む希土類元素の1種または2
種以上の組合せであって、20wt.%未満ではα−F
eが生成し高保磁力が得られず、45wt.%を超える
と非磁性相である希土類リッチ相が多くなり、残留磁束
密度が低下して優れた特性の永久磁石が得られない。よ
って、Rは20〜45wt.%の範囲が好ましい。B
は、上記永久磁石における必須元素であって、0.5w
t.%未満では菱面体構造が主相となり高保磁力が得ら
れず、6wt.%を超えるとBリッチな非磁性相が多く
なり、残留磁束密度が低下するため、優れた永久磁石が
得られない。よって、Bは0.5〜6wt.%の範囲が
好ましい。Feも、上記永久磁石において必須元素であ
り、50wt.%未満では残留磁束密度が低下し、80
wt.%を超えると高保磁力が得られないので、Feは
50〜80wt.%の範囲が好ましい。Coは温度特性
および耐食性を向上させるために必要であり、Coの添
加量が0.1wt.%以下では十分な効果が得られず、
15wt.%を超えると保磁力が低下する。よって、C
oの添加量は0.1〜15wt.%の範囲が好ましい。
また、永久磁石体の磁気特性あるいは物理特性等を向上
させるために、Ni、Nb、Ta、W、Al、Ti、Z
r、Si、Ga、Mo、V、Sn、Cr、Mn、Zn、
Ge、Hfの1種または2種以上の元素を10wt.%
以下の範囲で添加しても良く、本発明の永久磁石は、結
晶質の合金粉末を磁場中成形で異方性化した後焼結して
得られる焼結異方性永久磁石で、平均結晶粒径が1〜5
0μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、最大エネルギー積が20MGOe以上に達
する。かくして得られた希土類−鉄−ボロン系永久磁石
体をリン酸、水酸化ナトリウム等の酸あるいはアルカリ
溶液で前処理を行った後、耐食性皮膜を電解めっき、無
電解めっき、気相めっき法などの一般的に知られている
方法で作製する。その後、不活性雰囲気、非酸化性雰囲
気あるいは真空中、500〜600℃で熱処理をする。
耐食性皮膜の形成方法としては、コスト面および皮膜厚
さの均一性から電解めっき、無電解めっきが望ましい。
また、耐食性皮膜を形成後熱処理し、さらに耐食性皮膜
を形成することができる。耐食性皮膜は熱処理により結
晶化し脆くなるので、熱処理後さらに耐食性皮膜を形成
することにより強度を補うことができる。熱処理後に耐
食性皮膜を形成する場合、リン酸、水酸化ナトリウム等
の酸あるいはアルカリ溶液で前処理を行った後、耐食性
皮膜を電解めっき、無電解めっき、気相めっき法などの
一般的に知られている方法で作製することができる。ま
た、樹脂コート等の皮膜を形成しても良い。
The reasons for limitation of the present invention will be described below. The rare earth element R used in the permanent magnet of the present invention is 20 to 45w.
t. %, But one or two rare earth elements including Y
20 wt. If less than%, α-F
e was generated and a high coercive force could not be obtained. %, The amount of the rare earth-rich phase that is a non-magnetic phase increases, the residual magnetic flux density decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 20 to 45 wt. % Range is preferred. B
Is an essential element in the above permanent magnet, and is 0.5 w
t. %, The rhombohedral structure becomes the main phase and a high coercive force cannot be obtained. %, The B-rich nonmagnetic phase increases and the residual magnetic flux density decreases, so that an excellent permanent magnet cannot be obtained. Therefore, B is 0.5 to 6 wt. % Range is preferred. Fe is also an essential element in the permanent magnet, and is 50 wt. If it is less than 80%, the residual magnetic flux density decreases,
wt. %, A high coercive force cannot be obtained, so that Fe is 50 to 80 wt. % Range is preferred. Co is necessary to improve temperature characteristics and corrosion resistance, and the amount of Co added is 0.1 wt. % Or less, a sufficient effect cannot be obtained,
15 wt. If it exceeds%, the coercive force will decrease. Therefore, C
The addition amount of o is 0.1 to 15 wt. % Range is preferred.
Further, in order to improve the magnetic characteristics or physical characteristics of the permanent magnet body, Ni, Nb, Ta, W, Al, Ti, Z
r, Si, Ga, Mo, V, Sn, Cr, Mn, Zn,
One or more elements of Ge and Hf of 10 wt. %
The permanent magnet of the present invention may be added in the following ranges, and the permanent magnet of the present invention is a sintered anisotropic permanent magnet obtained by anisotroping crystalline alloy powder by magnetic field molding and then sintering the average crystal. Particle size is 1-5
A compound having a tetragonal crystal structure in the range of 0 μm is used as a main phase, and the maximum energy product reaches 20 MGOe or more. The rare earth-iron-boron-based permanent magnet body thus obtained is subjected to pretreatment with an acid or alkaline solution such as phosphoric acid or sodium hydroxide, and then the corrosion resistant coating is subjected to electrolytic plating, electroless plating, vapor phase plating, etc. It is produced by a generally known method. After that, heat treatment is performed at 500 to 600 ° C. in an inert atmosphere, a non-oxidizing atmosphere, or a vacuum.
As a method for forming the corrosion resistant coating, electrolytic plating and electroless plating are desirable from the viewpoint of cost and uniformity of coating thickness.
Further, after forming the corrosion resistant film, heat treatment can be performed to further form the corrosion resistant film. Since the corrosion resistant film is crystallized and becomes brittle by heat treatment, the strength can be supplemented by further forming the corrosion resistant film after the heat treatment. When forming a corrosion resistant film after heat treatment, after performing pretreatment with an acid or alkaline solution such as phosphoric acid, sodium hydroxide, etc., the corrosion resistant film is generally known for electrolytic plating, electroless plating, vapor phase plating, etc. Can be manufactured by the method described above. Further, a film such as a resin coat may be formed.

【0009】[0009]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

【0010】(実施例1)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる磁石合金を不活性雰囲気中で高周波溶解し鋳造イ
ンゴットを得た。このインゴットを50mm角以下に破
断した後、破断塊を密閉容器内に挿入しArガスを20
分間流入させて空気と置換し、1kgf/cm2の水素
ガスで2時間処理後機械的に粉砕し平均粒子径が500
μmの粉末にした。この粗粉をジェットミルを用いて平
均粒子径が5.0μmの粉末に微粉砕した。この微粉を
ダイス、下パンチで形成される成形空間に充填し、約1
0kOeの磁場中で配向させながら、2ton/cm2
にて加圧成形し成形体を得た。この成形体を1080
℃、2時間の条件で焼結し、530℃、1時間の熱処理
を施し永久磁石を作製した。この磁石体から10x11
x8mm(磁化方向:8mm)の試料を切り出し表面研
磨後、リン酸により前処理を行いワット浴を用いて、平
均厚み20μmの電解Niめっきを行った。このNiめ
っき膜を施した試料をArガス雰囲気中で、530℃、
1時間の熱処理を行った後、磁気特性、加熱温度に対す
る不可逆減磁率の変化およびコーティング膜の密着強度
(QUAD GROUP社製SEVASTIAN 5)
を測定した。不可逆減磁率は下記に示す方法で行った。
まず、着磁後の試料の磁束φ0を室温で測定し、次に、
100〜260℃の各温度で1時間加熱保持した後、室
温に戻し1時間以上放置後磁束φを測定して下記の定義
式により算出した。 不可逆減磁率={(φ−φ0)/φ0}x100 % なお、加熱は100℃で測定後、120℃に加熱という
ように累積加熱した。表1に磁気特性、図1に4πI−
Hカーブ、図2に加熱温度に対する不可逆減磁率の変
化、表2に密着強度を示す。
(Example 1) Nd18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was used to produce a cast ingot by high-frequency melting in an inert atmosphere. After breaking this ingot to 50 mm square or less, the broken mass was inserted into a closed container and Ar gas was added to 20
It is allowed to flow for a minute to replace air, treated with hydrogen gas of 1 kgf / cm 2 for 2 hours, and mechanically crushed to obtain an average particle size of 500.
It was made into a powder of μm. This coarse powder was finely pulverized into a powder having an average particle diameter of 5.0 μm using a jet mill. Fill this molding powder into the molding space formed by the die and lower punch, and
2 ton / cm2 while orienting in a magnetic field of 0 kOe
And pressure-molded to obtain a molded body. This molded body is 1080
Sintering was performed under the conditions of 2 ° C. for 2 hours, and heat treatment was performed for 1 hour at 530 ° C. to produce a permanent magnet. 10x11 from this magnet
A sample of x8 mm (magnetization direction: 8 mm) was cut out, and after surface polishing, pretreatment with phosphoric acid was performed and electrolytic Ni plating with an average thickness of 20 μm was performed using a Watts bath. The sample coated with this Ni plating film was heated at 530 ° C. in an Ar gas atmosphere.
After heat treatment for 1 hour, magnetic properties, change in irreversible demagnetization rate with respect to heating temperature and adhesion strength of coating film (SEVASTIAN 5 manufactured by QUAD GROUP)
Was measured. The irreversible demagnetization rate was measured by the method shown below.
First, measure the magnetic flux φ0 of the magnetized sample at room temperature, then
After heating and holding at each temperature of 100 to 260 ° C. for 1 hour, the temperature was returned to room temperature and left for 1 hour or more, and the magnetic flux φ was measured and calculated by the following definition formula. Irreversible demagnetization rate = {(φ-φ0) / φ0} × 100% In addition, after heating at 100 ° C., cumulative heating was performed at 120 ° C. Table 1 shows the magnetic characteristics, and Fig. 1 shows 4πI-
H curve, FIG. 2 shows the change of the irreversible demagnetization rate with respect to the heating temperature, and Table 2 shows the adhesion strength.

【0011】(実施例2)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる焼結体に、530℃、1時間の熱処理を施した。
この磁石体から10x11x8mm(磁化方向:8m
m)の試料を切り出し表面研磨後、リン酸により前処理
を行いワット浴を用いて、平均厚み20μmの電解Ni
めっきを行った。このNiめっき膜を施した試料をAr
ガス雰囲気中で、510℃、1時間の熱処理を行った
後、磁気特性および加熱温度に対する不可逆減磁率の変
化を測定した。表1に磁気特性、図1に4πI−Hカー
ブ、図2に加熱温度に対する不可逆減磁率の変化を示
す。
(Example 2) Nd18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was heat-treated at 530 ° C. for 1 hour.
10x11x8mm from this magnet (magnetization direction: 8m
m) sample was cut out and surface-polished, followed by pretreatment with phosphoric acid and using a Watts bath, electrolytic Ni having an average thickness of 20 μm
Plated. The sample coated with this Ni plating film is Ar
After performing heat treatment at 510 ° C. for 1 hour in a gas atmosphere, changes in magnetic properties and irreversible demagnetization rate with respect to heating temperature were measured. Table 1 shows the magnetic characteristics, FIG. 1 shows the 4πI-H curve, and FIG. 2 shows the change in the irreversible demagnetization rate with respect to the heating temperature.

【0012】(実施例3)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる焼結体に、530℃、1時間の熱処理を施した。
この磁石体から10x11x8mm(磁化方向:8m
m)の試料を切り出し表面研磨後、硝酸、過酸化水素
水、酢酸でめっきの前処理を行った。次に、ワット浴を
用いて下地層として2μmの電解Niめっき層、ピロリ
ン酸Cu浴により14μmの電解Cuめっき層、ワット
浴による4μmの電解Niめっき層を施し総膜厚20μ
mのNi−Cu−Niめっき膜を作製した。この試料を
Arガス雰囲気中で、530℃、1時間の熱処理を行っ
た後、磁気特性および加熱温度に対する不可逆減磁率の
変化を測定した。表1に磁気特性、図1に4πI−Hカ
ーブ、図2に加熱温度に対する不可逆減磁率の変化を示
す。
(Example 3) Nd18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was heat-treated at 530 ° C. for 1 hour.
10x11x8mm from this magnet (magnetization direction: 8m
The sample m) was cut out and the surface was polished, and then pretreatment for plating was performed with nitric acid, hydrogen peroxide solution, and acetic acid. Next, using a Watt bath, an electrolytic Ni plating layer of 2 μm as a base layer, an electrolytic Cu plating layer of 14 μm with a Cu pyrophosphate bath, and an electrolytic Ni plating layer of 4 μm with a Watt bath were applied to give a total film thickness of 20 μm.
A Ni-Cu-Ni plated film of m was prepared. This sample was heat-treated at 530 ° C. for 1 hour in an Ar gas atmosphere, and then the changes in magnetic properties and irreversible demagnetization rate with respect to heating temperature were measured. Table 1 shows the magnetic characteristics, FIG. 1 shows the 4πI-H curve, and FIG. 2 shows the change in the irreversible demagnetization rate with respect to the heating temperature.

【0013】(比較例1)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる焼結体に、530℃、1時間の熱処理を施した。
この磁石体から10x11x8mm(磁化方向:8m
m)の試料を切り出し表面研磨後、リン酸により前処理
を行いワット浴を用いて、平均厚み20μmの電解Ni
めっきを行った。このNiめっき膜を施した試料をAr
ガス雰囲気中で、200℃、1時間の熱処理を行った
後、磁気特性、加熱温度に対する不可逆減磁率の変化お
よびコーティング膜の密着強度(QUAD GROUP
社製SEVASTIAN 5)を測定した。表1に磁気
特性、図1に4πI−Hカーブ、図2に加熱温度に対す
る不可逆減磁率の変化、表2に密着強度を示す。実施例
1、2よりも減磁曲線の角形性が悪く、密着性も低くな
っている。
(Comparative Example 1) Nd 18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was heat-treated at 530 ° C. for 1 hour.
10x11x8mm from this magnet (magnetization direction: 8m
m) sample was cut out and surface-polished, followed by pretreatment with phosphoric acid and using a Watts bath, electrolytic Ni having an average thickness of 20 μm
Plated. The sample coated with this Ni plating film is Ar
After performing heat treatment at 200 ° C. for 1 hour in a gas atmosphere, magnetic properties, changes in irreversible demagnetization rate with heating temperature, and adhesion strength of coating film (QUAD GROUP
SEVASTIAN 5) manufactured by the company was measured. Table 1 shows the magnetic characteristics, FIG. 1 shows the 4πI-H curve, FIG. 2 shows the change of the irreversible demagnetization rate with respect to the heating temperature, and Table 2 shows the adhesion strength. The squareness of the demagnetization curve is worse than in Examples 1 and 2, and the adhesion is also lower.

【0014】(比較例2)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる焼結体に、530℃、1時間の熱処理を施した。
この磁石体から10x11x8mm(磁化方向:8m
m)の試料を切り出し表面研磨後、リン酸により前処理
を行いワット浴を用いて、平均厚み20μmの電解Ni
めっきを行った。このNiめっき膜を施した試料をAr
ガス雰囲気中で、400℃、1時間の熱処理を行った
後、磁気特性および加熱温度に対する不可逆減磁率の変
化を測定した。表1に磁気特性、図1に4πI−Hカー
ブ、図2に加熱温度に対する不可逆減磁率の変化を示
す。実施例1、2よりも減磁曲線の角形性が低下してい
る。
(Comparative Example 2) Nd18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was heat-treated at 530 ° C. for 1 hour.
10x11x8mm from this magnet (magnetization direction: 8m
m) sample was cut out and surface-polished, followed by pretreatment with phosphoric acid and using a Watts bath, electrolytic Ni having an average thickness of 20 μm
Plated. The sample coated with this Ni plating film is Ar
After performing heat treatment at 400 ° C. for 1 hour in a gas atmosphere, changes in magnetic properties and irreversible demagnetization ratio with respect to heating temperature were measured. Table 1 shows the magnetic characteristics, FIG. 1 shows the 4πI-H curve, and FIG. 2 shows the change in the irreversible demagnetization rate with respect to the heating temperature. The squareness of the demagnetization curve is lower than in Examples 1 and 2.

【0015】(比較例3)Nd18.1wt.%、Pr
5.2wt.%、Dy9.0wt.%、Al0.3w
t.%、Nb1.0wt.%、B1.03wt.%、C
o4.0wt.%、Ga0.15wt.%、残部Feよ
りなる焼結体に、530℃、1時間の熱処理を施した。
この磁石体から10x11x8mm(磁化方向:8m
m)の試料を切り出し表面研磨後、リン酸により前処理
を行いワット浴を用いて、平均厚み20μmの電解Ni
めっきを行った。このNiめっき膜を施した試料をAr
ガス雰囲気中で、650℃、1時間の熱処理を行った
後、磁気特性および加熱温度に対する不可逆減磁率の変
化を測定した。表1に磁気特性、図1に4πI−Hカー
ブ、図2に加熱温度に対する不可逆減磁率の変化を示
す。実施例1、2よりも減磁曲線の角形性および保磁力
が低下している。
(Comparative Example 3) Nd18.1 wt. %, Pr
5.2 wt. %, Dy 9.0 wt. %, Al 0.3w
t. %, Nb 1.0 wt. %, B1.03 wt. %, C
o 4.0 wt. %, Ga 0.15 wt. %, And the balance Fe was heat-treated at 530 ° C. for 1 hour.
10x11x8mm from this magnet (magnetization direction: 8m
m) sample was cut out and surface-polished, followed by pretreatment with phosphoric acid and using a Watts bath, electrolytic Ni having an average thickness of 20 μm
Plated. The sample coated with this Ni plating film is Ar
After performing heat treatment at 650 ° C. for 1 hour in a gas atmosphere, changes in magnetic properties and irreversible demagnetization factor with respect to heating temperature were measured. Table 1 shows the magnetic characteristics, FIG. 1 shows the 4πI-H curve, and FIG. 2 shows the change in the irreversible demagnetization rate with respect to the heating temperature. The squareness of the demagnetization curve and the coercive force are lower than in Examples 1 and 2.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明によれば、温度特性および耐食性
を向上させたR−Fe−B系永久磁石に耐食性皮膜を形
成し、不活性雰囲気、非酸化性雰囲気あるいは真空中、
500〜600℃で熱処理することにより、切削加工あ
るいは電解めっき等で劣化した結晶組織部を修復させ、
磁気特性の劣化および磁気特性の経年変化を改善すると
共に、コーティング膜と磁石体との密着性をも向上させ
ることができ、工業上その利用価値は極めて高いもので
ある。
According to the present invention, a corrosion resistant film is formed on an R-Fe-B system permanent magnet having improved temperature characteristics and corrosion resistance, and the R-Fe-B system permanent magnet is subjected to an inert atmosphere, a non-oxidizing atmosphere or a vacuum,
By heat treatment at 500 to 600 ° C., the crystal structure portion deteriorated by cutting or electrolytic plating is repaired,
It is possible to improve the deterioration of the magnetic properties and the secular change of the magnetic properties, and also to improve the adhesion between the coating film and the magnet body, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜3および比較例1〜3の4πI−H
カーブを示す図である。
FIG. 1 is a 4πI-H of Examples 1 to 3 and Comparative Examples 1 to 3.
It is a figure which shows a curve.

【図2】実施例1〜3および比較例1〜3の加熱温度に
対する不可逆減磁率の変化を比較す図である。
FIG. 2 is a diagram comparing changes in irreversible demagnetization rates with respect to heating temperatures in Examples 1 to 3 and Comparative Examples 1 to 3.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R(RはYを含む希土類元素のうち1種
または2種以上)が20〜45wt.%、Feが50〜
80wt.%、Coが0.1〜15wt.%、Bが0.
5〜6wt.%からなる焼結磁石体表面に、耐食性皮膜
を形成した後、不活性ガス雰囲気、非酸化性雰囲気ある
いは真空中、500〜600℃の温度で熱処理すること
を特徴とする希土類−鉄−ボロン系永久磁石の製造方
法。
1. R (wherein R is one or more of rare earth elements including Y) is 20 to 45 wt. %, Fe 50 to
80 wt. %, Co 0.1 to 15 wt. %, B is 0.
5-6 wt. %, A rare earth-iron-boron system characterized by being heat-treated at a temperature of 500 to 600 ° C. in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum after forming a corrosion resistant film on the surface of the sintered magnet body of Manufacturing method of permanent magnet.
【請求項2】 R(RはYを含む希土類元素のうち1種
または2種以上)が20〜45wt.%、Feが50〜
80wt.%、Coが0.1〜15wt.%、Bが0.
5〜6wt.%およびM(MはAl、Si、Nb、M
o、V、Mn、Sn、Ni、Zn、Ti、Cr、Ta、
W、Ge、Zr、Hf、Gaのうち1種または2種以
上)が10wt.%以下からなる焼結磁石体表面に、厚
さ10μm以上の耐食性皮膜を形成した後、不活性ガス
雰囲気、非酸化性雰囲気あるいは真空中、500〜60
0℃の温度で熱処理することを特徴とする希土類−鉄−
ボロン系永久磁石の製造方法。
2. R (wherein R is one or more of rare earth elements including Y) is 20 to 45 wt. %, Fe 50 to
80 wt. %, Co 0.1 to 15 wt. %, B is 0.
5-6 wt. % And M (M is Al, Si, Nb, M
o, V, Mn, Sn, Ni, Zn, Ti, Cr, Ta,
W, Ge, Zr, Hf, and Ga) of 10 wt. % On the surface of the sintered magnet body having a thickness of 10 μm or more, and then 500 to 60 in an inert gas atmosphere, a non-oxidizing atmosphere or a vacuum.
Rare earth-iron-characterized by heat treatment at a temperature of 0 ° C
Method for manufacturing boron permanent magnet.
【請求項3】 耐食性皮膜がZn、Cr、Ni、Cu、
Sn、Pb、Cd、Ti、W、Co、Al、Taのうち
1種または2種以上の元素からなる請求項1または2に
記載の希土類−鉄−ボロン系永久磁石の製造方法。
3. The corrosion resistant coating is Zn, Cr, Ni, Cu,
The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1 or 2, comprising one or more elements selected from Sn, Pb, Cd, Ti, W, Co, Al, and Ta.
【請求項4】 耐食性皮膜がC、P、S、O、B、Hの
少なくとも1種または2種以上の元素と、Zn、Cr、
Ni、Cu、Sn、Pb、Cd、Ti、W、Co、A
l、Taのうち少なくとも1種または2種以上の元素か
らなる請求項1または2に記載の希土類−鉄−ボロン系
永久磁石の製造方法。
4. The corrosion-resistant coating comprises at least one element selected from C, P, S, O, B and H, or two or more elements, and Zn, Cr,
Ni, Cu, Sn, Pb, Cd, Ti, W, Co, A
The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1 or 2, comprising at least one element or two or more elements of 1 and Ta.
【請求項5】 耐食性皮膜が厚さ10μm以上の単層膜
である請求項1ないし4のいづれかに記載の希土類−鉄
−ボロン系永久磁石の製造方法。
5. The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1, wherein the corrosion-resistant coating is a single-layer coating having a thickness of 10 μm or more.
【請求項6】 耐食性皮膜が多層膜であって、磁石体と
接する皮膜の膜厚が0.1μm以上であることを特徴と
する請求項1ないし4のいずれかに記載の希土類−鉄−
ボロン系永久磁石の製造方法。
6. The rare earth-iron- according to claim 1, wherein the corrosion-resistant coating is a multi-layered coating and the coating in contact with the magnet body has a thickness of 0.1 μm or more.
Method for manufacturing boron permanent magnet.
【請求項7】 熱処理後、さらに耐食性皮膜を形成する
請求項1または2に記載の希土類−鉄−ボロン系永久磁
石の製造方法。
7. The method for producing a rare earth-iron-boron-based permanent magnet according to claim 1, further comprising forming a corrosion resistant film after the heat treatment.
JP7065517A 1995-02-23 1995-03-24 Manufacture of rare earth-iron-boron permanent magnet Pending JPH08264310A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7065517A JPH08264310A (en) 1995-03-24 1995-03-24 Manufacture of rare earth-iron-boron permanent magnet
US08/604,927 US5876518A (en) 1995-02-23 1996-02-22 R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
US09/176,724 US6254694B1 (en) 1995-02-23 1998-10-21 R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065517A JPH08264310A (en) 1995-03-24 1995-03-24 Manufacture of rare earth-iron-boron permanent magnet

Publications (1)

Publication Number Publication Date
JPH08264310A true JPH08264310A (en) 1996-10-11

Family

ID=13289310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065517A Pending JPH08264310A (en) 1995-02-23 1995-03-24 Manufacture of rare earth-iron-boron permanent magnet

Country Status (1)

Country Link
JP (1) JPH08264310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2007311117A (en) * 2006-05-17 2007-11-29 Hitachi High-Technologies Corp Electron lens and charged particle beam apparatus using the same
EP1968080A4 (en) * 2005-12-28 2009-11-25 Hitachi Metals Ltd RARE EARTH MAGNET AND METHOD FOR PRODUCING THE SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
EP1968080A4 (en) * 2005-12-28 2009-11-25 Hitachi Metals Ltd RARE EARTH MAGNET AND METHOD FOR PRODUCING THE SAME
US7655325B2 (en) 2005-12-28 2010-02-02 Hitachi Metals, Ltd. Rare earth magnet and method for producing same
JP4915349B2 (en) * 2005-12-28 2012-04-11 日立金属株式会社 Rare earth magnet and manufacturing method thereof
JP2007311117A (en) * 2006-05-17 2007-11-29 Hitachi High-Technologies Corp Electron lens and charged particle beam apparatus using the same

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
US4959273A (en) Corrosion-resistant permanent magnet and method for preparing the same
WO2007077809A1 (en) Rare earth magnet and method for producing same
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0569282B2 (en)
JP4552161B2 (en) Ultra-compact magnet with excellent corrosion resistance
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0554683B2 (en)
JPH0535216B2 (en)
JP4600627B2 (en) Rare earth permanent magnet manufacturing method
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
KR950003859B1 (en) Manufacturing method of corrosion resistant Nd-Fe-B type sintered magnet
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH09139307A (en) Anticorrosion permanent magnet