[go: up one dir, main page]

JPH08264039A - Superconducting cable - Google Patents

Superconducting cable

Info

Publication number
JPH08264039A
JPH08264039A JP7285330A JP28533095A JPH08264039A JP H08264039 A JPH08264039 A JP H08264039A JP 7285330 A JP7285330 A JP 7285330A JP 28533095 A JP28533095 A JP 28533095A JP H08264039 A JPH08264039 A JP H08264039A
Authority
JP
Japan
Prior art keywords
superconducting
wire
twisted
wires
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7285330A
Other languages
Japanese (ja)
Inventor
Norikiyo Koizumi
徳潔 小泉
Michitaka Ono
通隆 小野
Kotaro Hamashima
高太郎 浜島
Tsutomu Fujioka
勉 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP7285330A priority Critical patent/JPH08264039A/en
Publication of JPH08264039A publication Critical patent/JPH08264039A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To provide a superconducting cable capable of concurrently securing stability and reducing the AC loss. CONSTITUTION: This superconducting cable is provided with stranded wires twisted with multiple superconducting strands 11...11. The stranded wires are formed with multiple primary stranded wires 12...12 twisted with multiple superconducting strands 11...11, multiple secondary stranded wires 13...13 twisted with multiple primary stranded wires 12...12, and a tertiary stranded wire (high- order stranded wire) 14 twisted with multiple secondary stranded wires 13...13. The electrical resistance value for the unit length between the stranded wires of the same twist order is set larger between the stranded wires having a higher twist order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導パルスマグ
ネットあるいは交流マグネット等の超電導機器の安定性
の確保と交流損失の低減を図るようにした超電導ケーブ
ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting cable for ensuring stability and reducing AC loss of a superconducting device such as a superconducting pulse magnet or an AC magnet.

【0002】[0002]

【従来の技術】従来、核融合装置の超電導マグネットや
超電導トランス、超電導発電機、固定子巻線、限流器等
の超電導機器に使用される超電導ケーブルが知られてい
る。この内、特に超電導パルスマグネット又は交流マグ
ネットに好適な超電導ケーブルを図17に示す。
2. Description of the Related Art Conventionally, superconducting cables used for superconducting devices such as superconducting magnets, superconducting transformers, superconducting generators, stator windings and current limiting devices for nuclear fusion devices have been known. Of these, a superconducting cable suitable for a superconducting pulse magnet or an AC magnet is shown in FIG.

【0003】図17に示す超電導ケーブル1は、超電導
素線2を複数本撚り合せて一次撚線3を構成する一方、
この一次撚線3を複数本(束)撚り合せて二次撚線4を
構成し、さらに順次同様に撚り合わせて所望の高次撚線
を構成し、この高次撚線をコンジット5内に収納してい
る。
A superconducting cable 1 shown in FIG. 17 comprises a primary stranded wire 3 formed by twisting a plurality of superconducting element wires 2 together.
A plurality of the primary twisted wires 3 (bundles) are twisted together to form a secondary twisted wire 4, which is further twisted in the same manner to form a desired high-order twisted wire. It is stored.

【0004】しかしながら、このような高次撚線であっ
てもパルス条件等によっては、超電導ケーブル1の断面
方向に超電導素線2間を横切る磁束変化により結合電流
が流れ、この結合電流が素線2間を横切る時に生じるジ
ュール発熱による熱損失が大きくなって、常電導化する
おそれがあった。
However, even with such a high-order twisted wire, depending on the pulse conditions and the like, a coupling current flows due to a change in magnetic flux across the superconducting element wires 2 in the cross-sectional direction of the superconducting cable 1, and this coupling current is applied to the element wires. There was a risk that the heat loss due to Joule heat generated when crossing between the two became large, and that normal conduction was achieved.

【0005】そこで、超電導ケーブル1に発生する大き
な熱損失を防止する対策として、超電導素線2の表面に
高抵抗体あるいは電気絶縁体のコーティングを施し、超
電導素線2間の電気抵抗を大きくし、交流損失の発生を
低減させている。
Therefore, as a measure for preventing a large heat loss occurring in the superconducting cable 1, the surface of the superconducting element wire 2 is coated with a high resistance material or an electric insulator to increase the electric resistance between the superconducting element wires 2. , The occurrence of AC loss is reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た素線表面に電気絶縁又は高抵抗化処理を施した超電導
ケーブルにあっては、局所入熱等の外乱に起因して一部
の超電導素線が常電導転移すると、他の超電導素線も超
電導状態を維持できなくなり、その結果、超電導ケーブ
ル自体の安定性(超電導状態を良好に維持すること)が
悪くなるといった問題があった。
However, in the above-mentioned superconducting cable in which the surface of the wire is electrically insulated or has a high resistance, some of the superconducting wire is caused by disturbance such as local heat input. However, if the superconducting transition occurs, the other superconducting element wires cannot maintain the superconducting state, and as a result, the stability of the superconducting cable itself (maintaining a good superconducting state) deteriorates.

【0007】即ち、超電導素線間の高抵抗化対策は、各
超電導素線に流れる電流に偏りがある場合、あるいは導
体断面内に局所的な入熱がある場合には、電流の再配分
がスムーズに行なわれず、超電導状態の維持をスムーズ
にかつ安定的に行なうことができず、超電導ケーブルの
安定性を損う原因の1つとなっていた。
That is, as a measure for increasing the resistance between the superconducting wires, the current is redistributed when the currents flowing in the respective superconducting wires are biased or when there is local heat input in the conductor cross section. It was not performed smoothly, and the superconducting state could not be maintained smoothly and stably, which was one of the causes of impairing the stability of the superconducting cable.

【0008】例えば、ワイヤーモーション等の外乱で超
電導素線の一部が常電導転移した際に、超電導ケーブル
が超電導状態を維持するためには、隣接する他の超電導
素線に素早く電流を移行させることが重要である。しか
し、上述の如く、絶縁処理等により超電導素線間の電気
抵抗を大きくしてしまうと、素線間の電流移動(電流再
配分)が導体端部の電極を通る経路でしか行われないた
め、素線長に比例して時間を要し、特に長いケーブルで
は素早い電流移動は期待できない。この結果、超電導ケ
ーブルは高い安定性を得ることができず、容易にクエン
チする(超電導状態が崩れる)ことがあった。このよう
に、交流損失の低減と安定性の確保とはトレードオフの
関係にあり、両者を同時に実現することは困難であっ
た。
[0008] For example, in order to maintain the superconducting state of the superconducting cable when a part of the superconducting element wire is transferred to the normal conducting state due to disturbance such as wire motion, the current is quickly transferred to another adjacent superconducting element wire. This is very important. However, as described above, if the electric resistance between the superconducting wires is increased by the insulation treatment or the like, the current transfer (current redistribution) between the wires is performed only through the path passing through the electrodes at the conductor end. However, it takes time in proportion to the wire length, and it is not possible to expect a rapid current transfer with a particularly long cable. As a result, the superconducting cable may not be highly stable and may be easily quenched (the superconducting state may be lost). As described above, there is a trade-off relationship between reduction of AC loss and securing of stability, and it has been difficult to realize both at the same time.

【0009】このことは、各超電導素線の長さ(インダ
クタンス)の差や電流導入端子での接続電気抵抗の違い
により、各超電導素線に流れる電流に偏りが生じる場合
にも、同じ理由で安定性の低下が生じ、1本の超電導素
線の常電導転移により、超電導ケーブル全体の使用がで
きなくなる問題があった。
This is the same reason when the current flowing through each superconducting element wire is biased due to the difference in the length (inductance) of each superconducting element wire and the difference in the connection electric resistance at the current introducing terminal. There is a problem in that the stability deteriorates and the superconducting cable cannot be used as a whole due to the normal conduction transition of one superconducting element wire.

【0010】そこで、このような安定性の確保と交流損
失の低減とを同時に志向した超電導ケーブルが近年、提
案されている(例えば特開平7−14441号)。
Therefore, in recent years, a superconducting cable aiming at securing such stability and reducing AC loss at the same time has been proposed (for example, Japanese Patent Laid-Open No. 7-14441).

【0011】この超電導ケーブルは、大容量ケーブルや
パルスケーブル等に適用されるもので、超電導フィラメ
ント及び銅などの安定化材から成る複数本の超電導素線
を備え、この複数の超電導素線を上記と同様に順次撚り
合せて一次撚線、二次撚線、…、高次撚線を形成してい
る。この超電導ケーブルは、変動磁界に起因して生じる
素線間の結合電流による結合損失(交流損失)を低減す
る目的で、超電導素線の表面にホルマール等の絶縁体又
はCuNi、Cr等の高抵抗体を配した絶縁処理を施す
と共に、常電導転移した素線に流れる電流を速やかに分
流させてクエンチを防ぎ、安定性を確保する目的で、各
素線を電気的に短絡させる電気的短絡部を所定間隔毎に
形成している。
This superconducting cable is applied to a large capacity cable, a pulse cable, etc., and is provided with a plurality of superconducting element wires made of a stabilizing material such as a superconducting filament and copper. Similarly, the primary twisted wires, secondary twisted wires, ..., Higher-order twisted wires are formed by twisting them in sequence. This superconducting cable has a high resistance such as an insulator such as formal or CuNi, Cr or the like on the surface of the superconducting wire in order to reduce the coupling loss (AC loss) due to the coupling current between the wires caused by the fluctuating magnetic field. An electrical short-circuit part that electrically short-circuits each strand for the purpose of securing the stability while performing insulation treatment with the body arranged and quickly shunting the current flowing in the strand that has undergone normal conduction transition to prevent quenching and secure stability. Are formed at predetermined intervals.

【0012】しかしながら、この超電導ケーブルにあっ
ても、電気的短絡部の配置箇所や、そのピッチ、抵抗値
等の設計値選定にあたり、必ずしも明確な基準が確立さ
れておらず、また電気的短絡部の具体的な構成も明らか
ではなかったため、例えば数百メートルのケーブル長で
超電導素線を複数段に撚り合わせる場合等のケーブル使
用条件、撚り次数等の運用によっては、どの箇所にどれ
だけのピッチでどのようにして電気的短絡部を設けるの
か、その電気的短絡部の抵抗値をどのように決めるのか
等が明らかでなく、実用化が困難となる場合があった。
However, even in the case of this superconducting cable, no clear standard has been established in selecting the design location such as the location of the electrical short-circuited portion, its pitch, and the resistance value, and the electrical short-circuited portion. Since the specific configuration of the cable was not clear, for example, depending on the cable usage conditions such as when superconducting wires are twisted in multiple stages with a cable length of several hundred meters, and the operation of the twist order, etc. However, it is not clear how to provide the electrically short-circuited portion, how to determine the resistance value of the electrically short-circuited portion, etc., which may make practical application difficult.

【0013】本発明は、上述した従来技術の問題を考慮
してなされたもので、安定性の確保と交流損失の低減を
同時に図ることができる超電導ケーブルを提供すること
を、第1の目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is a first object of the present invention to provide a superconducting cable capable of ensuring stability and reducing AC loss at the same time. To do.

【0014】また、電流の再配分性や移行性を向上させ
て超電導状態を安定に維持すると共に、結合電流発生に
よる交流損失を軽減させた超電導ケーブルを提供するこ
とを、第2の目的とする。
A second object of the present invention is to provide a superconducting cable which improves the redistribution and transfer of current to maintain a stable superconducting state and reduces AC loss due to generation of a coupling current. .

【0015】さらに、電気的短絡部を設ける構成の利点
を活用しつつ、ケーブル運用に応じた電気的短絡部の配
置箇所、そのピッチ、抵抗値等の最適値選定の基準を構
築し、実用性を高めた超電導ケーブルを提供すること
を、第3の目的とする。また、電気的短絡部の構成を容
易に構築し、実用性を高めた超電導ケーブルを提供する
ことを、第4の目的とする。
Further, while utilizing the advantage of the structure in which the electrical short-circuit portion is provided, the criteria for selecting the optimum location such as the location of the electrical short-circuit portion, its pitch, the resistance value, etc. according to the cable operation are constructed and put into practical use. It is a third object to provide a superconducting cable having a high efficiency. Further, a fourth object is to provide a superconducting cable that is easily constructed by constructing the structure of the electrical short-circuit portion and has improved practicality.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明に係る超電導ケーブルは、超電
導素線を複数本撚り合せて一次撚線を構成し、この一次
撚線を複数本撚り合せて二次撚線を構成し、以後順次同
様に撚り合せて高次撚線を構成した超電導ケーブルにお
いて、撚り次数の同じ撚線間の単位長さ当りの電気抵抗
値が、撚り次数が高い撚線間ほど大きな値となるように
構成している。
In order to achieve the above object, a superconducting cable according to the invention as defined in claim 1 constitutes a primary stranded wire by twisting a plurality of superconducting element wires. In a superconducting cable in which multiple strands are twisted to form a secondary twisted wire, and then the same twisted order is used to form a higher twisted wire, the electrical resistance value per unit length between twisted wires with the same twisting order It is configured such that the higher the order, the greater the value between the twisted wires.

【0017】請求項2記載の発明では、高次撚線の最終
撚り次数をNとしたとき、(N−1)次以下の撚り次数
を持つ撚線のうち、少なくとも1つの任意次数の撚線外
表面に、高抵抗体の被膜を形成したり、また、請求項3
に記載したように、高抵抗体の被膜は、撚り次数の低い
撚線より撚り次数の高い撚線ほど膜厚を厚く形成した
り、さらに、請求項4に記載したように、高抵抗体の被
膜は、撚り次数の低い撚線より撚り次数の高い撚線ほど
電気抵抗の大きな被膜材料で形成している。
In the invention according to claim 2, when the final twist order of the high order twisted wire is N, at least one twisted wire of any order among the twisted wires having a twist order of (N-1) order or less A high-resistivity film is formed on the outer surface, and also,
As described above, the high-resistivity film may be formed such that the twisted wire having a higher twist order has a larger film thickness than the twisted wire having a lower twist order, and further, as described in claim 4, The coating is formed of a coating material having a higher electrical resistance in a twisted wire having a higher twist order than in a twisted wire having a lower twist order.

【0018】請求項5記載の発明では、撚線は撚り次数
が高くなるに従って撚りピッチが大きくなるように設定
されたり、さらに、請求項6に記載したように、一次撚
線は、超電導素線の直径をdとしたとき、撚りピッチL
p1をLp1≦20dの範囲に設定したり、また、請求項7
に記載したように、二次撚線は、一次撚線の外接円の直
径をD1 としたとき、撚りピッチLp2をLp2≦30D1
の範囲に設定するとともに、三次撚線は、二次撚線の外
接円の直径をD2 としたとき、撚りピッチLp3をLp3≦
40D2 の範囲に設定している。
In the invention according to claim 5, the twisted wire is set so that the twisting pitch becomes larger as the twisting order becomes higher. Further, as described in claim 6, the primary twisted wire is a superconducting element wire. The twist pitch L
8. Set p1 within the range of Lp1 ≦ 20d, and claim 7.
As described in Section 1, when the diameter of the circumscribed circle of the primary twisted wire is D1, the twisted pitch Lp2 is Lp2 ≦ 30D1.
In the third twisted wire, when the diameter of the circumscribed circle of the second twisted wire is D2, the twist pitch Lp3 is set to Lp3 ≤
The range is set to 40D2.

【0019】請求項8記載の発明では、高次撚線の構成
後、高次撚線に臨界荷重以下の引張荷重を印加させて撚
線間を圧着させたり、また、請求項9に記載したよう
に、撚りピッチがLpnで撚り次数がNの高次撚線は、
(N−1)次の撚線間の電気抵抗が、撚りピッチLp1の
一次撚線の超電導素線間の電気抵抗の(Lpn/Lp1)の
2乗倍以上に設定したものである。
In the invention according to claim 8, after the high-order twisted wire is constructed, a tensile load equal to or lower than the critical load is applied to the higher-order twisted wire to crimp between the twisted wires. Thus, a high-order twisted wire with a twist pitch of Lpn and a twist order of N is
(N-1) The electrical resistance between the next twisted wires is set to be equal to or more than the square of (Lpn / Lp1) of the electrical resistance between the superconducting element wires of the primary twisted wire of the twist pitch Lp1.

【0020】請求項10記載の発明では、超電導素線を
複数本撚り合せて一次撚線を構成し、この一次撚線を複
数本撚り合せて二次撚線を構成し、以後順次同様に撚り
合せて高次撚線を構成した超電導ケーブルにおいて、上
記高次撚線を不活性ガスあるいは真空中で昇温させて撚
りの交差部を固相拡散接合し、電気的短絡部を形成して
いる。
In a tenth aspect of the present invention, a plurality of superconducting element wires are twisted together to form a primary twisted wire, and a plurality of these primary twisted wires are twisted together to form a secondary twisted wire. In a superconducting cable that also composes a high-order twisted wire, the higher-order twisted wire is heated in an inert gas or vacuum to solid-phase diffusion bond the intersection of twists to form an electrical short circuit part. .

【0021】請求項11記載の発明に係る超電導ケーブ
ルは、複数本の超電導素線から成る撚線と、この撚線の
撚りピッチの整数倍に相当する当該撚線の交差位置にお
ける上記超電導素線の単位長さ当たりの電気抵抗値を上
記交差位置を挟む位置における上記電気抵抗値よりも小
さくするための電気抵抗を有する電気的短絡部とを備
え、この電気的短絡部を上記交差位置に設けている。
The superconducting cable according to the invention of claim 11 is a superconducting element wire at a crossing position of a twisted wire composed of a plurality of superconducting element wires and the twisted wire corresponding to an integer multiple of the twist pitch of the twisted wire. And an electric short-circuit portion having an electric resistance for making the electric resistance value per unit length of the electric resistance value smaller than the electric resistance value at positions sandwiching the intersection position, and the electric short-circuit portion is provided at the intersection position. ing.

【0022】ここで、上記超電導素線の長手方向の熱拡
散距離をldとし、当該超電導素線の熱伝導率及びその
熱容量をκ及びρCとし、当該超電導素線に対し外乱の
加わる時間をτqとしたとき、上記熱拡散距離ldを、
Here, the thermal diffusion distance in the longitudinal direction of the superconducting element wire is ld, the thermal conductivity of the superconducting element wire and its heat capacity are κ and ρC, and the time when disturbance is applied to the superconducting element wire is τq. And the thermal diffusion distance ld is

【数5】 の式で求め、且つ、上記電気的短絡部の電気抵抗値をR
cとし、上記超電導素線の常電導転移時における単位長
さ当たりの電気抵抗値をRnとし、当該超電導素線の超
電導特性及びその冷媒条件で定まる制限電流値及び臨界
電流値をIlim及びIcとしたとき、上記電気的短絡
部の電気抵抗値Rcを、
(Equation 5) And the electric resistance value of the electric short-circuited portion is R
c, the electric resistance value per unit length of the superconducting element wire at the time of normal conduction transition is Rn, and the limiting current value and the critical current value determined by the superconducting characteristics of the superconducting element wire and its refrigerant conditions are Ilim and Ic. Then, the electrical resistance value Rc of the electrical short-circuited portion is

【数6】 2Rc/(2Rc+Rn×ld)≦Ilim /Ic の条件式を満たす範囲に設定している。## EQU6 ## The range is set to satisfy the conditional expression of 2Rc / (2Rc + Rn × ld) ≦ Ilim / Ic.

【0023】請求項12記載の発明に係る超電導ケーブ
ルは、複数本の超電導素線から成る撚線と、この撚線の
長手方向に沿って一定間隔毎に配置した位置における上
記超電導素線の単位長さ当たりの電気抵抗値を上記配置
位置を挟む位置における上記電気抵抗値よりも小さくす
るための電気抵抗を有する電気的短絡部とを備え、この
電気的短絡部を上記配置位置に設けている。
A superconducting cable according to a twelfth aspect of the present invention is a unit of the superconducting element wire in which a twisted wire composed of a plurality of superconducting element wires and the superconducting element wires at positions arranged at regular intervals along the longitudinal direction of the twisted wire. An electrical short-circuit portion having an electric resistance for making the electric resistance value per length smaller than the electric resistance value at positions sandwiching the arrangement position, and the electric short-circuit portion is provided at the arrangement position. .

【0024】ここで、上記電気的短絡部間の距離をlc
とし、上記超電導素線の長手方向の熱拡散距離をldと
し、当該超電導素線の常電導転移時における電気抵抗値
をRnとし、上記電気的短絡部の電気抵抗値をRcと
し、上記常電導転移した上記超電導素線及びこの超電導
素線に隣接する超電導状態を維持している超電導素線の
互いのインピーダンス特性で定まる単位長さ当たりの漏
れインダクタンスをLとし、上記超電導素線の電気抵抗
値Rn、上記電気的短絡部の電気抵抗値Rc、及び上記
漏れインダクタンスLで定まる回路時定数をτcとし、
上記超電導素線に対し過渡熱伝達が支配する時間をτh
としたとき、上記熱拡散距離ldが上記電気的短絡部間
の距離lcよりも小さいとき(ld<lc)、当該電気
的短絡部間の距離lcを、
Here, the distance between the electrical short-circuited portions is lc
The thermal diffusion distance in the longitudinal direction of the superconducting element wire is ld, the electric resistance value of the superconducting element wire at the time of normal conduction transition is Rn, the electric resistance value of the electrical short circuit portion is Rc, and the normal conduction value is Let L be the leakage inductance per unit length determined by the mutual impedance characteristics of the superconducting element wire that has transferred and the superconducting element wire that is adjacent to this superconducting element wire and that maintains the superconducting state, and let L be the electrical resistance value of the superconducting element wire. Let τc be the circuit time constant determined by Rn, the electrical resistance value Rc of the electrical short-circuited portion, and the leakage inductance L,
Τh is the time during which transient heat transfer is dominant for the superconducting wire.
When the thermal diffusion distance ld is smaller than the distance lc between the electrical short-circuited portions (ld <lc), the distance lc between the electrical short-circuited portions is

【数7】 の条件式を満たす範囲に設定すると共に、上記熱拡散距
離ldが上記電気的短絡部間の距離lcよりも大きいと
き(ld>lc)、当該電気的短絡部間の距離lcを、
(Equation 7) When the thermal diffusion distance ld is larger than the distance lc between the electrical short-circuited portions (ld> lc), the distance lc between the electrical short-circuited portions is set as follows:

【数8】 の条件式を満たす範囲に設定している。(Equation 8) It is set within the range that satisfies the conditional expression of.

【0025】請求項13記載の発明では、前記撚線は、
前記複数本の超電導素線を互いに撚り合わせて成る一次
の撚線及びこの一次の撚線を互いに撚り合わせて成る二
次の撚線を含む高次撚線であり、この高次撚線の内の各
次の撚線における各撚りピッチの最小公倍数が前記電気
的短絡部間の距離と等しくなる条件で上記各撚りピッチ
を設定している。
In the invention of claim 13, the twisted wire is
A high-order twisted wire including a primary twisted wire formed by twisting the plurality of superconducting wires and a secondary twisted wire formed by twisting the primary twisted wires with each other. The above-mentioned twist pitches are set under the condition that the least common multiple of each twist pitch in each next twisted wire is equal to the distance between the electrical short-circuited portions.

【0026】請求項14記載の発明では、前記高次撚線
の各次の各撚りピッチの最小公倍数が前記電気的短絡部
間の距離よりも大きいとき、上記高次撚線の内の一次か
ら任意次数までの撚線の各撚りピッチの最小公倍数が上
記電気的短絡部間の距離よりも小さくなるときの上記一
次から任意次数までの撚線に上記電気的短絡部を設けて
いる。
According to a fourteenth aspect of the present invention, when the least common multiple of each twist pitch of each higher order twisted wire is larger than the distance between the electrical short-circuited parts, the first higher order twisted wire The electrical short circuit portion is provided in the stranded wire from the first order to the arbitrary order when the least common multiple of each twist pitch of the twisted wire up to the arbitrary order is smaller than the distance between the electrical short circuit portions.

【0027】請求項15記載の発明に係る超電導ケーブ
ルは、複数本の超電導素線から成る撚線を備えた構成と
し、上記超電導素線に対して外部磁界の変化に起因して
生じる誘導起電力と、上記撚線の撚りピッチ及び上記超
電導素線の長手方向の熱拡散距離の内のいずれか一方で
定まる当該超電導素線の常電導転移時の発生電圧とに基
づいて、上記撚りピッチを上記誘導起電力が上記発生電
圧よりも小さい条件を満足する範囲に設定している。
A superconducting cable according to a fifteenth aspect of the present invention has a structure provided with a twisted wire composed of a plurality of superconducting element wires, and an induced electromotive force generated in the superconducting element wire due to a change in an external magnetic field. And, based on the twisting pitch of the twisted wire and the generated voltage at the time of normal conduction transition of the superconducting element wire determined by one of the longitudinal thermal diffusion distances of the superconducting element wire, the twisting pitch is The induced electromotive force is set to a range that satisfies the condition that it is smaller than the generated voltage.

【0028】請求項16記載の発明では、前記撚線は、
前記複数本の超電導素線を互いに撚り合わせて成る一次
の撚線及びこの一次の撚線を互いに撚り合わせて成る二
次の撚線を含む高次撚線であり、この高次撚線の各次の
撚線毎の前記誘導起電力の総和と、当該各次の撚線の各
撚りピッチ及び前記熱拡散距離の内のいずれか一方で定
まる常電導転移時の発生電圧とに基づいて、上記各撚り
ピッチを上記誘導起電力の総和が上記発生電圧よりも小
さい条件を満足する範囲に設定している。
In the sixteenth aspect of the present invention, the twisted wire is
A high-order twisted wire including a primary twisted wire formed by twisting the plurality of superconducting wires together and a secondary twisted wire formed by twisting together the primary twisted wires, and each of the high-order twisted wires Based on the total sum of the induced electromotive force for each next twisted wire, the twisting pitch of the next twisted wire, and the generated voltage at the time of normal conduction transition determined by any one of the thermal diffusion distances, Each twist pitch is set in a range that satisfies the condition that the total sum of the induced electromotive forces is smaller than the generated voltage.

【0029】請求項17記載の発明に係る超電導ケーブ
ルは、複数本の超電導素線から成る撚線を備えた構成と
し、当該撚線は同心円の半径が異なる円周方向に層状に
同じピッチで撚り合わせて成る複数層の撚線であり、こ
の複数層の撚線の撚りピッチに相当する各交差位置にお
ける上記超電導素線の単位長さ当たりの電気抵抗値を上
記交差位置を挟む位置における上記電気抵抗値よりも小
さくするための電気抵抗を有する電気的短絡部を当該交
差位置に設けている。
According to a seventeenth aspect of the present invention, a superconducting cable is provided with a twisted wire composed of a plurality of superconducting element wires, and the twisted wire is twisted in layers in the circumferential direction having different concentric circle radii at the same pitch. It is a twisted wire of a plurality of layers that are combined, and the electric resistance value per unit length of the superconducting element wire at each crossing position corresponding to the twist pitch of the twisted wire of the plurality of layers is An electric short circuit portion having an electric resistance for making the resistance value smaller than the resistance value is provided at the intersection position.

【0030】請求項18記載の発明では、前記複数層の
撚線の内の隣接する2つの層の撚線の撚り方向を互いに
逆方向に設定している。
According to the eighteenth aspect of the present invention, the twisting directions of two adjacent layers of the twisted wires of the plurality of layers are set to be opposite to each other.

【0031】請求項19記載の発明では、前記複数層の
層数は偶数である。
In the nineteenth aspect of the invention, the number of layers of the plurality of layers is an even number.

【0032】請求項20記載の発明では、前記撚線を収
納するコンジットを更に備え、前記電気的短絡部は、当
該コンジットの軸方向に直交する上記撚線のボイド率を
前記交差位置で小さくする手段を備えている。
According to a twentieth aspect of the invention, a conduit for accommodating the twisted wire is further provided, and the electrical short-circuit portion reduces the void ratio of the twisted wire orthogonal to the axial direction of the conduit at the intersecting position. Equipped with means.

【0033】[0033]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)以下、本発明の第1実施形態について
添付図面を参照して説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the accompanying drawings.

【0034】図1は本発明に係る3×3×3型超電導ケ
ーブル10の代表例を示す斜視図である。この超電導ケ
ーブル10は、核融合装置の超電導マグネット,超電導
発電機,超電導トランス,固定子巻線,限流器等の超電
導機器に用いられる超電導撚線導体である。この超電導
ケーブル10は超電導パルスマグネットや交流マグネッ
ト用に好適に用いられる多重撚線構造の超電導撚線導体
である。超電導ケーブル10が核融合装置の超電導マグ
ネット用に使用される場合には、ヘリウム冷媒等を充填
したコンジット5(図8参照)内に収容され、他の超電
導機器に使用される場合には、絶縁スペーサで被覆され
る。
FIG. 1 is a perspective view showing a typical example of a 3 × 3 × 3 type superconducting cable 10 according to the present invention. The superconducting cable 10 is a superconducting stranded wire conductor used in superconducting devices such as a superconducting magnet of a nuclear fusion device, a superconducting generator, a superconducting transformer, a stator winding, and a current limiter. This superconducting cable 10 is a superconducting stranded wire conductor having a multiple stranded wire structure which is preferably used for a superconducting pulse magnet and an AC magnet. When the superconducting cable 10 is used for a superconducting magnet of a nuclear fusion device, it is housed in a conduit 5 (see FIG. 8) filled with a helium refrigerant or the like, and when used for other superconducting equipment, it is insulated. Covered with spacers.

【0035】超電導ケーブル10は例えば直径数mmφ程
度の多重撚線構造の超電導撚線導体であり、高次(N
次:N≧2)の撚り次数を持つ撚線から構成される。図
1に示された超電導ケーブル10は、3次の撚り次数を
有する超電導撚線導体であり、超電導素線11,一次撚
線12,二次撚線13,および三次撚線14から構成さ
れる。
The superconducting cable 10 is, for example, a superconducting stranded wire conductor having a multi-stranded wire structure with a diameter of about several mmφ, and has a higher order (N
Next: Composed of twisted wires having a twist order of N ≧ 2). The superconducting cable 10 shown in FIG. 1 is a superconducting stranded wire conductor having a third twist order, and is composed of a superconducting element wire 11, a primary stranded wire 12, a secondary stranded wire 13, and a tertiary stranded wire 14. .

【0036】超電導素線11には、ヒステリシス損失を
低減するために、例えば数μmφ程度の同一径の超電導
フィラメントを多数本、具体的には数万本備えた超電導
多芯線が用いられる。超電導素線11は1mmφ以下、例
えば0.2mmφ程度の外径を有する。超電導素線を構成
する超電導多芯線には、多芯線軸に垂直な磁界(横磁
界)に対する超電導フィラメント間の電磁気的結合やこ
の結合に伴う電磁損失(フィラメント間結合損失)を抑
制するために、通常撚り(ツイスト)が施される。各超
電導フィラメントはNbTiやNb3 Sn等の超電導材
料をCuNi等の安定化銅で被覆して構成される。
As the superconducting element wire 11, a superconducting multi-core wire having a large number of superconducting filaments of the same diameter of, for example, several μmφ, specifically, tens of thousands is used in order to reduce the hysteresis loss. The superconducting element wire 11 has an outer diameter of 1 mmφ or less, for example, about 0.2 mmφ. In the superconducting multi-core wire that constitutes the superconducting element wire, in order to suppress electromagnetic coupling between superconducting filaments to a magnetic field (transverse magnetic field) perpendicular to the multi-core axis and electromagnetic loss (coupling loss between filaments) associated with this coupling, Usually twisted. Each superconducting filament is formed by coating a superconducting material such as NbTi or Nb 3 Sn with stabilized copper such as CuNi.

【0037】超電導フィラメントを撚り合せて構成され
た超電導多芯線のフィラメント部の外周にシース部が必
要に応じて設けられ、このシース部は酸化銅,クロム,
CuNi等の高抵抗体あるいは銀等の低抵抗体の被膜で形成
される。
If necessary, a sheath portion is provided on the outer periphery of the filament portion of the superconducting multifilamentary wire formed by twisting the superconducting filaments. The sheath portion is made of copper oxide, chromium,
It is formed of a high resistance film such as CuNi or a low resistance film such as silver.

【0038】また、超電導ケーブル10の一次撚線12
は超電導素線11を複数本、例えば3本撚り合せて構成
される一方、撚り合された一次撚線12をさらに複数本
(束)撚り合せて二次撚線13が構成される。さらに、
撚り合された二次撚線13を複数本(束)撚り合せて三
次撚線14が構成され、この三次撚線14により三次の
撚り次数を有する超電導ケーブル10が構成される。各
撚線12,13,14の撚りピッチは撚り次数が高くな
るに従って大きくなるように設定される。超電導ケーブ
ル10は撚り次数がN(N≧2)の撚線で構成され、一
般的には、撚り次数Nは6〜8であることが多い。
Further, the primary twisted wire 12 of the superconducting cable 10
While a plurality of, for example, three superconducting element wires 11 are twisted together, a plurality of (twisted) primary twisted wires 12 that are twisted together (bundle) are twisted together to form a secondary twisted wire 13. further,
A plurality of (twisted) secondary twisted wires 13 that have been twisted together are bundled to form a tertiary twisted wire 14, and the tertiary twisted wire 14 constitutes the superconducting cable 10 having a third twisted order. The twist pitch of each twisted wire 12, 13, 14 is set to increase as the twist order increases. The superconducting cable 10 is composed of a twisted wire having a twist order of N (N ≧ 2), and in general, the twist order N is often 6 to 8.

【0039】一方、この超電導ケーブル10は図2に示
すように、一次撚線の外表面に薄い一次コーティング材
16が電気抵抗体として被着(コーティング)される。
一次コーティング材16が施された一次撚線12を複数
本撚り合せた二次撚線13の外表面にも電気抵抗体とし
て二次コーティング材17が被着される。また、二次撚
線13を撚り合せた三次撚線14の外表面にも三次コー
ティング材18が被着される。各コーティング材16,
17,18はクロム,酸化銅,CuNi,ステンレス,
タングステン,ニッケル,硫化銅,ホルマール,アモル
ファス合金,窒化アルミ等の高抵抗体材料あるいは半導
体等の抵抗体材料で形成される。三次コーティング材1
8は四次撚線(図示せず)のための被膜である。なおホ
ルマールのコーティング厚さは数μm程度が望ましい。
On the other hand, in this superconducting cable 10, as shown in FIG. 2, a thin primary coating material 16 is applied (coated) on the outer surface of the primary stranded wire as an electric resistor.
The secondary coating material 17 is also applied as an electric resistor to the outer surface of the secondary stranded wire 13 obtained by twisting a plurality of the primary stranded wires 12 to which the primary coating material 16 has been applied. Further, the tertiary coating material 18 is also applied to the outer surface of the tertiary stranded wire 14 obtained by twisting the secondary stranded wire 13. Each coating material 16,
17, 18 are chromium, copper oxide, CuNi, stainless steel,
It is formed of a high resistance material such as tungsten, nickel, copper sulfide, formal, amorphous alloy, aluminum nitride or the like, or a resistance material such as a semiconductor. Tertiary coating material 1
Reference numeral 8 is a coating for the fourth twisted wire (not shown). The coating thickness of formal is preferably about several μm.

【0040】各コーティング材16,17,18はスパ
ッタリング、電気メッキ、焼付け塗布、溶射、どぶ付け
等で対応する撚り次数の撚線12,13,14にコーテ
ィングされる。スパッタリング等でコーティングする
と、各撚り次数の撚線12,13,14の外接円側の外
表面にだけ良好な所定膜厚のコーティング(被膜)が施
され、コーティング材が撚線の内部に回り込んで侵入す
ることがないので、コーティング表面積が小さくコーテ
ィング材料の節約が図れる一方、一次撚線12を構成す
る超電導素線11間の接点にはコーティング材が施され
ず、超電導素線11同士を相互に直接接触させることが
でき、超電導素線11間の電気抵抗を極めて小さくし、
隣接する超電導素線11への電流配分(再分配)あるい
は電流移行がスムーズになり、高い安定性が得られる。
安定性とは超電導状態を崩すことなく、超電導状態を良
好に安定して維持できる性質をいう。
The respective coating materials 16, 17, 18 are coated on the corresponding twisted wires 12, 13, 14 by sputtering, electroplating, baking coating, thermal spraying, dripping or the like. When the coating is performed by sputtering or the like, a coating (coating) having a favorable predetermined film thickness is applied only to the outer surface on the circumscribing circle side of the twisted wires 12, 13, 14 of each twist order, and the coating material wraps around the inside of the twisted wire. Since the coating surface area is small and the coating material can be saved, the coating material is not applied to the contact points between the superconducting element wires 11 forming the primary twisted wire 12, and the superconducting element wires 11 are mutually protected. Can be brought into direct contact with the superconducting wire 11 and the electric resistance between the superconducting wires 11 can be extremely reduced.
Current distribution (redistribution) or current transfer to the adjacent superconducting element wires 11 becomes smooth, and high stability is obtained.
Stability refers to the property of maintaining the superconducting state in a good and stable manner without breaking the superconducting state.

【0041】各撚り次数の撚線12,13,14の外表
面に形成されるコーティング材16,17,18の膜厚
は、撚り次数が高くなる高次の撚線ほど厚く形成され、
高次の撚線間の単位長さ当りの電気抵抗値が低次側の撚
線間の電気抵抗値より大きく設定される。高次側の撚線
の電気抵抗値を低次側撚線の電気抵抗値より大きくする
ことで、高次側撚線間の電気抵抗値を大きくあるいは絶
縁状態とすることができ、交流による交番磁界によって
生じる外部磁場の変化に伴い超電導ケーブル10の断面
内に誘起される磁束の変化に起因した渦電流の大きなパ
ス(経路)を無くすことができ、渦電流の発生に伴う交
流損失を低減させることができる。低次側の撚線、例え
ば一次撚線12は外表面にコーティングが施され、超電
導素線11同士は直接接触するので、電気抵抗が極めて
小さく、磁束の変化により渦電流が発生しても、鎖交す
る磁束が小さいので、交流損失は極めて小さい。
The coating materials 16, 17 and 18 formed on the outer surfaces of the twisted wires 12, 13 and 14 of the respective twist orders have a thicker film thickness as the twist order becomes higher.
The electric resistance value per unit length between the high-order twisted wires is set to be larger than the electric resistance value between the low-order twisted wires. By making the electrical resistance value of the high-order twisted wire larger than that of the low-order twisted wire, the electrical resistance value between the high-order twisted wires can be increased or made into an insulated state. It is possible to eliminate a large path (path) of the eddy current due to the change of the magnetic flux induced in the cross section of the superconducting cable 10 with the change of the external magnetic field caused by the magnetic field, and reduce the AC loss accompanying the generation of the eddy current. be able to. Since the outer surface of the low-order stranded wire, for example, the primary stranded wire 12 is coated, and the superconducting element wires 11 are in direct contact with each other, the electric resistance is extremely small, and even if an eddy current is generated due to a change in magnetic flux, Since the interlinking magnetic flux is small, the AC loss is extremely small.

【0042】次に超電導ケーブル10における一次,二
次および三次の撚線12,13,14の撚りピッチ(ツ
イストピッチ)と超電導素線(撚線)間の接触電気抵抗
の関係を図3に示す。
Next, FIG. 3 shows the relationship between the twisting pitch (twist pitch) of the primary, secondary and tertiary stranded wires 12, 13 and 14 in the superconducting cable 10 and the contact electric resistance between the superconducting element wires (stranded wires). .

【0043】この図3から撚りピッチが短かいほど素線
間あるいは撚線間の接触電気抵抗が小さくなっていくこ
とがわかる。具体的には、(一次撚線12の撚りピッチ
Lp1/超電導素線径d)と(超電導素線11間の電気抵
抗)との関係を符号aで示す。符号bは二次撚線13の
(撚りピッチLp2/一次撚線外接円径D1 )と(一次撚
線12間の電気抵抗)との関係を示し、符号cは(三次
撚線14の撚りピッチLp2/二次撚線外接円径D2 )と
(二次撚線13間の電気抵抗)との関係をそれぞれ示し
ている。
It can be seen from FIG. 3 that the shorter the twist pitch, the smaller the contact electric resistance between the strands or between the strands. Specifically, the relationship between (twisting pitch Lp1 of the primary twisted wire 12 / superconducting element wire diameter d) and (electrical resistance between the superconducting element wires 11) is indicated by symbol a. The symbol b indicates the relationship between the (twisting pitch Lp2 / the primary tangential line circumscribing circle diameter D1) of the secondary twisted wire 13 and the (electrical resistance between the primary twisted wires 12), and the symbol c indicates the (twisted pitch of the tertiary twisted wire 14). The relationship between Lp2 / secondary twisted wire circumscribed circle diameter D2) and (electrical resistance between the second twisted wires 13) is shown.

【0044】一次撚線12では符号aに示すように撚り
ピッチLp1が超電導素線径dのほぼ20倍以下になると
素線間電気抵抗が急激に減少し、15倍程度以下になる
と、超電導素線11の撚り状態がタイトされることがわ
かる。すなわち、一次撚線12では撚りピッチLp1が超
電導素線径dのほぼ20倍を超えると撚りがルーズにな
り、15倍より少ないと撚りがタイト状態となる。図3
から、一次撚線12の場合には、撚りピッチLp1が超電
導素線径dのほぼ20倍以下、好ましくは15≦Lp1/
d≦20にあることが望ましい。
In the primary stranded wire 12, when the twisting pitch Lp1 becomes approximately 20 times or less of the diameter d of the superconducting element wire as shown by the symbol a, the electrical resistance between the element wires sharply decreases, and when it becomes about 15 times or less, the superconducting element It can be seen that the twisted state of the wire 11 is tight. That is, in the primary twisted wire 12, the twist becomes loose when the twist pitch Lp1 exceeds about 20 times the superconducting element wire diameter d, and when the twist pitch Lp1 is less than 15 times, the twist becomes tight. FIG.
Therefore, in the case of the primary twisted wire 12, the twist pitch Lp1 is approximately 20 times or less of the superconducting element wire diameter d, preferably 15 ≦ Lp1 /
It is desirable that d ≦ 20.

【0045】また、図3を参照すると、二次撚線13の
場合には、撚りピッチLp2が一次撚線の外接円径D1 の
ほぼ30倍以下になると、一次撚線12間の電気抵抗が
急激に減少し、また、25倍以下になると二次撚線13
を構成する一次撚線12の撚り状態がタイトされること
がわかる。したがって、二次撚線13の場合には、撚り
ピッチLp2が一次撚線12の外接円径D1 のほぼ30倍
以下、好ましくは25≦Lp2/D1 ≦30の範囲にある
ことが望ましい。三次撚線14の場合にも、同様に、撚
りピッチLp3が二次撚線13の外接円径D2 のほぼ40
倍以下、好ましくは35≦Lp3/D2 ≦40の範囲にあ
ることが望ましい。
Further, referring to FIG. 3, in the case of the secondary twisted wire 13, when the twisting pitch Lp2 becomes about 30 times or less of the circumscribed circle diameter D1 of the primary twisted wire, the electrical resistance between the primary twisted wires 12 is reduced. It decreases sharply, and when it becomes 25 times or less, the secondary twisted wire 13
It can be seen that the twisted state of the primary twisted wire 12 constituting the above is tight. Therefore, in the case of the secondary twisted wire 13, it is desirable that the twisting pitch Lp2 is approximately 30 times or less of the circumscribed circle diameter D1 of the primary twisted wire 12, and preferably in the range of 25≤Lp2 / D1≤30. Similarly, in the case of the tertiary twisted wire 14, the twist pitch Lp3 is about 40 of the circumscribed circle diameter D2 of the secondary twisted wire 13.
It is desirable that it is not more than twice, preferably in the range of 35≤Lp3 / D2≤40.

【0046】一般的には、図3から超電導ケーブル10
は撚線の撚り次数が小さくなるほど撚りピッチを小さく
していけば、超電導素線間あるいは該当する撚り次数の
撚線間の接触電気抵抗が小さくなって、隣接する超電導
素線11あるいは低圧側撚線への電流分配あるいは電流
移行がスムーズに行なわれ、超電導状態の維持、すなわ
ち安定性の確保が図れる。
Generally, the superconducting cable 10 from FIG.
If the twisting pitch of the twisted wire becomes smaller as the twisting degree becomes smaller, the contact electric resistance between the superconducting element wires or between the twisted wires of the corresponding twisting degree becomes smaller, and the adjacent superconducting element wires 11 or the low-voltage side twisted wires are twisted. Current can be smoothly distributed to or transferred to the wires, and the superconducting state can be maintained, that is, stability can be ensured.

【0047】具体的に、超電導ケーブル10の各撚線1
2,13,14のうち、一次撚線12を構成する超電導
素線11間は接点を介して直接接触しており、電気的結
合力が強く、超電導素線11間の電気抵抗が小さい。こ
のため、超電導ケーブル10に何らかの原因で、例えば
局所的な入熱により超電導ケーブル10を構成する超電
導素線11の1本が常電導転移すると、常電導転移した
超電導素線11に隣接する周辺の複数本の超電導素線1
1に多くの電流が素早く移行し、常電導転移した超電導
素線11のジュール発熱を減少させ、この素線11を再
び超電導状態に回復させることができる。すなわち、撚
り次数の小さな一次撚線12では超電導素線11間の電
気的結合力が強く、相互インダクタンスが大きく、超電
導状態を維持する隣接する周辺の超電導素線との間に生
じる迅速な電流移行性や電流再配分性により、常電導状
態の超電導素線11に流れる電流を関連する隣接の超電
導素線に素早く案内し、再び超電導状態に維持すること
ができるので、安定性の向上を図ることができる。
Specifically, each twisted wire 1 of the superconducting cable 10
Out of 2, 13, and 14, the superconducting element wires 11 forming the primary twisted wire 12 are in direct contact with each other via a contact point, have a strong electric coupling force, and have a small electric resistance between the superconducting element wires 11. Therefore, if for some reason, for example, one of the superconducting element wires 11 forming the superconducting cable 10 undergoes normal conduction due to local heat input to the superconducting cable 10, the superconducting element wire 11 adjacent to the superconducting element wire 11 that has undergone the normal conduction transition will be Multiple superconducting wires 1
A large amount of current can be rapidly transferred to 1 to reduce the Joule heat generation of the superconducting element wire 11 that has undergone the normal conduction transition, and the element wire 11 can be restored to the superconducting state again. That is, in the primary stranded wire 12 having a small twist order, the electric coupling force between the superconducting element wires 11 is strong, the mutual inductance is large, and a rapid current transfer occurs between adjacent superconducting element wires maintaining the superconducting state. The current and the current redistribution property, it is possible to quickly guide the current flowing through the superconducting element wire 11 in the normal conducting state to the adjacent superconducting element wire and maintain the superconducting state again, so that the stability is improved. You can

【0048】したがって、より小さな素線間電気抵抗を
得たい一次撚線12では、撚りピッチLp1を超電導素線
径dの20倍以下、すなわちLp1/d≦20に設定する
ことで、超電導素線11間に良好な電気接触を確保し、
高い安定性を維持することができる。超電導ケーブル1
0は一般には撚り次数の高い6次あるいは7次の撚線が
用いられ、この高次の撚線が使用される場合、二次およ
び三次撚線13,14は交流損失の増加に関わらないの
で、低次側の撚線となる。二次撚線13および三次撚線
14程度までの低次側撚線は一次撚線12と同様に、撚
線間の電気抵抗を小さく保持することが好ましい。この
ためには、二次撚線13の場合には撚りピッチLp2を一
次撚線12の外接円径D1 の30倍以下、三次撚線14
の場合には撚りピッチLp3を二次撚線13の外接円径D
2 の40倍以下にすることで、安定性を向上させ、交流
損失の少ない超電導ケーブルが得られる。
Therefore, in the primary stranded wire 12 for which a smaller electric resistance between strands is desired, the twist pitch Lp1 is set to 20 times or less of the diameter d of the superconducting element, that is, Lp1 / d≤20. Ensure good electrical contact between 11
High stability can be maintained. Superconducting cable 1
0 is generally a 6th or 7th twisted wire with a high twist order. When this higher twisted wire is used, the secondary and tertiary twisted wires 13 and 14 do not contribute to the increase in AC loss. , It becomes a low-order stranded wire. As with the primary twisted wire 12, it is preferable that the secondary twisted wire 13 and the lower twisted wires up to about the tertiary twisted wire 14 keep the electrical resistance between the twisted wires low. To this end, in the case of the secondary twisted wire 13, the twist pitch Lp2 is 30 times or less of the circumscribed circle diameter D1 of the primary twisted wire 12, and the tertiary twisted wire 14 is used.
In case of, the twist pitch Lp3 is set to the circumscribed circle diameter D of the secondary twisted wire 13.
By setting it to 40 times or less of 2, stability can be improved and a superconducting cable with less AC loss can be obtained.

【0049】一方、撚り次数の小さな撚線、すなわち低
次側撚線における交流損失をさらに減らすためには、従
来の図8に示す超電導ケーブルと同様に、超電導素線に
電気絶縁あるいは高抵抗体のコーティングを行ない、撚
りピッチの整数倍毎に電気的短絡部(接触部)を設ける
ことで、電流再配分が起こる電気回路を小さなもの(小
ループ)に形成でき、迅速な電流再配分や電流移行性を
確保することができる。撚りピッチの整数倍毎に電気的
短絡部を設けることで、超電導素線間の結合損失を完全
になくすことができる。例えば、一次ないし三次撚線1
2,13,14のいずれかの段階で撚りピッチの整数倍
の電気的短絡部を設けることで、交流損失を増加させる
ことなく電流の再配分を迅速に行なうことができる。こ
の場合、超電導素線を電気絶縁体あるいは高抵抗体材料
のコーティング材で被覆してもよい。
On the other hand, in order to further reduce the AC loss in the twisted wire having a small twist order, that is, in the low order twisted wire, the superconducting element wire is electrically insulated or has a high resistance as in the conventional superconducting cable shown in FIG. By coating the wire and providing an electrical short circuit (contact) at every integer multiple of the twist pitch, an electric circuit that causes current redistribution can be formed into a small one (small loop), and quick current redistribution and current Transferability can be secured. By providing an electrical short-circuit portion for each integral multiple of the twist pitch, it is possible to completely eliminate the coupling loss between the superconducting wires. For example, primary to tertiary stranded wire 1
By providing an electrical short-circuit portion having an integral multiple of the twist pitch at any of the steps 2, 13, and 14, it is possible to quickly reallocate the current without increasing the AC loss. In this case, the superconducting wire may be covered with a coating material of an electric insulator or a high resistance material.

【0050】本発明の一実施例では、超電導ケーブル1
0の各撚線に被着されるコーティング材16,17,1
8に同種の高抵抗体材料を用い、コーティング材の肉厚
(層厚)を変化させることで高次側撚線間の電気抵抗を
大きくし、絶縁効果を挙げるようにした例を示したが、
図4に示すように、コーティング材に電気抵抗の異なる
高抵抗体材料あるいは絶縁材料を用いてもよい。
In one embodiment of the present invention, the superconducting cable 1
Coating material 16, 17, 1 applied to each stranded wire of 0
8 shows an example in which the same type of high resistance material is used and the wall thickness (layer thickness) of the coating material is changed to increase the electrical resistance between the higher-order twisted wires to increase the insulation effect. ,
As shown in FIG. 4, a high resistance material or an insulating material having different electric resistance may be used as the coating material.

【0051】図4に示された超電導ケーブル10Aでは
撚線の撚り次数が高くなるに従って一次コーティング材
20より電気抵抗が大きく、あるいは固い高抵抗体材料
のコーティング材21,22を用いてコーティングして
もよい。電気抵抗を異にする高抵抗体あるいは絶縁体の
コーティング材を用いた場合には、各コーティング材2
0,21,22の膜厚(層厚)を必ずしも変化させる必
要がない。
In the superconducting cable 10A shown in FIG. 4, the electrical resistance is higher than that of the primary coating material 20 as the twisting order of the twisted wire is higher, or coating is performed using coating materials 21 and 22 of a hard high resistance material. Good. When using a coating material of a high resistance material or an insulation material having a different electric resistance, each coating material 2
It is not always necessary to change the film thickness (layer thickness) of 0, 21, 22.

【0052】また、超電導ケーブル10は高次の撚線を
撚り合せて構成した後、この高次撚線に臨界荷重以下の
引張荷重を印加させて高次撚線の撚線同士を圧着(密
着)させてもよい。超電導ケーブル10の高次撚線にプ
リテンションを作用させることで、フレキシビリティを
なくし、低次側撚線において、撚りピッチを大きくして
も撚線間の電気抵抗を小さくした超電導ケーブルが得ら
れる。
Further, the superconducting cable 10 is constructed by twisting high-order twisted wires together, and then a tensile load below the critical load is applied to the high-order twisted wires to crimp (adhere) the twisted wires of the high-order twisted wires. ) May be done. By applying pretension to the high-order twisted wires of the superconducting cable 10, it is possible to obtain a superconducting cable in which flexibility is eliminated and the electrical resistance between the twisted wires is reduced even if the twist pitch is increased in the low-order twisted wires. .

【0053】さらに、超電導ケーブル10は、ケーブル
断面(導体断面)内に任意の超電導素線間に生じる渦電
流に伴う交流損失は、撚りピッチの比の2乗に比例する
ことを考慮して、撚り次数がN次の超電導ケーブルを次
のように構成してもよい。
Further, in the superconducting cable 10, considering that the AC loss caused by the eddy current generated between arbitrary superconducting element wires in the cable section (conductor section) is proportional to the square of the twist pitch ratio, A superconducting cable having a twist order of Nth order may be configured as follows.

【0054】すなわち、超電導ケーブル10は、撚りピ
ッチがLpnで撚り次数がNの高次撚線における(N−
1)次の撚線間の電気抵抗が、撚りピッチLp1の一次撚
線の超電導素線間の電気抵抗の(Lpn/Lp1)の2乗倍
以上に設定することにより、各次数の撚線で発生する渦
電流損失を均等化し、交流損失の低減を図ることができ
る。
That is, the superconducting cable 10 is a high-order twisted wire having a twist pitch of Lpn and a twist order of N (N-
1) By setting the electrical resistance between the following twisted wires to be equal to or more than the square of the electrical resistance (Lpn / Lp1) of the superconducting wire of the primary twisted wire of the twist pitch Lp1, The generated eddy current loss can be equalized, and the AC loss can be reduced.

【0055】図5は、本発明に係る超電導ケーブル10
Bの他の変形例を示すものである。
FIG. 5 shows a superconducting cable 10 according to the present invention.
It shows another modified example of B.

【0056】この変形例に示された超電導ケーブル10
Bは一次撚線12の外表面にコーティング材を被着せ
ず、一次撚線12を撚り合せた二次撚線13の外表面に
電気抵抗体として高抵抗体の一次コーティング材23を
初めて被着させたものである。
Superconducting cable 10 shown in this modification
B is a case where the coating material is not applied to the outer surface of the primary twisted wire 12, but the primary coating material 23 of the high resistance is applied as an electric resistance to the outer surface of the secondary twisted wire 13 in which the primary twisted wires 12 are twisted. It was made.

【0057】この超電導ケーブル10Bでは、一次撚線
12の外表面にコーティング材を被着させないので、超
電導素線11同士の直接接触を有効に図ることができる
のみならず、高抵抗体がコーティングされていない一次
撚線13同士の直接接触を図ることができ、超電導素線
11間や一次撚線12間の電気抵抗値を小さくとること
ができ、電流の分配が容易であるとともに、二次撚線1
3間の電気抵抗値を大きくとることができ、高次側撚線
間の電気抵抗を大きくして交流損失を低減させることが
できる。
In this superconducting cable 10B, since the outer surface of the primary twisted wire 12 is not coated with a coating material, not only can the direct contact between the superconducting element wires 11 be effectively achieved, but also a high resistance material is coated. It is possible to make direct contact between the untwisted primary stranded wires 13 and to reduce the electric resistance value between the superconducting element wires 11 and between the primary stranded wires 12, thus facilitating the distribution of the current and the secondary twisted wire. Line 1
It is possible to increase the electric resistance value between the three wires, increase the electric resistance between the higher-order twisted wires, and reduce the AC loss.

【0058】また、超電導ケーブル10Bは最終撚り次
数Nの高次撚線に高抵抗体あるいは絶縁体材料のコーテ
ィング材で被覆してもよいが、超電導ケーブル10Bは
図8に示すコンジット5内に収納されるのでコーティン
グ材を施さなくてもよい。
The superconducting cable 10B may be formed by coating a high-order stranded wire of the final twist order N with a coating material of a high resistance material or an insulating material, but the superconducting cable 10B is housed in the conduit 5 shown in FIG. Therefore, it is not necessary to apply a coating material.

【0059】この超電導ケーブル10Bにおいては、撚
線の最終撚り次数をNとしたとき、(N−1)次以下の
撚り次数を持つ撚線のうち、少なくとも1つの任意次数
の撚線が表面に高抵抗体材料のコーティング材23で被
覆すればよい。
In this superconducting cable 10B, when the final twist order of the twisted wire is N, at least one twisted wire of an arbitrary order among the twisted wires having a twist order of (N-1) order or less is on the surface. It may be covered with a coating material 23 of a high resistance material.

【0060】この場合には、高抵抗体の被膜(コーティ
ング材23)が施された所要次数の撚線内の超電導素線
11同士や低次側撚線間同士に被膜が施されず、相互に
直接接触するため、素線間や低次側撚線間の電気抵抗が
極めて小さく、電流の再配分性や移行性を充分に確保で
きる。
In this case, no coating is applied to the superconducting element wires 11 or the lower-order twisted wires in the twisted wires of the required order on which the high-resistive film (coating material 23) is applied, Since it is in direct contact with the wire, the electrical resistance between the wires and between the low-order twisted wires is extremely small, and the current redistribution and transferability can be sufficiently secured.

【0061】さらに、高抵抗体被膜が施された撚線より
高次の撚線では、この高次撚線間の電気抵抗が被膜の存
在より大きいので、撚線間の電気抵抗や絶縁性を増大さ
せ、渦電流損失に伴う交流損失を有効的に軽減させるこ
とができる。
Furthermore, in a twisted wire of a higher order than a twisted wire coated with a high-resistance film, the electrical resistance between the higher-order twisted wires is greater than the existence of the film, so that the electrical resistance and insulation between the twisted wires are improved. It is possible to increase and effectively reduce the AC loss due to the eddy current loss.

【0062】さらに、超電導ケーブルは一次撚線12よ
り数段階の撚り次数の低い低次側撚線にコーティング材
を施さず、この低次側撚線を撚り合せた次段の撚線から
コーティング材を施すようにしてもよい。
Further, in the superconducting cable, the coating material is not applied to the low-order twisted wire having a twisting order lower than the primary twisted wire 12 by several stages, and the coating material is applied from the twisted wire at the next stage in which the low-order twisted wires are twisted together. May be applied.

【0063】また、超電導ケーブルは、超電導素線11
の外表面に低抵抗体材料、例えば銀メッキを被着し、こ
の低抵抗体を被着した超電導素線11を撚り合せて一次
撚線12を構成し、この一次撚線12に電気抵抗体の一
次コーティング材を被着(コーティング)させ、高抵抗
体の被膜を形成し、二次撚線13より高次側の撚線14
に図2および図4に示すように順次コーティング材を施
してもよい。
The superconducting cable is composed of the superconducting wires 11
A low resistance material, for example, silver plating is applied to the outer surface of the superconducting element wire 11 and the superconducting element wires 11 applied with the low resistance element are twisted together to form a primary stranded wire 12. The primary coating material is applied (coated) to form a high resistance coating, and the twisted wire 14 on the higher order side of the secondary twisted wire 13 is formed.
Alternatively, a coating material may be sequentially applied as shown in FIGS.

【0064】また、超電導素線11に銀メッキをする代
りに、超電導素線11の多芯線を構成する超電導フィラ
メト群を覆うシース部や超電導フィラメント(超電導材
料のNbTi材やNb3 Sn材をCuNi等の安定化銅
で被覆したもの)の安定化銅を酸洗浄等で除去して活性
化させておき、活性化された超電導素線11を複数本撚
り合せて一次撚線を構成し、さらにこの一次撚線12を
複数本撚り合せて二次撚線13を構成し、さらにまた、
二次撚線13を複数本撚り合せて三次撚線14を構成
し、三次撚線14を撚り合せた後に、高抵抗体のコーテ
ィング材で外表面をコーティングし、続いて不活性ガス
雰囲気や真空中で数100℃〜1000℃程度で熱処理
を行ない、高抵抗体のコーティング材がコーティングさ
れていない低次側撚線内のち素線11同士が接触してい
る箇所を固相拡散接合により融着させて電気的短絡部を
形成してもよい。
Instead of silver-plating the superconducting element wires 11, a sheath portion or a superconducting filament (NbTi material or Nb 3 Sn material of the superconducting material is CuNi Stabilized copper (such as that coated with stabilized copper) is removed by acid washing or the like to activate it, and a plurality of activated superconducting element wires 11 are twisted together to form a primary twisted wire. A plurality of the primary twisted wires 12 are twisted together to form a secondary twisted wire 13, and further,
A plurality of secondary twisted wires 13 are twisted together to form a tertiary twisted wire 14, and after twisting the third twisted wires 14, the outer surface is coated with a coating material of a high resistance material, followed by an inert gas atmosphere or vacuum. Heat treatment is performed at a temperature of several hundreds of degrees Celsius to 1000 degrees Celsius, and fusion is performed by solid-phase diffusion bonding at the places where the strands 11 of the lower-order twisted wires that are not coated with the high-resistance coating material are in contact with each other. Alternatively, the electrical short circuit portion may be formed.

【0065】超電導ケーブルをこのように構成し、低次
側撚線内の超電導素線同士の撚りの交差部を固相拡散接
合することで、撚り次数の低い撚線の超電導素線間の電
気抵抗を著しく低くすることができ、また撚り次数の大
きな撚線間はコーティング材が介装されているので、電
気抵抗を大きく形成できる。
By constructing the superconducting cable in this way and performing solid-phase diffusion bonding at the twisting intersections of the superconducting element wires in the low-order side twisted wires, the electrical conductivity between the superconducting element wires of the twisted wires with a low twist order is obtained. The resistance can be remarkably lowered, and the coating material is interposed between the twisted wires having a large twist order, so that the electric resistance can be increased.

【0066】なお、本発明の第1実施形態では、超電導
ケーブルは3×3×3型の三重撚線構造の超電導撚線導
体を構成した例を示したが、本発明はこれに限定される
ものではない。例えば、超電導ケーブル10Cを、図6
に示す6×6×6型の多重撚線構造の超電導撚線導体で
形成してもよい。
Although the first embodiment of the present invention shows an example in which the superconducting cable is a superconducting stranded wire conductor having a 3 × 3 × 3 triple stranded wire structure, the present invention is not limited to this. Not a thing. For example, as shown in FIG.
The superconducting stranded wire conductor of the 6 × 6 × 6 type multi-stranded wire structure shown in FIG.

【0067】すなわち、この超電導ケーブル10Cは超
電導素線11を6本撚り合せて一次撚線25を構成し、
続いて一次撚線25を6本撚り合せて二次撚線26を構
成し、この二次撚線26を6本撚り合せて三次撚線27
を構成したものである。さらに三次撚線27を以後順次
同様に撚り合せて4次以上の多重撚線構造としてもよ
い。この場合、多重撚線の各レベルの中心に補強用芯線
として非超電導線28,29,30が配置されるが、こ
の非超電導線に代えて超電導線を使用することにより、
6×6×6型の多重撚線導体を7×7×7型多重撚線導
体とすることもできる。
That is, in this superconducting cable 10C, six superconducting element wires 11 are twisted together to form a primary twisted wire 25,
Subsequently, six primary twisted wires 25 are twisted together to form a secondary twisted wire 26, and six secondary twisted wires 26 are twisted together to form a tertiary twisted wire 27.
Is configured. Further, the third twisted wires 27 may be sequentially twisted in the same manner thereafter to form a multi-twisted wire structure of fourth order or more. In this case, the non-superconducting wires 28, 29, 30 are arranged as reinforcing core wires at the center of each level of the multi-stranded wire. By using the superconducting wires instead of the non-superconducting wires,
The 6 × 6 × 6 type multi-stranded wire conductor may be a 7 × 7 × 7 type multi-stranded wire conductor.

【0068】また、超電導ケーブル10Dは、図7に示
すように矩形撚線導体としても、さらに、他の形状の撚
線導体構造としてもよい。
Further, the superconducting cable 10D may have a rectangular stranded wire conductor as shown in FIG. 7 or may have a stranded wire conductor structure of another shape.

【0069】図7に示す矩形の超電導ケーブル10D
は、6本(あるいは7本)の超電導素線11を撚り合せ
て一次撚線25を構成し、この一次撚線25を矩形断面
の補強用芯材としての非超電導線32の周りに多数本巻
き付けて二次撚線33を構成したものであるが、非超電
導線32の周りに三次以上の撚り次数の撚線を巻き付け
るようにしてもよい。
A rectangular superconducting cable 10D shown in FIG.
Is composed of six (or seven) superconducting wires 11 to form a primary stranded wire 25, and a large number of the primary stranded wires 25 are provided around a non-superconducting wire 32 as a reinforcing core material having a rectangular cross section. Although the secondary stranded wire 33 is formed by winding the stranded wire, a stranded wire having a twist order of three or more may be wound around the non-superconducting wire 32.

【0070】(第2実施形態)次に、本発明の第2実施
形態を図8〜図10に基づいて説明する。この第2実施
形態は、撚りピッチの整数倍毎に電気的短絡部を設けた
超電導ケーブルに適用したもので、電気的短絡部の抵抗
値及びその距離(配置間隔)などの最適値選定の条件を
具体的に規定している。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS. This second embodiment is applied to a superconducting cable in which electrical short circuits are provided at every integer multiple of the twist pitch, and conditions for selecting optimum values such as the resistance value of the electrical short circuits and their distance (arrangement interval). Is specifically specified.

【0071】まず、電気的短絡部の抵抗値の設定例を図
8に基づいて説明する。
First, an example of setting the resistance value of the electrical short circuit portion will be described with reference to FIG.

【0072】図8は、撚りピッチ毎に電気的短絡部を設
けた超電導ケーブルにおける抵抗値の設定例を説明する
グラフで、横軸に短絡抵抗値Rc(Ω)と常電導抵抗値
Rn×ld(Ω)とで定まる抵抗比(2Rc/(2Rc
+Rn×ld))を設定し、縦軸に常電導転移時に流れ
る電流値Iと臨界電流値Icとの電流比(I/Ic)を
設定し、この両者の関係に制限電流値Ilimを加味し
て短絡抵抗値Rcを求めるものである。
FIG. 8 is a graph for explaining an example of setting the resistance value in a superconducting cable in which an electrical short circuit portion is provided for each twist pitch. The horizontal axis shows the short circuit resistance value Rc (Ω) and the normal conduction resistance value Rn × ld. Resistance ratio (2Rc / (2Rc
+ Rn × ld)) is set, and the vertical axis is set to the current ratio (I / Ic) between the current value I and the critical current value Ic flowing during the normal conduction transition, and the limiting current value Ilim is added to the relationship between them. The short-circuit resistance value Rc is obtained.

【0073】「常電導抵抗値Rn×ld」は、超電導素
線が完全に常電導転移した時に発生する単位長さ当たり
の抵抗値Rn(Ω/m)と、超電導素線の長手方向の熱
拡散距離ld(m)との積で表される抵抗値である。
「熱拡散距離ld」とは、ワイヤーモーション等の外乱
が加わる短時間(例えば、約1ms)の間に、超電導素
線に発生した熱が冷媒に対して断熱的に熱拡散すると仮
定したときに素線長手方向に発生する常電導領域(温度
上昇領域)の長さを意味する。
The "normal conducting resistance value Rn × ld" is the resistance value Rn (Ω / m) per unit length generated when the superconducting element wire completely transitions to the normal conducting state and the heat in the longitudinal direction of the superconducting element wire. It is a resistance value represented by the product of the diffusion distance ld (m).
"Thermal diffusion distance ld" means that the heat generated in the superconducting element wire adiabatically diffuses into the refrigerant during a short time (for example, about 1 ms) to which disturbance such as wire motion is applied. It means the length of the normal conducting region (temperature rising region) generated in the longitudinal direction of the strand.

【0074】具体的には、局所加熱等の局所的に発生し
た外乱が超電導素線に加わる時間(τq)に対する素線
長手方向の温度上昇領域の長さ、即ち熱拡散距離ld
は、超電導素線の長手方向の熱伝導率及びその熱容量を
κ及びρCとしたとき、
Specifically, the length of the temperature rising region in the longitudinal direction of the wire with respect to the time (τq) in which a locally generated disturbance such as local heating is applied to the superconducting wire, that is, the thermal diffusion distance ld.
Is the thermal conductivity in the longitudinal direction of the superconducting wire and its heat capacity are κ and ρC,

【数9】 の式で表される。この[数9]式中のκ及びρCについ
ては、超電導素線の表面における絶縁被膜の熱絶縁性が
良好な場合には、超電導素線の構成材料の熱伝導率及び
熱容量を採用する。ただし、超電導素線の表面に絶縁体
等が存在せずに熱遮蔽が殆ど行われない場合には、κに
ついては超電導素線の構成材料(安定化材)、例えば安
定化銅の熱伝導率を用い、ρCについては1本の超電導
素線に配分される冷媒の熱容量(例えば、超臨界ヘリウ
ムの場合には、素線の周囲約30μmに配分される熱容
量)を用いることが望ましい。
[Equation 9] It is expressed by the formula. Regarding κ and ρC in the formula [9], the thermal conductivity and heat capacity of the constituent material of the superconducting element wire are adopted when the insulating film on the surface of the superconducting element wire has good thermal insulation. However, if there is no insulator on the surface of the superconducting wire and there is almost no heat shield, for κ, the thermal conductivity of the constituent material (stabilizer) of the superconducting wire, for example, stabilized copper. It is preferable to use the heat capacity of the refrigerant distributed to one superconducting element wire for ρC (for example, in the case of supercritical helium, the heat capacity distributed to about 30 μm around the element wire).

【0075】例えば、ケーブル・イン・コンジット型の
強制冷却導体を例に上げると、ワイヤーモーション等の
外乱(局所加熱)が加わる時間は約1msであり、その
局所加熱に対する素線加熱部の熱拡散距離ldは、線径
が1mm、銅比(超電導フィラメントの総断面積に対す
る銅(安定化銅)の比率)が2の超電導素線の場合、上
記[数9]式から求めると、約100mmとなる。この
超電導素線では、常伝導転移時に発生する抵抗値Rn
は、単位長さ当たり0.5mΩ/m程度であるため、l
d=0.1m、Rn=0.5mΩ/mとすると、外乱で
発生する常電導抵抗値Rn×ldは、50μΩとなる。
For example, taking a cable-in-conduit type forced cooling conductor as an example, the time period during which disturbance (local heating) such as wire motion is applied is about 1 ms, and the thermal diffusion of the wire heating portion against the local heating is caused. In the case of a superconducting element wire having a wire diameter of 1 mm and a copper ratio (ratio of copper (stabilized copper) to the total cross-sectional area of the superconducting filament) of 2, the distance ld is about 100 mm when calculated from the above [Formula 9]. Become. In this superconducting element wire, the resistance value Rn generated during the normal transition
Is about 0.5 mΩ / m per unit length, so l
When d = 0.1 m and Rn = 0.5 mΩ / m, the normal conducting resistance value Rn × ld generated by the disturbance is 50 μΩ.

【0076】「制限電流値Ilim」とは、超電導素線
の常電導転移時に単位長さ当りに発生するジュール発熱
量(Rn×I2 )と超電導素線の周囲に配置した冷媒が
定常的に奪うことができる熱量(h×A×(Tc−T
b))とが等しくなるときの電流値(Steklyの条件に基
づく制限電流値)を意味する。ここで、熱量を求める式
中のhは冷媒の定常熱伝達率、Aは冷媒と超電導素線が
接する単位長さ当りの表面積、Tcは超電導素線の臨界
温度、Tbは冷媒の温度である。
The "limit current value Ilim" is the amount of Joule heat generated (Rn × I 2 ) per unit length when the superconducting wire changes to the normal conducting state, and the refrigerant arranged around the superconducting wire is constantly. Amount of heat that can be taken away (h x A x (Tc-T
b)) means a current value (a limiting current value based on Stekly's condition) when they are equal to each other. Here, in the equation for calculating the heat quantity, h is the steady state heat transfer coefficient of the refrigerant, A is the surface area per unit length of contact between the refrigerant and the superconducting element wire, Tc is the critical temperature of the superconducting element wire, and Tb is the temperature of the refrigerant. .

【0077】従って、常電導転移した超電導素線を再び
超電導状態へ安定化させる条件としては、常電導転移し
た超電導素線に流れる電流値Iが制限電流値Ilimよ
りも定常的に小さいことが必要となる。
Therefore, as a condition for stabilizing the superconducting element wire that has changed to the normal conducting state again to the superconducting state, it is necessary that the current value I flowing through the superconducting element wire that has changed to the normal conducting state is constantly smaller than the limiting current value Ilim. Becomes

【0078】そこで、電流値Iが制限電流値Ilimと
なるときの電流比Ry(Ilim/Ic)と、常電導抵
抗値Rn×ld及び短絡抵抗値Rcで定まる抵抗比Rx
(2Rc/(2Rc+Rn×ld))との関係に着目
し、その抵抗比Rxが電流比Ry以下となる条件、即
ち、
Therefore, the resistance ratio Rx determined by the current ratio Ry (Ilim / Ic) when the current value I becomes the limiting current value Ilim and the normal conducting resistance value Rn × ld and the short circuit resistance value Rc.
Focusing on the relationship with (2Rc / (2Rc + Rn × ld)), the condition that the resistance ratio Rx is equal to or less than the current ratio Ry, that is,

【数10】 2Rc/(2Rc+Rn×ld)≦Ilim /Ic の条件式を満足する範囲に短絡抵抗値Rcを設定した。## EQU10 ## The short-circuit resistance value Rc is set in a range that satisfies the conditional expression of 2Rc / (2Rc + Rn × ld) ≦ Ilim / Ic.

【0079】このように短絡抵抗値Rcを設定すると、
超電導転移した超電導素線に流れる電流の多くが隣接す
る常電導状態を維持している超電導素線側に容易に分流
し、常電導抵抗によるジュール発熱を抑制するため、外
乱等に対する超電導ケーブルの安定性を大幅に向上させ
ることができる。
When the short circuit resistance value Rc is set in this way,
Most of the current flowing in the superconducting wire that has undergone a superconducting transition is easily shunted to the adjacent superconducting wire that maintains the normal conducting state, and Joule heat generation due to the normal conducting resistance is suppressed, so the superconducting cable is stable against external disturbances. It is possible to significantly improve the sex.

【0080】なお、制限電流値Ilimと臨界電流値I
cとで定まる電流比Ry(Ilim/Ic)は、大容量
導体の場合、1/2程度となるため、Ilim/Ic=
1/2とし、これを[数10]式に代入すると、
The limiting current value Ilim and the critical current value I
The current ratio Ry (Ilim / Ic) determined by c is about 1/2 in the case of a large-capacity conductor, so Ilim / Ic =
Substituting this into the formula [Equation 10] by halving

【数11】 の条件式が得られる。従って、Ilim/Ic=1/2
の場合には、常電導抵抗値Rn×ldが短絡抵抗値Rc
の2倍以上となる範囲に短絡抵抗値Rcを設定すること
で、上記と同様の効果を発揮させることができる。な
お、[数11]式の条件で十分な移行電流を得るために
は、2RcをRn×ldの約1/5以下、即ち短絡抵抗
値Rcを素線の常電導抵抗値(Rn×ld)の約1/1
0以下に設定することが望ましい。
[Equation 11] The conditional expression of is obtained. Therefore, Ilim / Ic = 1/2
In the case of, the normal conduction resistance value Rn × ld is the short circuit resistance value Rc.
By setting the short-circuit resistance value Rc in a range that is twice or more of the above, the same effect as described above can be exhibited. In order to obtain a sufficient transition current under the condition of [Equation 11], 2Rc is about ⅕ or less of Rn × ld, that is, the short-circuit resistance value Rc is the normal conducting resistance value (Rn × ld) of the wire. About 1/1
It is desirable to set it to 0 or less.

【0081】次に、電気的短絡部間の距離の設定例を図
9及び図10に基づいて説明する。
Next, an example of setting the distance between the electrically short-circuited portions will be described with reference to FIGS. 9 and 10.

【0082】図9は、超電導素線間の電気回路(等価回
路)を用いて、超電導素線からの移行電流を模式的に説
明するものである。同図に示す回路構成においては、外
乱に起因して常電導転移した素線30とその素線30に
隣接する超電導状態を維持している素線31との間に電
気的短絡部32、32が所定間隔、即ち距離lcで接続
されている。
FIG. 9 is a schematic diagram for explaining a transition current from the superconducting element wires by using an electric circuit (equivalent circuit) between the superconducting element wires. In the circuit configuration shown in the figure, an electrical short-circuit portion 32, 32 is provided between a wire 30 that has undergone normal conduction transition due to disturbance and a wire 31 that is adjacent to the wire 30 and that maintains a superconducting state. Are connected at a predetermined interval, that is, a distance lc.

【0083】ここで、素線30の常電導転移時には、2
つの短絡部32、32間を2つの素線30、31を介し
てループ状に流れる移行電流i3が発生する。この移行
電流i3は、常電導転移した素線30側で電流ilと逆
方向に流れ、超電導状態を維持している素線31側では
電流i2と同じ方向に流れる。つまり、常電導転移した
素線31に流れる電流ilが、並列に接続された素線3
1の常電導抵抗(Rn×Ld)と2つの短絡部32、3
2の合成電気抵抗(2Rc)との抵抗比に応じて分流す
る回路と等価となる。
Here, when the normal conduction transition of the wire 30 occurs, 2
A transition current i3 that flows in a loop between the two short-circuit portions 32 and 32 via the two wires 30 and 31 is generated. This transition current i3 flows in the direction opposite to the current il on the side of the strand 30 that has undergone the normal conduction transition, and flows in the same direction as the current i2 on the side of the strand 31 that maintains the superconducting state. In other words, the current il flowing through the wire 31 that has undergone the normal conduction transition is the same as the wire 3 connected in parallel.
1 normal conducting resistance (Rn × Ld) and 2 short-circuit parts 32, 3
It is equivalent to a circuit that divides the current according to the resistance ratio with the combined electric resistance (2Rc) of 2.

【0084】なお、上述した安定条件は、図9に示す回
路では、常電導転移した素線31に流れる電流ilを常
電導抵抗(Rn×Ld)側よりも短絡部32、32の合
成電気抵抗(2Rc)側に多く分流させるための条件を
規定したものである。
It should be noted that, in the circuit shown in FIG. 9, the above-mentioned stability condition is that the electric current il flowing through the wire 31 that has undergone the normal conduction transition is the combined electrical resistance of the short-circuited portions 32, 32 rather than the normal conduction resistance (Rn × Ld) side. It defines the conditions for splitting a large amount of flow to the (2Rc) side.

【0085】図10は、上記の短絡部間の距離lcを変
化させたときの上記回路構成に基づく回路時定数τc
(sec)と冷媒への熱拡散時定数τh(sec)との
関係を比較するためのグラフで、横軸に短絡部間の距離
lcを設定し、縦軸に回路時定数τcを設定し、回路時
定数τcが熱拡散時定数τhよりも小さくなる条件(τ
c<τh)を満たすように短絡部間の距離lcを求める
ものである。
FIG. 10 shows a circuit time constant τc based on the above circuit configuration when the distance lc between the short-circuited portions is changed.
In the graph for comparing the relationship between (sec) and the thermal diffusion time constant τh (sec) to the refrigerant, the horizontal axis is the distance lc between the short-circuited portions, and the vertical axis is the circuit time constant τc. The condition that the circuit time constant τc is smaller than the thermal diffusion time constant τh (τ
The distance lc between the short-circuited portions is calculated so as to satisfy c <τh).

【0086】「回路時定数τc」は、通常、超電導素線
の単位長さ当たりの常電導時の抵抗値Rnと、超電導素
線の単位長さ当たりの漏れインダクタンスL(H/m)
と、短絡部の電気抵抗値Rcとで定まる。「熱伝達時定
数τh」とは、冷媒の伝達能力が定常状態のときと比べ
て大きな値を維持できる時間をいう。「漏れインダクタ
ンスL」は、図9に示す回路において、常電導転移した
素線30の自己インダクタンスL1と、超電導状態を維
持している素線31の自己インダクタンスL2と、両者
30、31の相互インダクタンスMとで決定される(即
ち、L=L1+L2−2M)。
"Circuit time constant τc" is usually the resistance value Rn at normal conduction per unit length of the superconducting element wire, and the leakage inductance L (H / m) per unit length of the superconducting element wire.
And the electric resistance value Rc of the short circuit portion. The “heat transfer time constant τh” is the time during which the transfer capacity of the refrigerant can be maintained at a larger value than that in the steady state. The “leakage inductance L” is the self-inductance L1 of the strand 30 that has changed to the normal conducting state, the self-inductance L2 of the strand 31 that maintains the superconducting state, and the mutual inductance of the both 30, 31 in the circuit shown in FIG. M and (i.e., L = L1 + L2-2M).

【0087】図10に示すように、短絡部間の距離lc
が超電導素線の長手方向の熱拡散距離ldよりも小さい
範囲(ld>lc)では、回路時定数τcは熱拡散距離
ldの変化に関係なくほぼ一定値を維持すると共に、短
絡部間の距離lcが熱拡散距離ldよりも大きい範囲
(ld<lc)では、回路時定数τcは距離lcに比例
して大きくなる。
As shown in FIG. 10, the distance lc between the short-circuited portions
Is smaller than the thermal diffusion distance ld in the longitudinal direction of the superconducting element wire (ld> lc), the circuit time constant τc maintains a substantially constant value regardless of the change of the thermal diffusion distance ld, and the distance between the short-circuited portions. In the range where lc is larger than the thermal diffusion distance ld (ld <lc), the circuit time constant τc increases in proportion to the distance lc.

【0088】従って、短絡部間の距離lcを求めるとき
に、回路時定数τcを決定する超電導素線の常電導抵抗
値として、単位長さ当たりの抵抗値Rnと、短絡部間の
距離lcおよび熱拡散距離ldの内の小さい方の積で求
める値(ld<lcのときはRn・ld、ld>lcの
ときはRn・lc)を採用することで、冷媒が過渡熱伝
達を支配する時間内、即ち冷媒の冷却能力が大きい時間
内に素早く電流移行が行われる。このことを式で表現す
ると、ld<lcのときは、
Therefore, when the distance lc between the short-circuited portions is obtained, the resistance value Rn per unit length, the distance lc between the short-circuited portions, and the normal-conduction resistance value of the superconducting element wire that determines the circuit time constant τc The time when the refrigerant controls transient heat transfer by adopting the value (Rn · ld when ld <lc, Rn · lc when ld> lc) obtained by the smaller product of the thermal diffusion distances ld. In the inside, that is, in the time when the cooling capacity of the refrigerant is large, the current is quickly transferred. Expressing this with an equation, when ld <lc,

【数12】 の条件式で表され、ld>lcのときは、(Equation 12) Is expressed by the conditional expression of, and when ld> lc,

【数13】 の条件式で表される。従って、この実施形態では、[数
12]式又は[数13]式で示す安定条件を満足する範
囲に短絡部間の距離lcを設定する。
(Equation 13) It is represented by the conditional expression. Therefore, in this embodiment, the distance lc between the short-circuited portions is set in a range that satisfies the stability condition expressed by the formula [12] or the formula [13].

【0089】例えば、温度が5K以下の超臨界ヘリウム
を冷媒に用いた核融合装置等に適用される超電導ケーブ
ルを例に上げると、超臨界ヘリウムによる過渡的な熱伝
達能力が定常状態のそれと比べて大きな値を維持できる
時間、即ち熱伝達時定数τhは約10msである。
Taking, for example, a superconducting cable applied to a nuclear fusion device using supercritical helium at a temperature of 5K or less as a refrigerant, the transient heat transfer capacity of supercritical helium is higher than that in the steady state. The heat transfer time constant τh is about 10 ms.

【0090】この超電導ケーブルでは、超電導素線間の
インダクタンスLが5e-7(H/m)である。このインダ
クタンスLは、例えばケーブル・イン・コンジット型の
強制冷却導体等の超電導素線、即ち線径が0.6〜1.
0mm程(この内、超電導フィラメントが存在する領域
の外径は0.4〜0.8mm程)の場合、素線(又は撚
線)間の中心距離をdとし、超電導フィラメントの存在
領域の有効半径をaとしたとき、
In this superconducting cable, the inductance L between the superconducting element wires is 5e-7 (H / m). The inductance L is, for example, a superconducting element wire such as a cable-in-conduit type forced cooling conductor, that is, a wire diameter of 0.6 to 1.
In the case of about 0 mm (of which the outer diameter of the region where the superconducting filament exists is about 0.4 to 0.8 mm), the center distance between the strands (or twisted wires) is defined as d, and the effective region of the superconducting filament is effective. When the radius is a,

【数14】 の式で求まり、約0.5μH/m以下となる。[Equation 14] It is obtained by the equation of, and becomes about 0.5 μH / m or less.

【0091】また、この超電導ケーブルでは、通常、常
電導抵抗値Rn・ldが約50μΩである。従って、短
絡抵抗値Rcを常電導抵抗値Rn・ldに比べ十分に小
さいと仮定した場合、短絡部間の距離lcは、上記[数
12]式からτc=(L・lc)/(Rn・ld)≦1
0msの条件を満たす範囲、即ち約1m以下となる。こ
の範囲に距離lcを設定することで、熱伝達能力の減衰
時間に対して十分早い時間内に電流移行が得られる。
Further, in this superconducting cable, the normal conducting resistance value Rn · ld is usually about 50 μΩ. Therefore, when it is assumed that the short circuit resistance value Rc is sufficiently smaller than the normal conduction resistance value Rn · ld, the distance lc between the short circuit portions is τc = (L·lc) / (Rn · ld) ≦ 1
It is a range satisfying the condition of 0 ms, that is, about 1 m or less. By setting the distance lc in this range, the current transfer can be obtained within a time period sufficiently early with respect to the decay time of the heat transfer capacity.

【0092】また、冷媒が大気圧の液体ヘリウムの場合
には、熱伝達時定数τhは約100msであるため、上
述と同様に短絡部間の距離lcを求めると、約10m以
下となり、超臨界ヘリウムと比べ約10倍となる。
When the refrigerant is liquid helium at atmospheric pressure, the heat transfer time constant τh is about 100 ms. Therefore, when the distance lc between the short-circuited portions is calculated in the same manner as described above, it becomes about 10 m or less, which is supercritical. It is about 10 times that of helium.

【0093】以上のように、電気的短絡部の抵抗値及び
その電気短絡部間の距離を設定したため、素線の一部が
常電導転移した場合でも超電導状態を維持している別の
超電導素線に容易に電流を移行させることができ、これ
により、高い安定性を得ることができると共に、磁場変
動に起因する素線間結合損失も電気的短絡部間で形成さ
れる回路内で相殺できるため、低交流損失の導体を同時
に実現できる。
As described above, since the resistance value of the electrical short-circuited portion and the distance between the electrical short-circuited portions are set, another superconducting element which maintains the superconducting state even when a part of the wire is changed to the normal conduction state. The current can be easily transferred to the wires, which allows high stability to be obtained, and the inter-wire coupling loss due to the magnetic field fluctuation can be canceled in the circuit formed between the electrical short circuits. Therefore, a conductor with low AC loss can be realized at the same time.

【0094】次に、上記で求めた電気的短絡部の抵抗値
及びその電気的短絡部間の距離に基づく安定条件を高次
撚線に適用する場合を説明する。
Next, a case where the stability condition based on the resistance value of the electrical short-circuited portion and the distance between the electrical short-circuited portions obtained above is applied to the high-order twisted wire will be described.

【0095】まず、前述した高次撚線構造の超電導ケー
ブルでは、撚りピッチが各次数の撚線毎に異なる場合が
ある。この場合には、上記で求めた電気的短絡部間の距
離lcが各次数の撚りピッチの最小公倍数の距離Lmi
nとなるように各次数の撚りピッチを設定することで、
全ての次数の撚線において上記の安定条件を満たすこと
できる。
First, in the above-described superconducting cable having a high-order twisted wire structure, the twisting pitch may be different for each twisted wire of each order. In this case, the distance lc between the electrical short-circuited parts obtained above is the distance Lmi which is the least common multiple of the twist pitch of each order.
By setting the twist pitch of each order to be n,
The above-mentioned stability condition can be satisfied in all orders of twisted wires.

【0096】また、大容量多重撚線などの超電導ケーブ
ルでは、撚りピッチの長い最終撚り次数の撚線まで上記
の安定条件を適用することが困難な場合がある。この場
合には、全ての次数の撚線ではなく、Lmin<lcの
条件を満たす撚り次数の撚線までに電気的短絡部を設け
る。
Further, in a superconducting cable such as a large-capacity multi-strand wire, it may be difficult to apply the above-mentioned stability condition to a final twist order twisted wire having a long twist pitch. In this case, an electrical short-circuit portion is provided not by all twisted wires of all orders but by twisted wires of the twist order satisfying the condition of Lmin <lc.

【0097】即ち、全ての次数の撚線における最小公倍
数Lminが上記で求めた電気的短絡部間の距離lcよ
りも大きくなるとき、一次から任意次数までの最小公倍
数を求め、その最小公倍数が上記で求めた電気的短絡部
間の距離lcよりも小さくなるときの任意次数以下の各
撚線に電気的短絡部を設ける。任意次数よりも大きい次
数の各撚線に関しては、電気的に短絡させる手段を設け
る。これにより、各次数の内の次数が低い、即ち撚りピ
ッチが小さい撚線までの安定性を確保できる。一般に、
素線間の電流移行は、常電導転移した素線に最も近い素
線に最も有効に作用し、高次数になる程、その分流効果
が小さくなるため、撚り次数の高い超電導素線では、必
ずしも全ての次数の撚線が上記の安定条件を満たす必要
はない。この場合には、上記一部の次数の撚線に電気的
短絡部を設けるだけで、超電導ケーブルの安定性を十分
に確保できる。
That is, when the least common multiple Lmin in all the twisted wires becomes larger than the distance lc between the electrical short-circuit parts obtained above, the least common multiple from the first order to an arbitrary order is obtained, and the least common multiple is the above. An electrical short-circuit portion is provided on each twisted wire having an arbitrary order or less when the distance is smaller than the distance lc between the electrical short-circuit portions obtained in step 1. A means for electrically short-circuiting is provided for each twisted wire having an order larger than an arbitrary order. As a result, it is possible to secure stability up to a twisted wire having a low order among the orders, that is, a twisted wire having a small twist pitch. In general,
The current transfer between the strands most effectively acts on the strand closest to the normal-conducting transition strand, and the higher the order, the smaller the shunting effect.Therefore, in superconducting strands with a high twist order, It is not necessary for all orders of stranded wire to meet the above stability conditions. In this case, the stability of the superconducting cable can be sufficiently ensured only by providing an electrical short-circuit portion on the part of the twisted wires of the order.

【0098】次に、上記第2実施形態の第1〜第5応用
例を図11〜図15に基づいて説明する。この各応用例
は、上記高安定性及び低交流損失の利点に加え、電気的
短絡部を具体的に形成し、高電流密度をも加味した超電
導ケーブルに適用したものである。
Next, first to fifth application examples of the second embodiment will be described with reference to FIGS. 11 to 15. In addition to the advantages of high stability and low AC loss, each of the application examples is applied to a superconducting cable in which an electrical short circuit portion is specifically formed and a high current density is also taken into consideration.

【0099】図11に示す第1応用例の超電導ケーブル
は、表面に絶縁処理(又は高抵抗化処理)を施した複数
本の超電導素線40…40を軸方向を中心とする同心円
の円周方向で長手方向に沿って同じ撚りピッチlpで撚
り合わせ、その撚りピッチlpの整数倍毎に電気的短絡
部(又は他の箇所に比べ電気抵抗の小さい箇所)41…
41を設けている。このように各素線40…40を同心
円状に配列したため、超電導ケーブルのボイド率(空間
率)を約20%まで減少させることができ、従来の撚り
次数の多い超電導ケーブルのボイド率(通常、約36〜
38%)と比べ、その電流密度を大幅に高めることがで
きた。
The superconducting cable of the first application example shown in FIG. 11 has a plurality of superconducting element wires 40 ... 40 whose surfaces have been subjected to insulation treatment (or resistance increasing treatment) and has concentric circles around the axial direction. In the direction along the longitudinal direction at the same twist pitch lp, and an electrical short circuit portion (or a portion having a smaller electric resistance than other portions) 41 for each integer multiple of the twist pitch lp.
41 is provided. Since the strands 40 ... 40 are arranged concentrically in this manner, the void ratio (porosity) of the superconducting cable can be reduced to about 20%, and the void ratio of the conventional superconducting cable with many twist orders (usually, About 36 ~
38%), the current density could be significantly increased.

【0100】次に、ケーブル・イン・コンジット型の強
制冷却導体を例に上げる。この場合には、撚りピッチ毎
に周期的に断面積が小さく、即ちボイド率が小さくなる
ように素線間の接触圧力を大きくすることで、ピッチの
整数倍毎に電気的短絡部を形成できる。この超電導ケー
ブルの一例を図12〜図14に示す。
Next, a cable-in-conduit type forced cooling conductor will be taken as an example. In this case, the electrical short circuit can be formed for each integral multiple of the pitch by increasing the contact pressure between the strands so that the cross-sectional area is periodically small for each twist pitch, that is, the void ratio is small. . An example of this superconducting cable is shown in FIGS.

【0101】図12(a)及び(b)に示す第2応用例
の超電導ケーブルでは、円筒状のコンジット50内に撚
り合わされた複数本の超電導素線51…51と、この各
超電導素線51…51の中央に円筒状の冷却チャネル5
2とを配置したもので、各素線51…51の表面には2
〜10μmのクロム、ステンレス、チタン等の高抵抗体
がメッキ、スパッタリング等の方法でコーティング処理
されている。この超電導ケーブルでは、冷却チャネル5
2よりも外径が大きい複数の円環状の凸部(外径拡大
部)53…53を素線51…51の撚りピッチ毎lpに
冷却チャネル52の外周面側に一体に又は別体に設ける
ことで、各素線51…51間の接触圧力を撚りピッチ毎
lpに増加させている。従って、この超電導ケーブルで
は、接触圧力が増加した撚りピッチ毎に電気的短絡部を
容易に形成できる。
In the superconducting cable of the second application example shown in FIGS. 12A and 12B, a plurality of superconducting element wires 51 ... 51 twisted in a cylindrical conduit 50 and each superconducting element wire 51. … Cylindrical cooling channel 5 in the center of 51
2 are arranged, and 2 is arranged on the surface of each strand 51 ... 51.
A high resistance material such as chromium, stainless steel, and titanium having a thickness of 10 μm is coated by a method such as plating and sputtering. In this superconducting cable, the cooling channel 5
53 are provided integrally or separately on the outer peripheral surface side of the cooling channel 52 at each lp of the twist pitch of the element wires 51 ... 51 with a plurality of annular convex portions (outer diameter enlarged portions) 53 ... 53 having an outer diameter larger than 2. As a result, the contact pressure between the individual wires 51 ... 51 is increased to lp for each twist pitch. Therefore, in this superconducting cable, it is possible to easily form the electrical short-circuit portion for each twist pitch where the contact pressure is increased.

【0102】図13に示す第3応用例の超電導ケーブル
では、円筒状のコンジット60内に撚り合わされた複数
本の超電導素線61…61を配置したもので、コンジッ
ト60よりも内径が小さい複数の円環状の凸部(内径縮
小部)62…62を各素線61…61の撚りピッチlp
毎にコンジット60の内周面側に一体に又は別体に設け
ることで、各素線61…61間の接触圧力を撚りピッチ
lp毎に増加させている。
In the superconducting cable of the third application example shown in FIG. 13, a plurality of twisted superconducting element wires 61 ... 61 are arranged in a cylindrical conduit 60, and a plurality of inner diameters smaller than that of the conduit 60 are arranged. The annular convex portion (inner diameter reduced portion) 62 ... 62 is formed by twisting the strands 61 ..
The contact pressure between the element wires 61 ... 61 is increased for each twist pitch lp by integrally or separately providing the conduit 60 on the inner peripheral surface side.

【0103】図14に示す第4応用例の超電導ケーブル
では、円筒状のコンジット70内に多層の撚りをもつ複
数本の超電導素線71…71を配置したもので、最外層
の外周部、最内層の内周部、及び各層の外周部の内の少
なくとも1つに撚りピッチの整数倍毎にテープ幅が導体
の大きさよりも十分小さい幅を有する銅、ステンレス等
の金属テープ(又は絶縁テープ)72を巻くことで、撚
りピッチlpの整数倍毎に各素線71…71間の接触抵
抗を小さくしている。
In the superconducting cable of the fourth application example shown in FIG. 14, a plurality of superconducting element wires 71 ... 71 having multi-layered twists are arranged in a cylindrical conduit 70. A metal tape (or insulating tape) of copper, stainless steel or the like having a tape width that is sufficiently smaller than the size of the conductor at every integer multiple of the twist pitch in at least one of the inner circumference of the inner layer and the outer circumference of each layer By winding 72, the contact resistance between the individual wires 71 ... 71 is reduced for each integer multiple of the twist pitch lp.

【0104】なお、Nb3 Sn等の熱処理導体で超電導
素線を形成した超電導ケーブルでは、導体の熱処理時に
加圧箇所を拡散接合することで上記効果をより一層高め
ることができる。また、NbTi等の非熱処理導体の場
合でも、100〜400℃の温度条件で加熱処理するこ
とで、加圧箇所を固相接合でき、上記効果を高めること
ができる。
In the case of a superconducting cable in which a superconducting element wire is formed of a heat-treated conductor such as Nb 3 Sn, the above effect can be further enhanced by diffusion-bonding pressure points during heat treatment of the conductor. Further, even in the case of a non-heat-treated conductor such as NbTi, heat treatment under a temperature condition of 100 to 400 [deg.] C. enables solid-state joining of the pressure points, and the above effect can be enhanced.

【0105】図15に示す第5応用例の超電導ケーブル
では、コンジット80内に超電導素線81…81を同心
円の異なる半径の円周方向に層状(図中の1層82、2
層83参照)に且つ全て同じ撚りピッチlpで撚り合わ
せて配置している。ここで、各素線81…81の中央に
円筒状の冷却チャネル84を設け、1層82及び2層8
3の各素線81…81の撚りピッチlpの整数倍毎に電
気的短絡部85…85を設ける。このように各素線81
…81を同心円の異なる半径で層状に配置したため、ボ
イド率を約20%まで減少させることができた。
In the superconducting cable of the fifth application example shown in FIG. 15, superconducting element wires 81 ... 81 are layered in the conduit 80 in the circumferential direction of different radii of concentric circles (one layer 82, 2 in the figure).
(See layer 83) and all are twisted and arranged at the same twist pitch lp. Here, a cylindrical cooling channel 84 is provided in the center of each element wire 81 ... 81, and the first layer 82 and the second layer 8 are formed.
The electrical short-circuit portions 85 ... 85 are provided for every integer multiple of the twist pitch lp of each of the element wires 81 ... 81 of No. 3. In this way, each wire 81
Since 81 are arranged in layers with different radii of concentric circles, the void ratio can be reduced to about 20%.

【0106】この超電導ケーブルでは、隣接する各層8
2、83の撚り方向を互いに逆方向としたため、冷却面
積が増加する利点のほか、撚線に起因した縦磁界の影響
を互いに相殺できる。また、同心円の層数を偶数(図1
5では2層)に設定してあるので、導体長手方向の縦磁
界による結合電流(偏流)の影響を殆ど完全に打ち消す
ことができ、上記高安定性の効果を最大限に高めること
ができる。
In this superconducting cable, each adjacent layer 8
Since the twisting directions of Nos. 2 and 83 are opposite to each other, the effect of increasing the cooling area and the effect of the longitudinal magnetic field due to the twisted wires can be offset from each other. In addition, the number of layers of concentric circles is even (Fig. 1
5 has two layers), the influence of the coupling current (drift) due to the longitudinal magnetic field in the conductor longitudinal direction can be almost completely canceled out, and the effect of high stability can be maximized.

【0107】(第3実施形態)次に、本発明の第3実施
形態を図15に基づいて説明する。この第3実施形態
は、上記各実施形態で述べた電気的短絡部を備えていな
い従来タイプの超電導ケーブルに適用したもので、超電
導素線における撚線の撚りピッチ及び導体径などの最適
値選定の条件を具体的に規定している。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. This third embodiment is applied to a conventional type superconducting cable that does not include the electrical short-circuiting part described in each of the above-described embodiments, and selects the optimum values such as the twist pitch and the conductor diameter of the twisted wire in the superconducting wire. The conditions are specifically specified.

【0108】まず、撚線の撚りピッチ及び導体径の設定
例を図15に基づいて説明する。
First, an example of setting the twist pitch and the conductor diameter of the twisted wire will be described with reference to FIG.

【0109】図15は、磁界変化率に対する誘導起電力
と常電導電圧との関係を説明するグラフで、横軸に超電
導素線における撚線の撚りピッチlp及び導体径Dの積
(lp×D)をとり、縦軸に外部磁界変化に起因して素
線間に生じる誘導起電力eをとって、誘導起電力eと素
線の常電導転移時における常電導部の発生起電力(Rn
×ld)との関係から、lp×Dの最適値を求めるもの
である。ここで、「誘導起電力e」は、e=−dφ/d
t=−d(B・lp・D/π)/dtの式で求まる起電
力を意味する。
FIG. 15 is a graph for explaining the relationship between the induced electromotive force and the normal conductive pressure with respect to the rate of change of the magnetic field. The horizontal axis is the product of the twist pitch lp of the twisted wire in the superconducting wire and the conductor diameter D (lp × D). ) Is taken and the vertical axis is the induced electromotive force e generated between the wires due to the change of the external magnetic field, and the induced electromotive force e and the electromotive force (Rn
Xld), the optimum value of lp × D is obtained. Here, "induced electromotive force e" is e = -dφ / d
It means the electromotive force obtained by the equation of t = -d (B · lp · D / π) / dt.

【0110】ここで、素線間の結合電流が素線間の電流
再配分を妨げないための条件として、磁場変化率(dB
/dt)(図中の例ではB1…B3(ドット省略))に
対して生じる誘導起電力eが常電導電圧Rn×ldより
も小さい条件に着目し、当該導体が経験する任意の磁場
変化率に対して常にe≦Rn×ldの条件を満たすlp
×Dの範囲を決定する。このように決定されるlp×D
の範囲から撚線の撚りピッチlp及び導体径Dを設定す
る。
Here, as a condition for preventing the coupling current between the wires from disturbing the current redistribution between the wires, the magnetic field change rate (dB
/ Dt) (in the example in the figure, B1 ... B3 (dots omitted)), the induced electromotive force e is smaller than the normal conduction pressure Rn × ld, and the arbitrary magnetic field change rate experienced by the conductor is observed. Lp for the condition of e ≦ Rn × ld
Determine the xD range. Lp × D determined in this way
The twist pitch lp of the stranded wire and the conductor diameter D are set from the range.

【0111】例えば、超電導ケーブルに通常使用される
素線(導体)において、局所的に発生する外乱に起因し
て生じる常電導領域の電圧は50μΩ×100A=5m
V程であり、磁場変化率を0.3T/sと仮定すると、
その磁場変化に基づく誘導起電力eが常電導発生電圧以
下の条件(e≦5mV)を満たすlp×Dの範囲は、0
・05m2 以下となる。
For example, in the wire (conductor) normally used for a superconducting cable, the voltage in the normal conducting region caused by the locally generated disturbance is 50 μΩ × 100 A = 5 m.
V, and assuming that the magnetic field change rate is 0.3 T / s,
The range of lp × D in which the induced electromotive force e based on the magnetic field change satisfies the condition (e ≦ 5 mV) equal to or lower than the normal conduction generation voltage is 0.
・ It becomes less than 05m 2 .

【0112】また、複数段の撚線をもつ超電導ケーブル
では、各撚り次数毎に誘導起電力eの総和を求め、その
誘導起電力eの総和が上述した熱拡散距離ld及び撚り
ピッチlpの内の小さい方の距離で定まる常電導発生電
圧Rn×ldよりも小さくなる条件でlp×Dの範囲を
決定すればよい。
In the case of a superconducting cable having a plurality of twisted wires, the sum of the induced electromotive force e is obtained for each twist order, and the sum of the induced electromotive force e is within the above-mentioned thermal diffusion distance ld and twist pitch lp. The range of lp × D may be determined under the condition that it is smaller than the normal conduction generation voltage Rn × ld which is determined by the smaller distance.

【0113】このようにlp×Dの範囲を決定し、撚り
ピッチlp及び導体径Dを設定することで、素線を多段
に拠り合わせた場合でも、結合電流の存在下で十分に大
きな移行電流を得ることができ、安定な超電導ケーブル
を提供できる。
By thus determining the range of lp × D and setting the twisting pitch lp and the conductor diameter D, even when the strands are connected in multiple stages, a sufficiently large transition current can be obtained in the presence of the coupling current. And a stable superconducting cable can be provided.

【0114】[0114]

【発明の効果】以上説明したように、請求項1記載の発
明に係る超電導ケーブルにおいては、撚り次数が同じ撚
線間の単位長さ当りの電気抵抗値を、撚り次数が高い撚
線間ほど大きくしたので、同じ撚り次数の撚線間の単位
長さ当りの電気抵抗値を1段前の撚線間の電気抵抗値以
上とすることで、高次側撚線間の電気抵抗値を大きく、
低次側撚線間の電気抵抗値を小さくとることができ、外
部磁場の変化(交流による交流磁界の発生)で超電導ケ
ーブルの断面(導体断面)内に誘起される渦電流のパス
は高次側撚線間では大きな電気抵抗のため生じにくく、
結合電流の大きなパスを無くすことができ、素線間結合
損失(交流損失)を低減させることができる。また、低
次側撚線間では鎖交する磁束が小さいので、結合電流に
よる交流損失は非常に小さく、殆ど無視できる。
As described above, in the superconducting cable according to the invention described in claim 1, the electric resistance value per unit length between twisted wires having the same twist order is calculated as Since it has been increased, the electric resistance value per unit length between the twisted wires of the same twist order is set to be equal to or more than the electric resistance value between the twisted wires one step before, and the electric resistance value between the higher-order twisted wires is increased. ,
The electrical resistance between the low-order stranded wires can be made small, and the eddy current path induced in the cross section (conductor cross section) of the superconducting cable due to changes in the external magnetic field (generation of alternating magnetic field due to alternating current) is of high order. It is hard to occur between the side twisted wires due to the large electrical resistance,
A path with a large coupling current can be eliminated, and the coupling loss (AC loss) between the strands can be reduced. Further, since the magnetic fluxes that interlink between the lower-order twisted wires are small, the AC loss due to the coupling current is very small and can be almost ignored.

【0115】また、この超電導ケーブルに局所的な入熱
や電流の偏りが発生して1本の超電導素線が常電導転移
しても、低次側撚線間の電気抵抗が小さく、低次側は撚
線内の超電導素線が隣接する超電導素線間の電気的結合
(カップリング)が強く、超電導状態を維持している超
電導素線には、素線間電気抵抗が小さいため多くの電流
が素早く隣接する周辺の複数本の超電導素線に移り、電
流の再配分性や電流の移行性が良好であるため、常電導
転移した超電導素線のジュール発熱を減少させ、抑制す
ることができ、常電導転移した超電導素線を超電導状態
に再び回復させることができるので、全体として超電導
状態を崩すことなく、常時、超電導状態に維持でき、安
定性を向上させることができる。
Also, even if local heat input or current bias occurs in this superconducting cable and one superconducting element wire changes to the normal conducting state, the electrical resistance between the lower-order twisted wires is small, and On the side, the superconducting wires in the stranded wire have strong electrical coupling (coupling) between adjacent superconducting wires, and for the superconducting wires that maintain the superconducting state, the electrical resistance between the wires is small, so Since the current quickly moves to the neighboring superconducting element wires and the current redistribution and current transferability are good, it is possible to reduce and suppress the Joule heat generation of the superconducting element wires that have undergone the normal conduction transition. Since it is possible to restore the superconducting element wire that has changed to the normal conducting state to the superconducting state again, it is possible to maintain the superconducting state at all times without destroying the superconducting state as a whole, and improve the stability.

【0116】請求項2記載の発明では、最終撚り次数が
N次の高次撚線のうち、(N−1)次以下の撚線のう
ち、少なくとも1つの任意次数の撚線外表面に、高抵抗
体の被膜を形成したので、高抵抗体被膜が施された所要
次数の撚線間の超電導素線が相互に接する部分に被膜が
施されないため、その撚線間の電気抵抗が変化せず、小
さい。
In the invention according to claim 2, among the high-order twisted wires having the final twist order of the Nth order, at least one of the twisted wires of the (N-1) th order and below is formed on the outer surface of the twisted wire, Since the high resistance coating is formed, the superconducting element wire between the twisted wires of the required order on which the high resistance coating is applied does not have a coating on the part that contacts each other, so the electrical resistance between the twisted wires changes. No, it's small.

【0117】また、高抵抗体被膜が施された撚線がさら
に撚り合されてより高次の撚線が構成されると、高次の
撚線間の電気抵抗は大きいので、結合損失に伴う交流損
失が小さい。したがって、この超電導ケーブルは超電導
素線間の電流移行の再配分性を改善し、安定性を向上さ
せることができるとともに、交流損失を低減させること
ができる。
When the twisted wires coated with the high-resistivity film are further twisted to form a higher-order twisted wire, the electrical resistance between the higher-order twisted wires is large, which causes a coupling loss. AC loss is small. Therefore, this superconducting cable can improve the redistribution property of the current transfer between the superconducting wires, improve the stability, and reduce the AC loss.

【0118】請求項3記載の発明では、撚り次数の高い
撚線の外表面にコーティングされる高抵抗体の膜厚を厚
くしたので、撚線の撚り次数が大きくなるに従って撚線
間の電気抵抗値を大きくすることができ、また、請求項
4に記載の超電導ケーブルでは撚り次数が大きくなるに
従って撚線外表面に抵抗率の大きな材料をコーティング
させることができ、いずれも撚り次数の違いに応じて撚
線間の電気抵抗値に差を設けることができ、請求項2に
よって得られる安定性の増大と交流損失の低減をより一
層図ることができる。
According to the third aspect of the present invention, since the film thickness of the high resistance material coated on the outer surface of the twisted wire having a high twist order is increased, the electrical resistance between the twisted wires increases as the twist order of the twisted wire increases. The value can be increased, and in the superconducting cable according to claim 4, a material having a high resistivity can be coated on the outer surface of the twisted wire as the twist order increases, and both of them can be made different depending on the twist order. As a result, it is possible to provide a difference in the electric resistance value between the twisted wires, and it is possible to further increase the stability and reduce the AC loss obtained according to the second aspect.

【0119】請求項5記載の発明では、撚線の撚りピッ
チは撚り次数が大きくなるほど大きくしたので、撚り次
数の高い撚線ほど撚りピッチを大きくとることができ
る。撚のピッチが大きいと撚線間の接点が減少し、電気
抵抗を大きくすることができるので、結合電流による交
流損失を低減させることができる。
According to the fifth aspect of the present invention, the twist pitch of the twisted wire is increased as the twist order is increased. Therefore, a twisted wire having a higher twist order can have a larger twist pitch. When the twist pitch is large, the number of contacts between the twisted wires is reduced, and the electrical resistance can be increased, so that the AC loss due to the coupling current can be reduced.

【0120】請求項6記載の発明では、一次撚線の撚り
ピッチを超電導素線の外径の20倍以下とすることで、
超電導素線間の圧縮力を大きくとることができ、撚り次
数の一番少ない一次撚線間の電気抵抗を極めて小さくす
ることができ、電流の再配分性や移行性を向上させ、安
定性を向上させることができる。
In the invention according to claim 6, the twist pitch of the primary twisted wire is set to 20 times or less the outer diameter of the superconducting element wire,
The compressive force between the superconducting wires can be increased, the electrical resistance between the primary stranded wires with the smallest twist order can be made extremely small, and the current redistribution and transferability can be improved and stability can be improved. Can be improved.

【0121】請求項7記載の発明では、二次撚線間およ
び三次撚線間の電気抵抗を一次撚線と同様に小さくする
ことができ、二次撚線や三次撚線を低次側撚線とする超
電導ケーブルに効果があり、安定性を向上させることが
できる。
In the invention according to claim 7, the electrical resistance between the secondary twisted wires and between the tertiary twisted wires can be made small as in the case of the primary twisted wires, and the secondary twisted wires and the tertiary twisted wires can be twisted on the lower order side. It has an effect on the superconducting cable as a wire and can improve the stability.

【0122】請求項8記載の発明では、高次撚線に臨界
荷重以下の引張荷重を印加させ、撚線間を圧着させるこ
とで、撚線内の超電導素線間の結合力を向上させて、撚
りピッチを増加させても、電気抵抗を小さくすることが
でき、安定性の高い超電導ケーブルが得られる。
In the invention of claim 8, the tensile force below the critical load is applied to the higher-order twisted wires to crimp the twisted wires, thereby improving the bonding force between the superconducting strands in the twisted wires. Even if the twist pitch is increased, the electric resistance can be reduced and a highly stable superconducting cable can be obtained.

【0123】請求項9記載の発明では、撚りピッチLpn
がN次の高次撚線における(N−1)次の撚線間の電気
抵抗が、撚りピッチLp1の一次撚線の超電導素線間の電
気抵抗の(Lpn/Lp1)の2乗倍以上としたので、各次
数の撚線で発生する結合損失を均等化し、交流損失の低
減を図ることができる。この超電導ケーブルは、ケーブ
ル断面(導体断面)内の任意の超電導素線間に生じる結
合電流に伴う交流損失は、撚りピッチの比の2乗に比例
することに考慮したものである。
In the invention of claim 9, the twist pitch Lpn
Is an electrical resistance between the (N-1) -th order twisted wires in the N-th order higher-order twisted wire, which is more than the square of (Lpn / Lp1) of the electric resistance between the superconducting wires of the primary twisted wire of the twist pitch Lp1. Therefore, it is possible to equalize the coupling loss generated in the twisted wires of each order and reduce the AC loss. This superconducting cable takes into consideration that the AC loss due to the coupling current generated between arbitrary superconducting element wires in the cable cross section (conductor cross section) is proportional to the square of the twist pitch ratio.

【0124】請求項10記載の発明では、高次撚線を不
活性ガスあるいは真空中で昇温させて撚りの交差部を固
相拡散接合させ、電気的短絡部を形成したから、高次撚
線内の超電導素線同士が互いに融着し、素線間電気抵抗
が極めて小さな状態を実現でき、安定性の高い超電導ケ
ーブルを実現できる。
According to the tenth aspect of the present invention, the high-order twisted wire is heated in an inert gas or vacuum to solid-phase diffusion-bond the twist intersections to form an electrical short-circuit portion. The superconducting wires in the wires are fused to each other, and the electric resistance between the wires can be realized to be extremely small, so that a superconducting cable with high stability can be realized.

【0125】請求項11記載の発明では、電気的短絡部
の電気抵抗値を前記[数6]の条件式を満足する範囲に
設定したため、外乱に起因して1本の素線が常電導転移
した場合でも、その電流の多くを超電導状態を維持して
いる健全な素線に移行させることができ、これにより、
常電導転移した素線におけるジュール発熱を抑制して再
び超電導状態に回復させることができ、安定性を大幅に
高めることができる。このような高安定性の利点に加
え、電気的短絡部の電気抵抗値の選定基準を明確にした
ことで、実用性を大幅に高めることができる。
According to the eleventh aspect of the present invention, since the electric resistance value of the electric short-circuited portion is set in a range satisfying the conditional expression of [Equation 6], one strand is transferred to the normal conduction state due to disturbance. Even if it does, most of the current can be transferred to a healthy wire that maintains the superconducting state,
It is possible to suppress the Joule heat generation in the wire that has undergone the normal conduction transition and restore it to the superconducting state again, and to greatly improve the stability. In addition to such an advantage of high stability, by clarifying the selection criteria of the electrical resistance value of the electrical short-circuited portion, the practicality can be significantly improved.

【0126】請求項12記載の発明では、電気的短絡部
間の距離を前記[数7]及び[数8]の条件式を満足す
る範囲に設定したため、電流の移行が冷媒の冷却能力が
大きい時間内に超電導転移した素線に流れる電流を素早
く移行させることができ、安定性を大幅に高めることが
できると共に、電気的短絡部間の距離の選定基準を明確
にしたことで、実用性を大幅に高めることができる。
According to the twelfth aspect of the present invention, the distance between the electrical short-circuited portions is set within the range satisfying the conditional expressions of [Equation 7] and [Equation 8]. The current flowing through the wires that have undergone the superconducting transition can be quickly transferred within the time, the stability can be greatly improved, and the practicality can be improved by clarifying the selection criteria of the distance between the electrical short-circuited parts. Can be greatly increased.

【0127】請求項13及び14記載の発明では、高次
撚線に関する各撚りピッチ及び電気的短絡部の位置を明
確に規定したため、全ての次数の撚線又は必要最小限の
次数の撚線までの安定性を大幅に高めることができる。
According to the thirteenth and fourteenth aspects of the present invention, since the twist pitches and the positions of the electrical short-circuiting parts with respect to the high-order twisted wire are clearly defined, the twisted wires of all orders or the minimum necessary orders of twisted wires can be obtained. The stability of can be greatly increased.

【0128】請求項15及び16記載の発明では、撚線
の撚りピッチを外部磁界の変化に起因して生じる誘導起
電力が常電導転移時における発生電圧よりも小さい条件
を満足する範囲に設定したため、結合電流のよる電流偏
流の存在下でも十分大きな移行電流を得ることができ、
安定性を大幅に高めることができる。
According to the fifteenth and sixteenth aspects of the present invention, the twist pitch of the twisted wire is set within a range in which the induced electromotive force caused by the change in the external magnetic field satisfies the condition that it is smaller than the voltage generated at the normal conduction transition. , A sufficiently large transfer current can be obtained even in the presence of current drift due to the coupling current,
The stability can be greatly increased.

【0129】請求項17〜19記載の発明では、層状に
配置した複数層の撚線に電気的短絡部を設けたため、上
記と同様の高安定性の利点に加え、高電流密度化を図る
ことも同時に実現できる。
In the seventeenth to nineteenth aspects of the invention, since the electrical short-circuit portion is provided in the plural layers of twisted wires arranged in layers, in addition to the same advantages of high stability as described above, high current density can be achieved. Can be realized at the same time.

【0130】請求項20記載の発明では、撚線のボイド
率を低めることで電気的短絡部を構成したため、上記と
同様の高安定性の利点に加え、電気的短絡部を容易に設
けることができ、実用性を大幅に高めることができる。
According to the twentieth aspect of the invention, since the electrical short-circuit portion is formed by lowering the void ratio of the twisted wire, the electrical short-circuit portion can be easily provided in addition to the advantage of high stability as described above. Therefore, it is possible to greatly improve the practicality.

【0131】以上、請求項11〜20記載の発明では、
冷却性能が維持される時間内に常電導転移した素線から
超電導状態を維持している素線に多くの電流を移行させ
ることができ、その結果、ケーブルに変動磁界が加わっ
た場合でも撚りピッチ内に生じる正負両方向の誘導電圧
を相殺できる。また、何らかの外乱で一部の超電導素線
が常電導転移した場合でも高い安定性を維持できる。
As described above, according to the inventions of claims 11 to 20,
A large amount of current can be transferred from the wire that has undergone the normal conduction transition to the wire that maintains the superconducting state within the time when the cooling performance is maintained, and as a result, the twisted pitch can be applied even when a fluctuating magnetic field is applied to the cable. The induced voltage in both positive and negative directions generated inside can be canceled. Further, high stability can be maintained even if some of the superconducting wires undergo normal transition due to some disturbance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導ケーブルの第1実施形態を
示す斜視図。
FIG. 1 is a perspective view showing a first embodiment of a superconducting cable according to the present invention.

【図2】超電導ケーブルの横断面を拡大して示すケーブ
ル断面図。
FIG. 2 is a cable cross-sectional view showing an enlarged cross-section of a superconducting cable.

【図3】超電導ケーブルに備えられる各撚線の素線(撚
線)間電気抵抗と撚りピッチ/素線径(撚線径)との関
係を示す図。
FIG. 3 is a diagram showing the relationship between the electrical resistance between strands (strands) of each twisted wire provided in the superconducting cable and the twist pitch / strand diameter (strand diameter).

【図4】超電導ケーブルの変形例を示す図。FIG. 4 is a view showing a modified example of the superconducting cable.

【図5】超電導ケーブルの他の変形例を示す斜視図。FIG. 5 is a perspective view showing another modification of the superconducting cable.

【図6】6×6×6型の多重撚線構造を有する超電導ケ
ーブルを示す図。
FIG. 6 is a view showing a superconducting cable having a 6 × 6 × 6 type multi-stranded wire structure.

【図7】矩形撚線構造の超電導ケーブルを示す図。FIG. 7 is a view showing a superconducting cable having a rectangular stranded wire structure.

【図8】本発明に係る超電導ケーブルの第2実施形態の
抵抗設定例を説明する図。
FIG. 8 is a diagram for explaining a resistance setting example of the second embodiment of the superconducting cable according to the present invention.

【図9】超電導素線間の移行電流を説明する概略回路
図。
FIG. 9 is a schematic circuit diagram illustrating a transfer current between superconducting wires.

【図10】短絡部間の距離と回路時定数との関係を示す
グラフ。
FIG. 10 is a graph showing the relationship between the distance between short-circuited portions and the circuit time constant.

【図11】第1応用例の超電導ケーブルを示す概略斜視
図。
FIG. 11 is a schematic perspective view showing a superconducting cable of a first application example.

【図12】(a)及び(b)は第2応用例の超電導ケー
ブルを示す概略斜視図。
12A and 12B are schematic perspective views showing a superconducting cable of a second application example.

【図13】第3応用例の超電導ケーブルを示す概略斜視
図。
FIG. 13 is a schematic perspective view showing a superconducting cable of a third application example.

【図14】第4応用例の超電導ケーブルを示す概略斜視
図。
FIG. 14 is a schematic perspective view showing a superconducting cable of a fourth application example.

【図15】第5応用例の層状の超電導ケーブルを示す図
で、(a)は概略側面図、(b)は(a)中のA−A線
から見た概略断面図。
15A and 15B are diagrams showing a layered superconducting cable of a fifth application example, FIG. 15A is a schematic side view, and FIG. 15B is a schematic sectional view taken along line AA in FIG. 15A.

【図16】第3実施形態の超電導ケーブルの撚りピッチ
及び導体径の設定例を説明するグラフ。
FIG. 16 is a graph illustrating a setting example of a twist pitch and a conductor diameter of the superconducting cable of the third embodiment.

【図17】従来の超電導ケーブルを示すケーブル断面
図。
FIG. 17 is a cable cross-sectional view showing a conventional superconducting cable.

【符号の説明】[Explanation of symbols]

5 コンジット 10,10A,10B,10C 超電導ケーブル 11 超電導素線 12,25 一次撚線 13,26,33 二次撚線 14,27 三次撚線 16,20 一次コーティング材 17,21 二次コーティング材 18,22 三次コーティング材 28,29,30 補強用芯線 5 Conduit 10, 10A, 10B, 10C Superconducting cable 11 Superconducting element wire 12,25 Primary stranded wire 13,26,33 Secondary stranded wire 14,27 Tertiary stranded wire 16,20 Primary coating material 17,21 Secondary coating material 18 , 22 Tertiary coating material 28,29,30 Reinforcing core wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜島 高太郎 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 藤岡 勉 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takataro Hamashima 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office (72) Inventor Tsutomu Fujioka 1-1-1, Shibaura, Minato-ku, Tokyo Shares Company Toshiba Head Office

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 超電導素線を複数本撚り合せて一次撚線
を構成し、この一次撚線を複数本撚り合せて二次撚線を
構成し、以後順次同様に撚り合せて高次撚線を構成した
超電導ケーブルにおいて、撚り次数の同じ撚線間の単位
長さ当りの電気抵抗値が、撚り次数が高い撚線間ほど大
きな値となるように構成したことを特徴とする超電導ケ
ーブル。
1. A plurality of superconducting wires are twisted together to form a primary twisted wire, and a plurality of these primary twisted wires are twisted together to form a secondary twisted wire. In the superconducting cable configured as described above, the superconducting cable is configured such that the electric resistance value per unit length between twisted wires having the same twist order becomes larger as the twisted wire has a higher twist order.
【請求項2】 高次撚線の最終撚り次数をNとしたと
き、(N−1)次以下の撚り次数を持つ撚線のうち、少
なくとも1つの任意次数の撚線外表面に、高抵抗体の被
膜を形成した請求項1記載の超電導ケーブル。
2. When the final twist order of the high-order twisted wire is N, at least one of the twisted wires having a twist order of (N-1) order or less has a high resistance on the outer surface of the twisted wire. The superconducting cable according to claim 1, wherein a body coating is formed.
【請求項3】 高抵抗体の被膜は、撚り次数の低い撚線
より撚り次数の高い撚線ほど膜厚を厚く形成した請求項
2記載の超電導ケーブル。
3. The superconducting cable according to claim 2, wherein the film of the high-resistor is formed such that the twisted wire having a higher twist order is made thicker than the twisted wire having a lower twist order.
【請求項4】 高抵抗体の被膜は、撚り次数の低い撚線
より撚り次数の高い撚線ほど電気抵抗の大きな被膜材料
で形成した請求項2記載の超電導ケーブル。
4. The superconducting cable according to claim 2, wherein the coating of the high resistance body is formed of a coating material having a higher electrical resistance in a twisted wire having a higher twist order than in a twisted wire having a lower twist order.
【請求項5】 撚線は撚り次数が高くなるに従って撚り
ピッチが大きくなるように設定された請求項1記載の超
電導ケーブル。
5. The superconducting cable according to claim 1, wherein the twisted wire is set so that the twist pitch increases as the twist order increases.
【請求項6】 一次撚線は、超電導素線の直径をdとし
たとき、撚りピッチLp1をLp1≦20dの範囲に設定し
た請求項1または5に記載の超電導ケーブル。
6. The superconducting cable according to claim 1, wherein the primary stranded wire has a twist pitch Lp1 set within a range of Lp1 ≦ 20d, where d is a diameter of the superconducting wire.
【請求項7】 二次撚線は、一次撚線の外接円の直径を
D1 としたとき、撚りピッチLp2をLp2≦30D1 の範
囲に設定するとともに、三次撚線は、二次撚線の外接円
の直径をD2 としたとき、撚りピッチLp3をLp3≦40
D2 の範囲に設定した請求項6記載の超電導ケーブル。
7. The secondary twisted wire has a twist pitch Lp2 set to a range of Lp2 ≦ 30D1 when the diameter of the circumscribed circle of the primary twisted wire is D1, and the tertiary twisted wire is the outer circumference of the secondary twisted wire. When the diameter of the circle is D2, the twist pitch Lp3 is Lp3 ≤ 40
The superconducting cable according to claim 6, wherein the superconducting cable is set in a range of D2.
【請求項8】 高次撚線の構成後、高次撚線に臨界荷重
以下の引張荷重を印加させて撚線間を圧着させた請求項
1記載の超電導ケーブル。
8. The superconducting cable according to claim 1, wherein after the high-order stranded wire is constructed, a tensile load of a critical load or less is applied to the high-order stranded wire to crimp between the stranded wires.
【請求項9】 撚りピッチがLpnで撚り次数がNの高次
撚線は、(N−1)次の撚線間の電気抵抗が、撚りピッ
チLp1の一次撚線の超電導素線間の電気抵抗の(Lpn/
Lp1)の2乗倍以上に設定した請求項1記載の超電導ケ
ーブル。
9. A high-order twisted wire having a twist pitch of Lpn and a twist order of N has an electrical resistance between the (N-1) -th order twisted wires and an electrical resistance between the superconducting wires of the primary twisted wire of the twist pitch Lp1. Of resistance (Lpn /
2. The superconducting cable according to claim 1, wherein the superconducting cable is set to a power of 2 times the power of Lp1).
【請求項10】 超電導素線を複数本撚り合せて一次撚
線を構成し、この一次撚線を複数本撚り合せて二次撚線
を構成し、以後順次同様に撚り合せて高次撚線を構成し
た超電導ケーブルにおいて、上記高次撚線を不活性ガス
あるいは真空中で昇温させて撚りの交差部を固相拡散接
合し、電気的短絡部を形成したことを特徴とする超電導
ケーブル。
10. A primary stranded wire is formed by twisting a plurality of superconducting strands, and a plurality of primary stranded wires are stranded to form a secondary stranded wire. Then, the same is sequentially twisted in the same manner to form a higher stranded wire. In the superconducting cable configured as described above, the higher-order twisted wire is heated in an inert gas or vacuum to solid-phase diffusion-bond the twisted intersections to form an electrical short-circuited portion.
【請求項11】 複数本の超電導素線から成る撚線と、
この撚線の撚りピッチの整数倍に相当する当該撚線の交
差位置における上記超電導素線の単位長さ当たりの電気
抵抗値を上記交差位置を挟む位置における上記電気抵抗
値よりも小さくするための電気抵抗を有する電気的短絡
部とを備え、この電気的短絡部を上記交差位置に設ける
と共に、 上記超電導素線の長手方向の熱拡散距離をldとし、当
該超電導素線の熱伝導率及びその熱容量をκ及びρCと
し、当該超電導素線に対し外乱の加わる時間をτqとし
たとき、上記熱拡散距離ldを、 【数1】 の式で求め、且つ、 上記電気的短絡部の電気抵抗値をRcとし、上記超電導
素線の常電導転移時における単位長さ当たりの電気抵抗
値をRnとし、当該超電導素線の超電導特性及びその冷
媒条件で定まる制限電流値及び臨界電流値をIlim及
びIcとしたとき、上記電気的短絡部の電気抵抗値Rc
を、 【数2】 2Rc/(2Rc+Rn×ld)≦Ilim /Ic の条件式を満たす範囲に設定したことを特徴とする超電
導ケーブル。
11. A twisted wire composed of a plurality of superconducting wires,
In order to make the electric resistance value per unit length of the superconducting element wire at the intersection position of the twisted wire corresponding to an integer multiple of the twist pitch of the twisted wire smaller than the electric resistance value at the position sandwiching the intersection position. An electric short circuit having an electric resistance, the electric short circuit is provided at the intersecting position, and the thermal diffusion distance in the longitudinal direction of the superconducting wire is ld, and the thermal conductivity of the superconducting wire and its When the heat capacities are κ and ρC, and the time when disturbance is applied to the superconducting wire is τq, the thermal diffusion distance ld is given by And the electric resistance value of the electrical short-circuited portion is Rc, the electric resistance value per unit length of the superconducting element wire at the normal conduction transition is Rn, and the superconducting characteristic of the superconducting element wire and When the limiting current value and the critical current value determined by the refrigerant conditions are Ilim and Ic, the electrical resistance value Rc of the electrical short circuit part
Is set to a range that satisfies the conditional expression of 2Rc / (2Rc + Rn × ld) ≦ Ilim / Ic.
【請求項12】 複数本の超電導素線から成る撚線と、
この撚線の長手方向に沿って一定間隔毎に配置した位置
における上記超電導素線の単位長さ当たりの電気抵抗値
を上記配置位置を挟む位置における上記電気抵抗値より
も小さくするための電気抵抗を有する電気的短絡部とを
備え、この電気的短絡部を上記配置位置に設けると共
に、 上記電気的短絡部間の距離をlcとし、上記超電導素線
の長手方向の熱拡散距離をldとし、当該超電導素線の
常電導転移時における電気抵抗値をRnとし、上記電気
的短絡部の電気抵抗値をRcとし、上記常電導転移した
上記超電導素線及びこの超電導素線に隣接する超電導状
態を維持している超電導素線の互いのインピーダンス特
性で定まる単位長さ当たりの漏れインダクタンスをLと
し、 上記超電導素線の電気抵抗値Rn、上記電気的短絡部の
電気抵抗値Rc、及び上記漏れインダクタンスLで定ま
る回路時定数をτcとし、 上記超電導素線に対し過渡熱伝達が支配する時間をτh
としたとき、 上記熱拡散距離ldが上記電気的短絡部間の距離lcよ
りも小さいとき(ld<lc)、当該電気的短絡部間の
距離lcを、 【数3】 の条件式を満たす範囲に設定すると共に、 上記熱拡散距離ldが上記電気的短絡部間の距離lcよ
りも大きいとき(ld>lc)、当該電気的短絡部間の
距離lcを、 【数4】 の条件式を満たす範囲に設定したことを特徴とする超電
導ケーブル。
12. A stranded wire composed of a plurality of superconducting wires,
An electric resistance for making the electric resistance value per unit length of the superconducting element wire at the positions arranged at regular intervals along the longitudinal direction of the twisted wire smaller than the electric resistance value at the positions sandwiching the arrangement position. And a distance between the electric short-circuited portions is lc, and a thermal diffusion distance in the longitudinal direction of the superconducting element wire is ld, Let Rn be the electric resistance value of the superconducting element wire at the time of the normal conducting transition, Rc be the electric resistance value of the electrical short-circuited portion, and the superconducting element wire that has undergone the normal conducting transition and the superconducting state adjacent to the superconducting element wire. Let L be the leakage inductance per unit length determined by the mutual impedance characteristics of the superconducting wires that are maintained, and the electric resistance value Rn of the superconducting wires and the electric resistance of the electrical short-circuited part. Rc, and circuit time constant determined by the leakage inductance L as a .tau.c, time governing transient heat transfer to the superconducting wire τh
Then, when the thermal diffusion distance ld is smaller than the distance lc between the electrical short-circuited portions (ld <lc), the distance lc between the electrical short-circuited portions is given by When the thermal diffusion distance ld is larger than the distance lc between the electrical short-circuited portions (ld> lc), the distance lc between the electrical short-circuited portions is set as follows: ] A superconducting cable characterized by being set in a range that satisfies the conditional expression of.
【請求項13】 前記撚線は、前記複数本の超電導素線
を互いに撚り合わせて成る一次の撚線及びこの一次の撚
線を互いに撚り合わせて成る二次の撚線を含む高次撚線
であり、この高次撚線の内の各次の撚線における各撚り
ピッチの最小公倍数が前記電気的短絡部間の距離と等し
くなる条件で上記各撚りピッチを設定した請求項12記
載の超電導ケーブル。
13. The twisted wire includes a high-order twisted wire including a primary twisted wire formed by twisting the plurality of superconducting element wires together and a secondary twisted wire formed by twisting the primary twisted wires together. 13. The superconducting wire according to claim 12, wherein each twist pitch is set under the condition that the least common multiple of each twist pitch in each twisted wire of the higher twisted wires is equal to the distance between the electrical short-circuited portions. cable.
【請求項14】 前記高次撚線の各次の各撚りピッチの
最小公倍数が前記電気的短絡部間の距離よりも大きいと
き、上記高次撚線の内の一次から任意次数までの撚線の
各撚りピッチの最小公倍数が上記電気的短絡部間の距離
よりも小さくなるときの上記一次から任意次数までの撚
線に上記電気的短絡部を設けた請求項13記載の超電導
ケーブル。
14. A twisted wire from the first order to an arbitrary order of the higher order twisted wires when the least common multiple of the respective twist pitches of the higher order twisted wires is larger than the distance between the electrical short-circuited parts. 14. The superconducting cable according to claim 13, wherein the electrical short circuit is provided in the stranded wire from the first order to the arbitrary order when the least common multiple of each twist pitch is smaller than the distance between the electrical short circuits.
【請求項15】 複数本の超電導素線から成る撚線を備
えた超電導ケーブルにおいて、上記超電導素線に対して
外部磁界の変化に起因して生じる誘導起電力と、上記撚
線の撚りピッチ及び上記超電導素線の長手方向の熱拡散
距離の内のいずれか一方で定まる当該超電導素線の常電
導転移時の発生電圧とに基づいて、上記撚りピッチを上
記誘導起電力が上記発生電圧よりも小さい条件を満足す
る範囲に設定したことを特徴とする超電導ケーブル。
15. A superconducting cable having a twisted wire composed of a plurality of superconducting wires, an induced electromotive force caused by a change in an external magnetic field to the superconducting wires, a twist pitch of the twisted wires, and Based on the generated voltage at the time of normal conduction transition of the superconducting element wire, which is determined by one of the longitudinal thermal diffusion distances of the superconducting element wire, the induced electromotive force of the twist pitch is more than the generated voltage. A superconducting cable characterized by being set within a range that satisfies small conditions.
【請求項16】 前記撚線は、前記複数本の超電導素線
を互いに撚り合わせて成る一次の撚線及びこの一次の撚
線を互いに撚り合わせて成る二次の撚線を含む高次撚線
であり、この高次撚線の各次の撚線毎の前記誘導起電力
の総和と、当該各次の撚線の各撚りピッチ及び前記熱拡
散距離の内のいずれか一方で定まる常電導転移時の発生
電圧とに基づいて、上記各撚りピッチを上記誘導起電力
の総和が上記発生電圧よりも小さい条件を満足する範囲
に設定した請求項15記載の超電導ケーブル。
16. The higher twisted wire includes a primary twisted wire formed by twisting the plurality of superconducting wires together and a secondary twisted wire formed by twisting the primary twisted wires together. And the sum of the induced electromotive force for each twisted wire of this higher-order twisted wire, the normal conduction transition determined by one of the twist pitches of the twisted wires of the next order and the thermal diffusion distance. The superconducting cable according to claim 15, wherein each twist pitch is set to a range satisfying a condition that the sum of the induced electromotive forces is smaller than the generated voltage based on the generated voltage at the time.
【請求項17】 複数本の超電導素線から成る撚線を備
えた超電導ケーブルにおいて、上記撚線は同心円の半径
が異なる円周方向に層状に同じピッチで撚り合わせて成
る複数層の撚線であり、この複数層の撚線の撚りピッチ
に相当する各交差位置における上記超電導素線の単位長
さ当たりの電気抵抗値を上記交差位置を挟む位置におけ
る上記電気抵抗値よりも小さくするための電気抵抗を有
する電気的短絡部を当該交差位置に設けたことを特徴と
する超電導ケーブル。
17. A superconducting cable provided with a stranded wire composed of a plurality of superconducting element wires, wherein the stranded wire is a plurality of stranded wires formed by laying layers at the same pitch in a circumferential direction in which concentric circles have different radii. Yes, an electric value for reducing the electric resistance value per unit length of the superconducting element wire at each crossing position corresponding to the twist pitch of the twisted wires of the plurality of layers below the electric resistance value at the position sandwiching the crossing position. A superconducting cable characterized in that an electrical short-circuit portion having a resistance is provided at the intersecting position.
【請求項18】 前記複数層の撚線の内の隣接する2つ
の層の撚線の撚り方向を互いに逆方向に設定した請求項
17記載の超電導ケーブル。
18. The superconducting cable according to claim 17, wherein the twisting directions of the twisted wires of two adjacent layers among the twisted wires of the plurality of layers are set to be opposite to each other.
【請求項19】 前記複数層の層数は偶数である請求項
18記載の超電導ケーブル。
19. The superconducting cable according to claim 18, wherein the number of the plurality of layers is an even number.
【請求項20】 前記撚線を収納するコンジットを更に
備え、前記電気的短絡部は、当該コンジットの軸方向に
直交する上記撚線のボイド率を前記交差位置で小さくす
る手段を備えた請求項17〜19の内のいずれか1項に
記載の超電導ケーブル。
20. A conduit for accommodating the twisted wire is further provided, and the electrical short-circuit portion is provided with means for reducing a void ratio of the twisted wire orthogonal to an axial direction of the conduit at the intersecting position. The superconducting cable according to any one of 17 to 19.
JP7285330A 1995-01-26 1995-11-01 Superconducting cable Pending JPH08264039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7285330A JPH08264039A (en) 1995-01-26 1995-11-01 Superconducting cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1066395 1995-01-26
JP7-10663 1995-01-26
JP7285330A JPH08264039A (en) 1995-01-26 1995-11-01 Superconducting cable

Publications (1)

Publication Number Publication Date
JPH08264039A true JPH08264039A (en) 1996-10-11

Family

ID=26345974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7285330A Pending JPH08264039A (en) 1995-01-26 1995-11-01 Superconducting cable

Country Status (1)

Country Link
JP (1) JPH08264039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256841A (en) * 2000-03-14 2001-09-21 Toshiba Corp Superconductive cable and magnet using the same
JP2009026755A (en) * 2007-07-17 2009-02-05 Nexans Superconductive electrical cable
JP2011187524A (en) * 2010-03-05 2011-09-22 Hitachi Ltd High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
WO2018227083A1 (en) * 2017-06-09 2018-12-13 Brookhaven Technology Group, Inc. Flexible multi-filament high temperature superconducting cable
US10811589B2 (en) 2016-09-07 2020-10-20 Brookhaven Technology Group, Inc. Reel-to-reel exfoliation and processing of second generation superconductors
US11289640B2 (en) 2016-01-21 2022-03-29 Brookhaven Technology Group, Inc. Second generation superconducting filaments and cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256841A (en) * 2000-03-14 2001-09-21 Toshiba Corp Superconductive cable and magnet using the same
JP2009026755A (en) * 2007-07-17 2009-02-05 Nexans Superconductive electrical cable
KR101439976B1 (en) * 2007-07-17 2014-09-12 넥쌍 Superconducting electric cable
JP2011187524A (en) * 2010-03-05 2011-09-22 Hitachi Ltd High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
US11289640B2 (en) 2016-01-21 2022-03-29 Brookhaven Technology Group, Inc. Second generation superconducting filaments and cable
US10811589B2 (en) 2016-09-07 2020-10-20 Brookhaven Technology Group, Inc. Reel-to-reel exfoliation and processing of second generation superconductors
WO2018227083A1 (en) * 2017-06-09 2018-12-13 Brookhaven Technology Group, Inc. Flexible multi-filament high temperature superconducting cable

Similar Documents

Publication Publication Date Title
US5952614A (en) A.C. cable with stranded electrical conductors
JP3892605B2 (en) Superconducting coil device for current limiting element
JPH08264039A (en) Superconducting cable
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JP3705309B2 (en) Superconducting device
JP2001229750A (en) Superconducting cable
JPH10321058A (en) Superconducting conductor for AC
JP3568745B2 (en) Oxide superconducting cable
JP3404518B2 (en) Superconducting conductor
JPH06139839A (en) Ac superconducting cable
JPS6161275B2 (en)
JPS62180910A (en) Superconductor
JPH08153547A (en) Cable-in-conduit conductor
JP3119514B2 (en) Superconducting conductor
JP3568744B2 (en) Oxide superconducting cable
Saga et al. AC loss of transposed HTS cable conductors
JP2001325837A (en) Superconducting cable
JP2561839B2 (en) Low AC resistance conductor
JPH01107421A (en) AC superconducting conductor
JPH07122133A (en) Oxide superconducting conductor and method for manufacturing the same
JPH1092235A (en) Superconducting conductor for AC
JPH06223641A (en) Superconductor and superconducting current limiter trigger coil using same
JP2002133954A (en) Superconductor and assembly type superconductor
Ohmatsu et al. Development of Bi-2223 cable conductors
JP2022062544A (en) NbTi superconducting multi-core wire