[go: up one dir, main page]

JPH08264022A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH08264022A
JPH08264022A JP9447395A JP9447395A JPH08264022A JP H08264022 A JPH08264022 A JP H08264022A JP 9447395 A JP9447395 A JP 9447395A JP 9447395 A JP9447395 A JP 9447395A JP H08264022 A JPH08264022 A JP H08264022A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
group
film
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9447395A
Other languages
Japanese (ja)
Inventor
Uchitsugu Minami
内嗣 南
Shinzo Takada
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP9447395A priority Critical patent/JPH08264022A/en
Publication of JPH08264022A publication Critical patent/JPH08264022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE: To provide a transparent conductive film made of oxides containing group II, III, and IV elements, having the pseudoternary or pseudoquaternary composition, having high conductivity, capable of widely selecting the light refraction factor from a small one to a large one, and having stability and proper chemical resistance in the high-temperature oxidizing atmosphere. CONSTITUTION: A quaternary transparent conductive film made of the pseudoternary composition containing the mixed crystal indicated by (Zn,Cd,Mg) O-(B,Al,Ga,In,Y)2 O3 -(Si,Ge,Sn,Pb,Ti,Zr)O2 or (Zn,Cd,Mg)O-(B,Al,Ga,In,Y)2 O3 -(Si,Sn, Pb)O is manufactured with the pseudoternary powder or a sintered target of the same composition by the high-frequency or DC magnetron spattering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物透明導電膜並びに
該膜を製造するために使用される焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive oxide film and a sintered body used for producing the film.

【0002】[0002]

【従来の技術】各種ディスプレイ装置や薄膜太陽電池あ
るいは将来莫大な需要が見込まれる紫外線遮断、赤外線
反射特性に優れた省エネルギー建築用窓硝子コーティン
グ材料として、可視光透過率が高く、低抵抗な特性を有
する透明導電膜が欠かせない。現在最も広く利用されて
いる透明導電膜としては、金属酸化物薄膜が主であり、
高い化学的安定性を有する酸化錫SnO2系(Fまたは
アンチモン(Sb)を添加したものが主として利用され
ている。)、酸化インジウム(In23)系、さらに最
近では、申請者らが開発した低コストで資源的にも全く
問題がなく、Sn添加In23(ITO)に匹敵する優
れた電気的・光学的特性を有する酸化亜鉛(ZnO)系
が知られている。
2. Description of the Related Art Various display devices, thin-film solar cells, and energy-saving architectural window glass coating materials with excellent ultraviolet blocking and infrared reflecting properties, which are expected to have huge demand in the future, have high visible light transmittance and low resistance. The transparent conductive film that it has is indispensable. The most widely used transparent conductive film at present is mainly a metal oxide thin film,
The tin oxide SnO 2 type having high chemical stability (the one to which F or antimony (Sb) is added is mainly used), the indium oxide (In 2 O 3 ) type, and more recently, the applicants There is known a zinc oxide (ZnO) system which has a low cost, has no resource problems, and has excellent electrical and optical characteristics comparable to Sn-doped In 2 O 3 (ITO).

【0003】[0003]

【発明が解決しようとする問題点】しかし、従来の透明
導電膜では、近年の透明導電膜に対する用途の多様化に
対応しきれなくなっている。即ち、大面積にわたって均
一で、より低い抵抗率や高い光透過率、さらには任意の
光屈折率を有する透明導電膜が求められている。しか
も、酸・アルカリ等に対する高い薬品耐性、高温酸化性
雰囲気中での使用に対する高い安定性が要求されている
が従来の透明導電膜では対応できなくなっているという
問題がある。
However, the conventional transparent conductive film cannot cope with the recent diversification of applications for the transparent conductive film. That is, there is a demand for a transparent conductive film which is uniform over a large area and has a lower resistivity, a higher light transmittance, and an arbitrary light refractive index. Moreover, although high chemical resistance to acids and alkalis and high stability in use in a high temperature oxidizing atmosphere are required, there is a problem that the conventional transparent conductive film cannot be used.

【0004】[0004]

【問題点を解決するための手段】本発明は、II族、III
族、及びIV族元素を含む酸化物から成る擬3元系もしく
は4元系組成を有する新しい透明導電膜を提供するもの
である。これによって従来利用されてきた擬2元系もし
くは3元系化合物を使用することによる透明導電膜の上
記問題点を解決し、様々な電気的・光学的特性を有する
該膜を単独もしくは適宜組み合わせて使用することによ
り高温酸化性雰囲気中での安定性や、適度な耐薬品性を
実現することができる新しい透明導電膜並びにそれを製
造するために使用する焼結体を提供することを目的とし
ている。
The present invention includes a group II and a group III
It is intended to provide a new transparent conductive film having a pseudo ternary or quaternary composition composed of an oxide containing a group IV element and a group IV element. As a result, the above-mentioned problems of the transparent conductive film due to the use of the conventionally used pseudo binary or ternary compound are solved, and the film having various electric and optical characteristics is used alone or in appropriate combination. It is an object of the present invention to provide a new transparent conductive film that can achieve stability in a high temperature oxidizing atmosphere and appropriate chemical resistance when used, and a sintered body used for producing the same. .

【0005】具体的には、II族元素として亜鉛(Zn)
またはマグネシウム(Mg)、III族元素としてガリウ
ム(Ga)あるいはインジウム(In)、及びIV族元素
としてはシリコン(Si)、ゲルマニウム(Ge)、錫
(Sn)もしくはチタニウム(Ti)から成る酸化物、
即ち(Zn,Mg)O−(Ga,In)23−(Si,
Ge,Sn,Ti)O2で示される混晶を含む擬3元系
において、[0.1+x](Zn,Cd,Mg)O−
[0.1](B,Al,Ga,In,Y)23−[9
9.8−x](Si,Ge,Sn,Pb,Ti,Zr)
2、[99.8−x](Zn,Cd,Mg)O−
[0.1+x](B,Al,Ga,In,Y)23
[0.1](Si,Ge,Sn,Pb,Ti,Zr)O
2、[0.1](Zn,Cd,Mg)O−[99.8−
x](B,Al,Ga,In,Y)−[0.1+x]
(Si,Ge,Sn,Pb,Ti,Zr)O2の各領域
で囲まれた組成、またはIV族元素の酸化物を同族の(S
i,Sn,Pb)Oに置き換えた上記各領域で囲まれた
組成範囲、ただし、0≦x≦99.7[モル%]、にあ
る酸化物であることを特徴とする該膜をガラスのような
セラミック質基板あるいはプラスチックのような有機質
基板上に形成することによって本発明の目的を達成する
ことができる。即ち、例えばZnO−In23−SnO
2なる擬3元系あるいは4元系組成を有する透明導電膜
において、ZnOを順次MgOで置き換えることによ
り、平均可視光透過率が改善され、かつ可視光域での光
屈折率を約2.0を中心として大幅に変えることができ
る。また、In23をGa23で順次置き換えることに
より、同光屈折率を2.0から1.6の範囲で調節する
ことができるうえ、平均可視光透過率も向上し、かつ耐
薬品性を大幅に改善できる。しかし、Ga23のIn2
3に対する置換量は約30%が限界であった。30%
以上では膜の抵抗値が急激に上昇し、透明導電膜として
機能しなくなる。一方、SnO2をSiO2、GeO2
るいはTiO2で置換することにより光屈折率を2.5
〜1.6と大幅に変化させられることが分かった。さら
に膜の耐環境性も大幅に改善することができた。このよ
うな特性は従来の擬2元系もしくは3元系から成る透明
導電膜とはかなり異なり、かかる組成や特性を予測する
ことは到底不可能である。また、本発明になる透明導電
膜を製造する際に使用される該タ−ゲットの組成制御は
特に重要であり、化学量論的組成比と膜の電気的特性と
の間に必ずしも対応がないため製造する透明導電膜の種
類に合わせて予めタ−ゲット組成を調整する必要があっ
た。例えば、ZnO−In23−SnO2系ではできる
膜の主成分はZn2In25であるが、この化合物はZ
nOとIn23のモル比2:1の比率では上記化合物は
生成されない。そのためモル比を1:1とする必要があ
った。
Specifically, zinc (Zn) is a group II element.
Alternatively, an oxide composed of magnesium (Mg), gallium (Ga) or indium (In) as a group III element, and silicon (Si), germanium (Ge), tin (Sn) or titanium (Ti) as a group IV element,
That (Zn, Mg) O- (Ga , In) 2 O 3 - (Si,
[0.1 + x] (Zn, Cd, Mg) O- in a quasi-ternary system containing a mixed crystal represented by Ge, Sn, Ti) O 2.
[0.1] (B, Al, Ga, In, Y) 2 O 3- [9
9.8-x] (Si, Ge, Sn, Pb, Ti, Zr)
O 2 , [99.8-x] (Zn, Cd, Mg) O-
[0.1 + x] (B, Al, Ga, In, Y) 2 O 3
[0.1] (Si, Ge, Sn, Pb, Ti, Zr) O
2 , [0.1] (Zn, Cd, Mg) O- [99.8-
x] (B, Al, Ga, In, Y)-[0.1 + x]
A composition surrounded by each region of (Si, Ge, Sn, Pb, Ti, Zr) O 2 or an oxide of a group IV element of the same group (S
i, Sn, Pb) O, and the composition range surrounded by each of the above regions, where 0 ≦ x ≦ 99.7 [mol%], and the film is made of glass. The object of the present invention can be achieved by forming it on such a ceramic substrate or an organic substrate such as plastic. Thus, for example ZnO-In 2 O 3 -SnO
In a transparent conductive film having a quasi-ternary or quaternary composition of 2, the average visible light transmittance is improved and the light refractive index in the visible light region is improved to about 2.0 by replacing ZnO with MgO. Can be changed drastically. Further, by sequentially replacing In 2 O 3 with Ga 2 O 3 , the same light refractive index can be adjusted within the range of 2.0 to 1.6, and the average visible light transmittance is also improved, Can significantly improve chemical properties. However, In 2 of Ga 2 O 3
The substitution amount for O 3 was limited to about 30%. 30%
With the above, the resistance value of the film rises sharply, and the film does not function as a transparent conductive film. On the other hand, by substituting SnO 2 with SiO 2 , GeO 2 or TiO 2 , the optical refractive index is increased to 2.5.
It was found that it could be changed significantly to ~ 1.6. In addition, the environment resistance of the film could be greatly improved. Such characteristics are quite different from those of the conventional transparent conductive film made of quasi-binary system or ternary system, and it is impossible to predict such composition and properties. Further, the composition control of the target used in producing the transparent conductive film according to the present invention is particularly important, and there is not always a correspondence between the stoichiometric composition ratio and the electrical characteristics of the film. Therefore, it is necessary to adjust the target composition in advance according to the type of the transparent conductive film to be manufactured. For example, although the major component of the film can be a ZnO-In 2 O 3 -SnO 2 based is Zn 2 In 2 O 5, the compound Z
If the molar ratio of nO and In 2 O 3 is 2: 1, the above compound is not produced. Therefore, it was necessary to set the molar ratio to 1: 1.

【0006】本発明になる該透明導電膜の製造法として
は、真空蒸着法、スパッタ法、化学気相結晶成長(CV
D)法、ゾルーゲル法、分子線エピタキシャル成長法等
既知の薄膜作製法が利用できる。
The method for producing the transparent conductive film according to the present invention includes a vacuum vapor deposition method, a sputtering method and a chemical vapor phase crystal growth (CV) method.
Known thin film forming methods such as the D) method, the sol-gel method, and the molecular beam epitaxial growth method can be used.

【0007】[0007]

【作 用】本発明の目的に適う上記組成範囲内の薄膜
を該基体上に前述したような既知の薄膜作製法により形
成する際、酸素空孔や格子間原子等の真性格子欠陥によ
る内因性ドナ−、あるいはII族元素の一部がIII族元素
で、III族元素の一部がIV族元素で、II族元素の一部がI
V族元素で、またはVI族元素の一部がVII族元素で、ある
いはまた、それらが1組以上の組み合わせで同時に置換
する外因性ドナ−の導入によるキャリアの生成が可能で
ある。本発明になる薄膜は非晶質もしくは結晶質になる
ことが予想されるがいずれの場合でも上述のメカニズム
によるキャリア生成が考えられる。また、上記いずれの
酸化物においてもバンドギャップは約3eV以上と大き
く可視光領域における吸収の非常に少ない透明導電膜が
実現できる。さらに、本発明になる該透明導電膜の光屈
折率は、In23系、SnO2系及びZnO系等従来の
透明導電膜のそれよりも高い2.4前後から1.6前後
まで4元系組成を調整することにより変化させられると
いう特徴を有する。従って該膜の組成を変えることによ
り種々の光屈折率をもつ透明導電膜を作製できるので基
板としてよく使われるガラスや従来の透明導電膜等小さ
い光屈折率の膜と大きい光屈折率の膜を適宜組み合わせ
て使用できるという従来にない広い選択肢を有する。こ
れにより導電性をもつコーティング膜、干渉フィルタ、
反射器(ブラックリフレクタ)、窓ガラス用装飾コ−テ
ィングあるいは透明電極膜として利用できるという作用
効果を生み出す。さらに、本発明になる該膜は、例えば
酸・アルカリに容易に溶解するZnO系、耐薬品性の極
めて高いSnO2系及び適度な化学薬品耐性を持つIn2
3系から構成されるため幅広いニ−ズに対応できる化
学薬品耐性を持たせられるという作用効果を生み出す。
そのため多様化する透明導電膜の用途にも十分対応でき
るという特徴を有する。
[Operation] When a thin film having the above composition range suitable for the purpose of the present invention is formed on the substrate by the known thin film forming method as described above, intrinsic properties due to intrinsic lattice defects such as oxygen vacancies and interstitial atoms are generated. Donor or part of group II element is group III element, part of group III element is group IV element, part of group II element is group I
It is possible to generate carriers by the introduction of exogenous donors that substitute with group V elements, or part of group VI elements with group VII elements, or alternatively, with one or more combinations thereof. The thin film according to the present invention is expected to be amorphous or crystalline, but in any case, carrier generation by the above-mentioned mechanism is considered. Further, in any of the above oxides, a transparent conductive film having a large band gap of about 3 eV or more and very little absorption in the visible light region can be realized. Further, the optical refractive index of the transparent conductive film according to the present invention is higher than that of the conventional transparent conductive film such as In 2 O 3 system, SnO 2 system and ZnO system from about 2.4 to about 1.6. It has the feature that it can be changed by adjusting the composition of the original system. Therefore, by changing the composition of the film, a transparent conductive film having various optical refractive indexes can be produced. Therefore, a film having a small optical refractive index and a film having a large optical refractive index such as glass often used as a substrate or a conventional transparent conductive film can be formed. It has an unprecedented wide range of options that can be used in appropriate combinations. As a result, conductive coating film, interference filter,
It produces the effect that it can be used as a reflector (black reflector), a decorative coating for window glass or a transparent electrode film. Further, the film according to the present invention is, for example, ZnO-based which is easily dissolved in acid / alkali, SnO 2 -based which has extremely high chemical resistance, and In 2 which has appropriate chemical resistance.
Since it is composed of O 3 system, it produces the action effect that it can be given chemical resistance that can deal with a wide range of needs.
Therefore, it has a feature that it can be sufficiently applied to various uses of transparent conductive films.

【0008】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【実施例 1】1化学式当たり0.1モル%のSnを添
加したMgIn24と1化学式当たり同じくSnを0.
1モル%添加したZn2In25から成る系において、
Zn/(Zn+Mg)の原子比を0から100%まで変
化させて作製した薄膜のバンドギャップエネルギ−、抵
抗率、光屈折率および平均可視光透過率の組成依存性の
典型的な例を図1に示す。この時の膜作製条件は次の通
りである。ZnとMgを上記の混合比で均一に混合した
後アルゴン中1000℃で5時間焼成した各焼成粉を直
径80mmのステンレス製皿に詰めそれぞれのスパッタ
用ターゲットとした。スパッタガスには純アルゴンガス
を用いた。スパッタガス圧を1.2Paに設定し、ター
ゲット面に対し平行に保持された室温のガラス基板上に
高周波投入電力40Wで、スパッタ成膜を行なった。作
製した膜の平均厚さは380nmにあり、室温で得られ
た膜の最小抵抗率はZn2In25相当の組成の膜にお
いて得られ、3.9×10-4Ωcmであった。また、各
組成の膜の光屈折率はMgリッチの膜では約2.0であ
るのに対し、Znリッチの膜では最大約2.4という大
きな値が得られた。しかし、バンドギャップの値は2.
9eVと従来の透明導電膜よりも低い値を示した。平均
可視光透過率はZn側を除けば80%以上の値を確保で
きた。このように組成を変えることにより高い光屈折率
と低い抵抗率を得ることができた。得られた膜をx線回
折により分析したところZnリッチの膜での主成分はZ
2In25で、Mgリッチの膜での主成分はMgIn2
4であった。尚、基板を垂直に保持して成膜した場合
でも、上記とほぼ同様の結果が得られた。さらに、添加
物のSnの替わりにGe、Si、Pb、TiあるいはZ
rで置き換えてもほぼ同様の電気的光学的特性が得られ
た。尚、添加物を導入するに当たり上記の1酸化物もし
くは2酸化物いずれの形でも有効であった。また、基板
温度350℃で作製した場合では、電気的特性を損なう
ことなく全組成域で透過率を80%以上確保することが
できた。
Example 1 MgIn 2 O 4 added with 0.1 mol% of Sn per chemical formula and Sn of the same amount per chemical formula of 0.
In a system consisting of 1 mol% added Zn 2 In 2 O 5 ,
A typical example of composition dependence of band gap energy, resistivity, photorefractive index and average visible light transmittance of a thin film prepared by changing the atomic ratio of Zn / (Zn + Mg) from 0 to 100% is shown in FIG. Shown in. The film forming conditions at this time are as follows. Zn and Mg were uniformly mixed at the above mixing ratio, and each fired powder fired in argon at 1000 ° C. for 5 hours was filled in a stainless steel dish having a diameter of 80 mm to be a sputtering target. Pure argon gas was used as the sputtering gas. The sputtering gas pressure was set to 1.2 Pa, and sputtering film formation was performed on a glass substrate at room temperature held parallel to the target surface with a high-frequency input power of 40 W. The average thickness of the produced film was 380 nm, and the minimum resistivity of the film obtained at room temperature was 3.9 × 10 −4 Ωcm obtained in the film having a composition corresponding to Zn 2 In 2 O 5 . Further, the optical refractive index of the film of each composition was about 2.0 in the Mg-rich film, while the maximum value of about 2.4 was obtained in the Zn-rich film. However, the band gap value is 2.
The value was 9 eV, which was lower than that of the conventional transparent conductive film. An average visible light transmittance of 80% or more could be secured except for the Zn side. By changing the composition in this way, a high photorefractive index and a low resistivity could be obtained. When the obtained film was analyzed by x-ray diffraction, the main component in the Zn-rich film was Z.
n 2 In 2 O 5 and the main component of the Mg-rich film is MgIn 2
It was O 4 . Even when the substrate was held vertically to form a film, almost the same result as above was obtained. Further, instead of Sn as an additive, Ge, Si, Pb, Ti or Z
Even if it was replaced by r, almost the same electro-optical characteristics were obtained. It should be noted that either of the above oxides or oxides was effective in introducing the additive. Further, when the substrate was manufactured at a temperature of 350 ° C., it was possible to secure the transmittance of 80% or more in the entire composition range without impairing the electrical characteristics.

【0009】[0009]

【実施例 2】実施例1と同じスパッタ条件で、1化学
式当たり0.1モル%Sn添加のInGaO3とMgI
24から成る系において、In/(In+Mg)の比
率を実施例1と同様0〜100%まで変化させて作製し
た膜では、Inリッチの膜では光屈折率約1.6、抵抗
率4.5×10-4Ωcmであった。さらに、添加物のS
nの替わりにSi、Ge、Pb、TiあるいはZrを用
いてもほぼ同様の電気的光学的特性が得られた。また、
Gaの替わりにB、AlあるいはYを用いることも有効
であった。尚、基板温度350℃で作製した場合では、
電気的特性を損なうことなく透過率を85%まで改善す
ることができた。
Example 2 Under the same sputtering conditions as in Example 1, InGaO 3 and MgI added with 0.1 mol% Sn per chemical formula.
In a film made by changing the In / (In + Mg) ratio from 0 to 100% in the system composed of n 2 O 4 as in Example 1, the In-rich film had a photorefractive index of about 1.6 and a resistivity. It was 4.5 × 10 −4 Ωcm. In addition, the additive S
Even if Si, Ge, Pb, Ti or Zr was used instead of n, almost the same electro-optical characteristics were obtained. Also,
It was also effective to use B, Al or Y instead of Ga. If the substrate temperature is 350 ° C.,
The transmittance could be improved to 85% without impairing the electrical characteristics.

【0010】[0010]

【実施例 3】実施例1と同じスパッタ条件で、1化学
式当たり0.1モル%Sn添加のInGaO3とZn2
25から成る系において、Zn/(In+Zn)の比
率を実施例1と同様0〜100%まで変化させて作製し
た膜では、Inリッチの膜では光屈折率約1.6、抵抗
率5.5×10-4Ωcmであった。さらに、添加物であ
るSnの替わりにSi、Ge、Pb、TiあるいはZr
で置き換えてもほぼ同様の電気的光学的特性が得られ
た。尚、基板温度350℃で作製した場合では、電気的
特性を損なうことなく透過率を85%まで改善すること
ができた。
Example 3 Under the same sputtering conditions as in Example 1, InGaO 3 and Zn 2 I added with 0.1 mol% Sn per chemical formula.
In a film made by changing the Zn / (In + Zn) ratio from 0 to 100% in the system consisting of n 2 O 5 as in Example 1, the In-rich film had a photorefractive index of about 1.6 and a resistivity. It was 5.5 × 10 −4 Ωcm. Further, instead of Sn which is an additive, Si, Ge, Pb, Ti or Zr
Even when replaced with, the almost same electro-optical characteristics were obtained. When the substrate was manufactured at a temperature of 350 ° C., the transmittance could be improved to 85% without impairing the electrical characteristics.

【0011】[0011]

【実施例 4】1化学式当たり0.1モル%Sn添加の
MgIn24、Zn2In25あるいはInGaO3、あ
るいはこれら2種以上の組み合わせからなる実施例1、
2あるいは3の該透明導電膜を作製するために使用され
たZnO、MgO、In23、Ga23、IV族酸化物原
料粉末を均一に混合後、直径80mmに成型した後、焼
結した焼結体タ−ゲットを使用した。いずれの場合にお
いても焼成粉末タ−ゲットを用いて作製した透明導電膜
の電気的・光学的特性とほぼ同様の結果が得られた。ま
た、同様の結果は焼結体タ−ゲットを用いた直流マグネ
トロンスパッタ法によっても実現できることを確認し
た。
Example 4 Example 1 comprising MgIn 2 O 4 , Zn 2 In 2 O 5 or InGaO 3 with 0.1 mol% Sn added per chemical formula, or a combination of two or more thereof.
ZnO, which was used to prepare two or three of the transparent conductive film, MgO, In 2 O 3, Ga 2 O 3, IV group were uniformly mixed oxide raw material powder, after molding to the diameter 80 mm, baked A bonded sintered body target was used. In each case, almost the same results were obtained as the electric and optical characteristics of the transparent conductive film produced by using the fired powder target. It was also confirmed that the same result can be realized by the DC magnetron sputtering method using a sintered target.

【0012】本発明になる透明導電膜は、前記実施例の
みに限定されるものではなく、種々の原材料、例えば、
前記実施例においては、すべての原料に酸化物を利用し
ていたが、II族、III族あるいはIV族を含む酸化物や気
化しやすい低級酸化物、アセテート、アセチルアセトネ
ート、あるいはアルコレートのような有機金属錯体等各
種の化合物を適宜組み合わせて利用することができる。
即ち、Zn原料として[Zn(acac)2]、Znア
セテート[Zn(CH3COO)2]、塩化亜鉛(ZnC
4)のような錯体、あるいは塩もしくはハロゲナイ
ド、さらにZn(OCH32、Zn(OC252のよ
うなアルコキシド、またジメチルZn[Zn(C
32]、ジエチルZn[Zn(C252]のような
アルキル化合物等多くの錯塩や錯体が利用できる。Mg
の原料もZnの場合と同様の化合物が利用できる。ま
た、Sn原料として、[Sn(CH3COO)2]、テト
ラプロポキシSn[Sn(O−i−C374]、テトラ
−n−ブトキシSn[Sn(O−n−C494のよう
なアルコキシド系、しゅう酸第1錫(SnC24)、塩
化第2錫(SnCl4)、錫アセチルアセトネート[S
n(C492(C5722]のような錫塩もしくは
錫ハロゲナイド系、さらにはテトラメチル錫[Sn(C
34],[Sn(C254]のようなアルキル化合
物等多くの錯塩や錯体を用いても製造できる。TiやG
eの原料についても同様の化合物が利用できる。さら
に、III族元素であるInやGaについても上記と同様
の化合物が利用できる事は言うまでもない。
The transparent conductive film according to the present invention is not limited to the above embodiment, but various raw materials such as, for example,
In the above examples, oxides were used for all raw materials, but oxides containing Group II, Group III or Group IV or lower vaporizable compounds such as acetate, acetylacetonate, or alcoholate were used. Various compounds such as various organic metal complexes can be appropriately combined and used.
That is, as a Zn raw material, [Zn (acac) 2 ], Zn acetate [Zn (CH 3 COO) 2 ], zinc chloride (ZnC
l 4 ), a salt or a halogenide, an alkoxide such as Zn (OCH 3 ) 2 or Zn (OC 2 H 5 ) 2 , dimethyl Zn [Zn (C
Many complex salts and complexes such as alkyl compounds such as H 3 ) 2 ] and diethyl Zn [Zn (C 2 H 5 ) 2 ] can be used. Mg
The same compound as in the case of Zn can be used as the raw material. Further, as the Sn starting material, [Sn (CH 3 COO) 2], tetra propoxy Sn [Sn (O-i- C 3 H 7) 4], tetra -n- butoxy Sn [Sn (O-n- C 4 H 9 ) Alkoxides such as 4 , stannous oxalate (SnC 2 O 4 ), stannic chloride (SnCl 4 ), tin acetylacetonate [S
n (C 4 H 9 ) 2 (C 5 H 7 O 2 ) 2 ], tin salt or tin halogenide type, and further tetramethyltin [Sn (C
It can also be produced using many complex salts and complexes such as alkyl compounds such as H 3 ) 4 ] and [Sn (C 2 H 5 ) 4 ]. Ti and G
Similar compounds can be used for the raw material of e. Further, it goes without saying that the same compounds as described above can be used for the group III elements In and Ga.

【発明の効果】本発明になる擬3元系酸化物において
は、バンドギャップは2.9〜3.4eVと大きく変化
した。さらに可視光領域における吸収の非常に少ない透
明導電膜が実現できた。さらに、In23系、SnO2
系及びZnO系等従来型透明導電膜の光屈折率がいずれ
も2.0前後であるのに対し、本発明では、擬3元系組
成を変化させることにより光屈折率を2.4〜1.6と
広範囲にわたって制御可能であり、多様化する透明導電
膜の用途に十分対応できる高光透過性透明導電膜を実現
できるという顕著な効果が認められた。例えば光屈折率
約2.0のMgIn24、同2.4のZn2In25
るいは同1.6のInGaO3を適宜組み合わせること
により無反射コ−ティング膜や干渉フィルタあるいは反
射器(ブラックリフレクタ)を本発明のように導電性薄
膜で構成できるという新規な応用が可能になるという顕
著な効果が認められた。
EFFECTS OF THE INVENTION In the quasi-ternary oxide according to the present invention, the band gap changed greatly from 2.9 to 3.4 eV. Furthermore, a transparent conductive film with very little absorption in the visible light region was realized. Furthermore, In 2 O 3 system, SnO 2
In the present invention, the light refractive index of conventional transparent conductive films such as ZnO and ZnO is about 2.0, while in the present invention, the light refractive index is changed from 2.4 to 1 by changing the quasi-ternary composition. A remarkable effect that a highly light-transmissive transparent conductive film that can be controlled over a wide range of .6 and can sufficiently meet various uses of the transparent conductive film was recognized. For example, by appropriately combining MgIn 2 O 4 having a light refractive index of about 2.0, Zn 2 In 2 O 5 of 2.4 and InGaO 3 of 1.6, an antireflection coating film, an interference filter or a reflector. The remarkable effect that the new application that the (black reflector) can be composed of the conductive thin film as in the present invention becomes possible is recognized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得られた該透明導電膜のバ
ンドギャップエネルギ−、抵抗率、光屈折率および平均
可視光透過率の組成依存性を示す。
FIG. 1 shows composition dependence of bandgap energy, resistivity, light refractive index and average visible light transmittance of the transparent conductive film obtained in Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/40 C23C 16/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C23C 16/40 C23C 16/40

Claims (4)

【整理番号】 MT41227DD 【特許請求の範囲】[Reference number] MT41227DD [Claims] 【請求項 1】基体上に、II族、III族及びIV族元素を
含む酸化物の薄膜を形成してなることを特徴とする透明
導電膜。
1. A transparent conductive film comprising a base and a thin film of an oxide containing a group II, a group III and a group IV element formed thereon.
【請求項 2】請求項1記載のII族元素として、亜鉛
(Zn)、カドミウム(Cd)またはマグネシウム(M
g)、III族元素としてホウ素(B)、アルミニウム
(Al)、ガリウム(Ga)、インジウム(In)また
はイットリウム(Y)、IV族元素としてシリコン(S
i)、ゲルマニウム(Ge)、錫(Sn)、鉛(P
b)、チタニウム(Ti)またはジルコニウム(Zr)
であることを特徴とする請求項1記載の透明導電膜。
2. The group II element according to claim 1, which is zinc (Zn), cadmium (Cd) or magnesium (M
g), boron (B), aluminum (Al), gallium (Ga), indium (In) or yttrium (Y) as a group III element, and silicon (S) as a group IV element.
i), germanium (Ge), tin (Sn), lead (P)
b), titanium (Ti) or zirconium (Zr)
The transparent conductive film according to claim 1, wherein
【請求項 3】請求項1記載の膜の成分が、(Zn,C
d,Mg)O−(B,Al,Ga,In,Y)23
(Si,Ge,Sn,Pb,Ti,Zr)O2で示され
る混晶を含む擬3元系において、[0.1+x](Z
n,Cd,Mg)O−[0.1](B,Al,Ga,I
n,Y)23−[99.8−x](Si,Ge,Sn,
Pb,Ti,Zr)O2、[99.8−x](Zn,C
d,Mg)O−[0.1+x](B,Al,Ga,I
n,Y)23−[0.1](Si,Ge,Sn,Pb,
Ti,Zr)O2、[0.1](Zn,Cd,Mg)O
−[99.8−x](B,Al,Ga,In,Y)−
[0.1+x](Si,Ge,Sn,Pb,Ti,Z
r)O2、またはIV族元素の酸化物を同族の(Si,S
n,Pb)Oに置き換えた上記各領域で囲まれた擬3元
系もしくは4元系組成範囲、ただし、0≦x≦99.7
[モル%]、にあることを特徴とする請求項1または2
記載の透明導電膜。
3. The component of the film according to claim 1 is (Zn, C
d, Mg) O- (B, Al, Ga, In, Y) 2 O 3 -
In the quasi-ternary system containing a mixed crystal represented by (Si, Ge, Sn, Pb, Ti, Zr) O 2 , [0.1 + x] (Z
n, Cd, Mg) O- [0.1] (B, Al, Ga, I
n, Y) 2 O 3 - [99.8-x] (Si, Ge, Sn,
Pb, Ti, Zr) O 2 , [99.8-x] (Zn, C
d, Mg) O- [0.1 + x] (B, Al, Ga, I
n, Y) 2 O 3- [0.1] (Si, Ge, Sn, Pb,
Ti, Zr) O 2 , [0.1] (Zn, Cd, Mg) O
-[99.8-x] (B, Al, Ga, In, Y)-
[0.1 + x] (Si, Ge, Sn, Pb, Ti, Z
r) O 2 or an oxide of a group IV element is a group of (Si, S
n, Pb) O replaced with pseudo-ternary or quaternary composition range surrounded by the above respective regions, where 0 ≦ x ≦ 99.7
[Mole%], 3.
The transparent conductive film described.
【請求項 4】請求項1,2または3記載の透明導電膜
を製造するために使用される焼結体。
4. A sintered body used for producing the transparent conductive film according to claim 1, 2.
JP9447395A 1995-03-27 1995-03-27 Transparent conductive film Pending JPH08264022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9447395A JPH08264022A (en) 1995-03-27 1995-03-27 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9447395A JPH08264022A (en) 1995-03-27 1995-03-27 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH08264022A true JPH08264022A (en) 1996-10-11

Family

ID=14111252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9447395A Pending JPH08264022A (en) 1995-03-27 1995-03-27 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH08264022A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037255A1 (en) * 1997-02-21 1998-08-27 Asahi Glass Company Ltd. Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film
US6042752A (en) * 1997-02-21 2000-03-28 Asahi Glass Company Ltd. Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
KR100628542B1 (en) * 1998-10-13 2006-09-27 도소 가부시키가이샤 The sinter of metal oxide compound and use thereof
US7790644B2 (en) 2008-09-17 2010-09-07 Mitsui Mining & Smelting Co., Ltd. Zinc-oxide-based target
WO2013005400A1 (en) * 2011-07-06 2013-01-10 出光興産株式会社 Sputtering target
TWI398706B (en) * 2005-12-26 2013-06-11 Idemitsu Kosan Co Transparent electrode film and electronic equipment
KR20140019000A (en) 2012-07-09 2014-02-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered compact of conductive oxide and method for manufacturing the same
KR20140037458A (en) * 2012-09-18 2014-03-27 재단법인 포항산업과학연구원 Compound for transparent electroconductive thin film, method for forming thin film using the same and transparent electroconductive thin film manufacutred thereby
JP2016111279A (en) * 2014-12-10 2016-06-20 国立大学法人東京農工大学 Multi-junction solar battery and manufacturing method thereof
KR20190065483A (en) 2012-03-30 2019-06-11 제이엑스금속주식회사 Sputtering target and process for manufacturing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042752A (en) * 1997-02-21 2000-03-28 Asahi Glass Company Ltd. Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
WO1998037255A1 (en) * 1997-02-21 1998-08-27 Asahi Glass Company Ltd. Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film
KR100628542B1 (en) * 1998-10-13 2006-09-27 도소 가부시키가이샤 The sinter of metal oxide compound and use thereof
TWI398706B (en) * 2005-12-26 2013-06-11 Idemitsu Kosan Co Transparent electrode film and electronic equipment
US7790644B2 (en) 2008-09-17 2010-09-07 Mitsui Mining & Smelting Co., Ltd. Zinc-oxide-based target
US9039944B2 (en) 2011-07-06 2015-05-26 Idemitsu Kosan Co., Ltd. Sputtering target
JPWO2013005400A1 (en) * 2011-07-06 2015-02-23 出光興産株式会社 Sputtering target
WO2013005400A1 (en) * 2011-07-06 2013-01-10 出光興産株式会社 Sputtering target
KR20190065483A (en) 2012-03-30 2019-06-11 제이엑스금속주식회사 Sputtering target and process for manufacturing same
KR20210037027A (en) 2012-03-30 2021-04-05 제이엑스금속주식회사 Sputtering target and process for manufacturing same
KR20140019000A (en) 2012-07-09 2014-02-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered compact of conductive oxide and method for manufacturing the same
KR20140037458A (en) * 2012-09-18 2014-03-27 재단법인 포항산업과학연구원 Compound for transparent electroconductive thin film, method for forming thin film using the same and transparent electroconductive thin film manufacutred thereby
JP2016111279A (en) * 2014-12-10 2016-06-20 国立大学法人東京農工大学 Multi-junction solar battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
JPH09259640A (en) Transparent conductive film
EP1628310A1 (en) Light-transmitting substrate with transparent electroconductive film
JP3616128B2 (en) Method for producing transparent conductive film
US20130333752A1 (en) Photovoltaic Solar Cell With High-Haze Substrate
WO2006016608A1 (en) Transparent conductor, transparent electrode, solar cell, luminescent device and display panel
KR101511015B1 (en) Silicon thin film solar cell having improved haze and methods of making the same
US20160180982A1 (en) Transparent conducting films including complex oxides
CN103493144A (en) Transparent electric conductor
JPH08264022A (en) Transparent conductive film
JP3163015B2 (en) Transparent conductive film
Löbl et al. ITO films for antireflective and antistatic tube coatings prepared by dc magnetron sputtering
CN107910094A (en) Nesa coating and preparation method, sputtering target and transparent conductive substrate and solar cell
JPH08264021A (en) Transparent conductive film
JPH06290641A (en) Noncrystal transparent conductive membrane
JPH08264023A (en) Transparent conductive film
CN101475319A (en) Method for online production of TCO film glass by float process
JP3205036B2 (en) Transparent conductive film
JP2002075062A (en) Transparent conductive film
JP2002075061A (en) Transparent conductive film
US20090022997A1 (en) Transparent Conductive Oxide Films Having Enhanced Electron Concentration/Mobility, and Method of Making Same
JPH054768B2 (en)
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
Patel et al. A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications
JP2526632B2 (en) Method for producing transparent conductive zinc oxide film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A02