JPH08259380A - Growing method for silicon crystal - Google Patents
Growing method for silicon crystalInfo
- Publication number
- JPH08259380A JPH08259380A JP7064065A JP6406595A JPH08259380A JP H08259380 A JPH08259380 A JP H08259380A JP 7064065 A JP7064065 A JP 7064065A JP 6406595 A JP6406595 A JP 6406595A JP H08259380 A JPH08259380 A JP H08259380A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen concentration
- crystal
- crucible
- melt
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 97
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 37
- 239000010703 silicon Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 109
- 239000001301 oxygen Substances 0.000 claims abstract description 109
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 109
- 239000000155 melt Substances 0.000 claims abstract description 32
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 230000002123 temporal effect Effects 0.000 claims description 8
- 238000004090 dissolution Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 230000003534 oscillatory effect Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコン結晶育成時に
結晶中の酸素濃度を制御する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the oxygen concentration in a crystal when growing a silicon crystal.
【0002】[0002]
【従来の技術】シリコン単結晶を用いるULSI(Ul
tra Large Scale Integrati
on)などの超高集積メモリ素子などにおいては、素材
であるシリコン結晶の、Fe,Cr,Ni,Cuなどの
汚染による素子の歩留まり低下を回避するために、シリ
コン結晶中に1017−1018atoms/cm3 程度の酸
素を含有させることが行われている。酸素の供給源はチ
ョクラルスキー法にあってはるつぼ材である石英(Si
O2 )の溶解により行われる。また、フローティングゾ
ーン法においては、融液と接する酸素を含有する気相よ
り供給される。2. Description of the Related Art ULSI (Ul
tra Large Scale Integrati
on) etc., in order to avoid a decrease in device yield due to contamination of Fe, Cr, Ni, Cu, etc. of the silicon crystal which is a material, in the silicon crystal, 10 17 -10 18 It is practiced to contain oxygen of about atoms / cm 3 . The source of oxygen is quartz (Si which is a crucible material in the Czochralski method).
O 2 ) is dissolved. Further, in the floating zone method, it is supplied from a gas phase containing oxygen which is in contact with the melt.
【0003】るつぼから育成されるチョクラルスキー法
の場合には、結晶成長の進行に伴い、融液と接するるつ
ぼ壁の面積が減少することからるつぼ壁の溶解による酸
素の供給が減少すること、また、融液の高さが低くなる
ことから対流の状況が変化し酸素の輸送量が変化するこ
とから、結晶育成の開始時と終了時では、シリコン結晶
に含まれる酸素の含有量が異なる。In the case of the Czochralski method of growing from a crucible, the area of the crucible wall in contact with the melt decreases with the progress of crystal growth, so that the supply of oxygen due to the melting of the crucible wall decreases. Further, since the height of the melt becomes low, the convection condition changes and the oxygen transport amount changes, so that the content of oxygen contained in the silicon crystal is different at the start and end of the crystal growth.
【0004】このため、従来の技術においては、結晶と
るつぼの回転数の膨大な組み合わせによる実験結果から
経験的に諸条件を決定し、それら多数の結晶引き上げ実
験からの経験に基づき、結晶育成の進行に伴いるつぼの
回転数を増加させるなどして、なるべく結晶中の酸素含
有量が一定となるような工夫がなされていた。Therefore, in the conventional technique, various conditions are empirically determined from the experimental results of a huge combination of the numbers of rotations of the crystal and the crucible, and based on the experience from the many crystal pulling experiments, the crystal growth The number of revolutions of the crucible was increased along with the progress, and the oxygen content in the crystal was made as constant as possible.
【0005】また、融液の対流が振動流であるために、
シリコン融液とシリコン結晶界面での融解中の酸素濃度
が振動し、この結果として、結晶中の酸素濃度分布が結
晶の育成方向に振動的になるという、いわゆる成長縞の
発生の問題があった。Since the convection of the melt is an oscillating flow,
There was a problem of occurrence of so-called growth stripes, in which the oxygen concentration during melting at the interface between the silicon melt and the silicon crystal fluctuated, and as a result, the oxygen concentration distribution in the crystal became oscillatory in the crystal growth direction. .
【0006】成長縞の発生の防止に関しては、かなり強
い直流磁場の印加により、対流の強度を抑制して結晶を
育成する方法が提案されている(特開平1−28218
4号公報参照)。With respect to the prevention of growth fringes, a method has been proposed in which a considerably strong DC magnetic field is applied to suppress the strength of convection to grow crystals (Japanese Patent Laid-Open No. 1-28218).
No. 4).
【0007】[0007]
【発明が解決しようとする課題】従来の技術において
は、適正な結晶中の酸素濃度を得るための諸条件を求め
るために、多数の結晶育成実験を行わなければならなか
った。In the prior art, many crystal growth experiments had to be carried out in order to find various conditions for obtaining an appropriate oxygen concentration in crystals.
【0008】本発明はこのような従来の問題点に鑑み、
シリコン結晶作成時に融液中の酸素濃度そのものをその
場測定し、所望の酸素濃度の結晶を育成できるように結
晶育成条件をその場で制御する方法を提供することにあ
る。The present invention has been made in view of the above-mentioned conventional problems.
It is an object of the present invention to provide a method for measuring the oxygen concentration itself in a melt at the time of producing a silicon crystal and controlling the crystal growth condition on the spot so that a crystal having a desired oxygen concentration can be grown.
【0009】[0009]
【課題を解決するための手段】本発明は、原料となるシ
リコン融液中の酸素濃度およびその時間的変動を、結晶
を作成している時に固体電界質を用いた酸素センサーに
より検出し、この測定データを用いて結晶とるつぼの回
転数、るつぼ加熱用ヒーター電力、るつぼとヒーターと
の相対位置、印加磁場強度等の操作条件に負帰還制御す
る結晶育成方法を提供する。この方法を用いると、シリ
コン融液中の酸素濃度を結晶育成中にその場測定し、こ
のデーターを用いて所望の酸素濃度との差の信号を結晶
とるつぼの回転数等の上記操作条件に負帰還することに
より、自動的に結晶中の酸素濃度を所望の値に制御する
ことが可能となる。According to the present invention, the oxygen concentration in a silicon melt, which is a raw material, and its temporal variation are detected by an oxygen sensor using a solid electrolyte during crystal formation. Provided is a method for growing a crystal in which negative feedback control is performed on the operating conditions such as the number of rotations of the crucible for heating the crystal, the heater power for heating the crucible, the relative position between the crucible and the heater, and the applied magnetic field strength using the measured data. When this method is used, the oxygen concentration in the silicon melt is measured in-situ during crystal growth, and a signal of the difference between the oxygen concentration and the desired oxygen concentration is measured using this data for the above operating conditions such as the number of revolutions of the crystal and the crucible. By performing negative feedback, it becomes possible to automatically control the oxygen concentration in the crystal to a desired value.
【0010】[0010]
【作用】従来の結晶成長装置では、所望の結晶中の酸素
濃度を得るために膨大な数の実験を行う必要があった。
本発明では、まず図1に示すように、結晶育成中に結晶
の原料となる融液の中の酸素濃度を固体電界質を用いた
酸素センサーを用いて結晶を作成している時に測定す
る。この測定データを用いて、酸素濃度の設定値との差
信号を結晶とるつぼの回転数等のいくつかの操作条件に
負帰還制御することにより、所望の酸素濃度を持つ結晶
育成が可能となった。具体的には、結晶育成方向の酸素
濃度が所望の範囲で一定な結晶を作成することが可能と
なった。In the conventional crystal growth apparatus, it was necessary to carry out an enormous number of experiments in order to obtain the desired oxygen concentration in the crystal.
In the present invention, first, as shown in FIG. 1, the oxygen concentration in the melt, which is a raw material of the crystal, is measured during crystal growth while the crystal is being formed using an oxygen sensor using a solid electrolyte. By using this measurement data and performing negative feedback control of the difference signal from the set value of the oxygen concentration to some operating conditions such as the rotation speed of the crystal and the crucible, it becomes possible to grow crystals with the desired oxygen concentration. It was Specifically, it became possible to produce a crystal in which the oxygen concentration in the crystal growth direction was constant within a desired range.
【0011】使用した酸素センサーは固体電界質を用い
るもので、固体電界質としては例えばZrO2 −CaO
などが使用でき、参照電極としてはNi/NiOなどを
用いた。The oxygen sensor used uses a solid electrolyte, and the solid electrolyte is, for example, ZrO 2 --CaO.
Etc. can be used, and Ni / NiO or the like was used as the reference electrode.
【0012】[0012]
【実施例】本発明の一実施例について以下に示す。EXAMPLE An example of the present invention will be described below.
【0013】(実施例1)石英るつぼを用いて5インチ
径シリコン結晶をチョクラルスキー法により育成する場
合を示す。固体電界質を用いた酸素センサーにより、結
晶育成時間にともなって変化していく融液中の酸素濃度
を起電力として検出した。この電圧をあらかじめ設定し
た酸素濃度に匹敵する電圧値との差として検出し、この
信号をるつぼの回転数を決定するモーターにフィードバ
ックした。すなわち、結晶育成開始時には16rpmで
あったるつぼ回転数を、融液中の酸素濃度の低下を検出
し、その濃度に対応させて最大24rpm迄増加させ
た。(Example 1) A case where a 5-inch diameter silicon crystal is grown by the Czochralski method using a quartz crucible is shown. An oxygen sensor using a solid electrolyte was used as the electromotive force to detect the oxygen concentration in the melt that changed with the crystal growth time. This voltage was detected as a difference with a voltage value comparable to the preset oxygen concentration, and this signal was fed back to the motor that determines the rotation speed of the crucible. That is, the crucible rotation speed, which was 16 rpm at the start of crystal growth, was increased to a maximum of 24 rpm in accordance with the decrease in the oxygen concentration in the melt, which was detected.
【0014】この結果、結晶育成の初期から終了時に至
るまで、酸素濃度が(1±0.05)×1018atom
s/cm3 のシリコン結晶が得られた。As a result, the oxygen concentration is (1 ± 0.05) × 10 18 atom from the beginning of the crystal growth to the end thereof.
A silicon crystal of s / cm 3 was obtained.
【0015】(実施例2)石英るつぼを用いて4インチ
径シリコン結晶をチョクラルスキー法により育成する場
合を示す。酸素濃度が結晶育成時間にともなって変化し
ていくことを、固体電界質を用いた酸素センサーにより
起電力として検出する。この電圧をあらかじめ設定した
酸素濃度に匹敵する電圧値の差として検出し、これをる
つぼ加熱用電源の電力にフィードバックする。これによ
り、石英るつぼ壁からの酸素の溶解量を制御し、るつぼ
中の酸素の溶解量を(1±0.03)×1018atom
s/cm3 の一定量に保つことができた。これにより長手
方向に均一化することが可能となった。Example 2 A case of growing a 4-inch diameter silicon crystal by the Czochralski method using a quartz crucible is shown. The change in oxygen concentration with the crystal growth time is detected as an electromotive force by an oxygen sensor using a solid electrolyte. This voltage is detected as a difference in voltage value comparable to the preset oxygen concentration, and this is fed back to the power of the crucible heating power source. By this, the amount of oxygen dissolved from the quartz crucible wall is controlled, and the amount of oxygen dissolved in the crucible is (1 ± 0.03) × 10 18 atom.
It was possible to maintain a fixed amount of s / cm 3 . This has made it possible to make them uniform in the longitudinal direction.
【0016】(実施例3)石英るつぼを用いて6インチ
径シリコン結晶をチョクラルスキー法により育成する場
合を示す。固体電界質を用いた酸素センサーにより、結
晶育成時間にともなって変化していく融液中の酸素濃度
を起電力として検出した。この電圧をあらかじめ設定し
た酸素濃度に匹敵する電圧値との差として検出し、この
信号をるつぼとヒーターとの相対位置を変化するように
フィードバックした。具体的には以下のように行った。
すなわち、結晶育成開始の際にはヒーターの最高温部を
融液の液面から15mmのところに設置した。結晶育成の
進行に伴う液面の降下により、ヒーターと融液面の相対
位置が変化し、ヒーター最高温部は液面に近いところに
相対的に移動して対流の強さを徐々に弱くし、この結
果、融液中の酸素濃度は当初の6×1017atoms/
cm3 から減少し4×1017atoms/cm3 となった。Example 3 A case of growing a 6-inch diameter silicon crystal by the Czochralski method using a quartz crucible is shown. An oxygen sensor using a solid electrolyte was used as the electromotive force to detect the oxygen concentration in the melt that changed with the crystal growth time. This voltage was detected as a difference with a voltage value comparable to a preset oxygen concentration, and this signal was fed back so as to change the relative position between the crucible and the heater. Specifically, it carried out as follows.
That is, at the start of crystal growth, the highest temperature part of the heater was placed 15 mm from the surface of the melt. The relative position of the heater and the melt surface changes due to the drop of the liquid surface as the crystal growth progresses, and the heater maximum temperature part moves relatively close to the liquid surface, gradually weakening the convection strength. As a result, the oxygen concentration in the melt was 6 × 10 17 atoms /
It decreased from cm 3 to 4 × 10 17 atoms / cm 3 .
【0017】ここで、酸素センサーを作用させ、あらか
じめ設定した6×1017atoms/cm3 に相当する起
電力が得られるようヒーター位置を当初の位置より10
mm下げて対流を活性化し、融液中の酸素濃度を増加さ
せた。これにより、結晶中の引き上げ軸方向の酸素濃度
を(1±0.07)×1018atoms/cm3 の範囲で
均一にすることが可能となった。Here, the oxygen sensor is operated, and the heater position is set to 10 from the initial position so that an electromotive force corresponding to 6 × 10 17 atoms / cm 3 preset is obtained.
mm was lowered to activate convection and increase the oxygen concentration in the melt. As a result, it became possible to make the oxygen concentration in the crystal in the pulling axis direction uniform within the range of (1 ± 0.07) × 10 18 atoms / cm 3 .
【0018】(実施例4)12インチ直径のシリコン結
晶を、磁束の方向が結晶の育成方向と平行な縦磁場で育
成する場合を示す。磁場の強さを結晶育成開始時におい
ては、固液界面での融液中の酸素濃度が振動的になるこ
とを防げる最小の値である350ガウスとした。結晶育
成開始時の融液中の酸素濃度は3×1017atoms/
cm3 であった。結晶育成の進行に伴い融液の高さが低く
成るに伴い酸素センサーにより検知される融液の酸素濃
度が1×1017atoms/cm3 まで減少した。そこ
で、るつぼとヒーターとの相対位置を変化させ、結晶育
成が開始時と比較し、ヒーターの最高温度の位置が15
mm下方となるようにした。これにより、結晶中の酸素濃
度は結晶育成開始時の3×1017atoms/cm3 まで
に回復した。しかし、対流の強度が強くなったために融
液中の酸素濃度は振動的になった。そこで印加する磁場
を380ガウスまで増加したところ、酸素センサーで検
出される酸素濃度の振動現象は停止し、シリコン中に酸
素濃度が振動することによる成長縞の発生が止まった。
この結果結晶育成方向に酸素濃度が(2.5±0.0
7)×1018atoms/cm3 と均一なシリコン結晶が
得られ、かつ成長縞の発生も抑制できた。(Embodiment 4) A case where a 12-inch diameter silicon crystal is grown in a longitudinal magnetic field whose magnetic flux direction is parallel to the crystal growing direction is shown. The strength of the magnetic field was set to 350 Gauss, which is the minimum value that can prevent the oxygen concentration in the melt at the solid-liquid interface from becoming oscillatory at the start of crystal growth. The oxygen concentration in the melt at the start of crystal growth is 3 × 10 17 atoms /
It was cm 3. As the height of the melt became lower as the crystal growth progressed, the oxygen concentration of the melt detected by the oxygen sensor decreased to 1 × 10 17 atoms / cm 3 . Therefore, the relative position of the crucible and the heater was changed, and the position of the maximum temperature of the heater was changed to 15 when compared with the start of crystal growth.
It was set to be mm downward. As a result, the oxygen concentration in the crystal was restored to 3 × 10 17 atoms / cm 3 at the start of crystal growth. However, the oxygen concentration in the melt became oscillatory due to the increased convection intensity. When the applied magnetic field was increased to 380 gauss, the oxygen concentration oscillation detected by the oxygen sensor stopped, and the generation of growth stripes due to the oxygen concentration oscillation in silicon stopped.
As a result, the oxygen concentration becomes (2.5 ± 0.0
7) Silicon crystals as uniform as 10 18 atoms / cm 3 were obtained, and the generation of growth stripes could be suppressed.
【0019】(実施例5)12インチ直径のシリコン結
晶を、磁束の方向が結晶の育成方向と平行な横磁場で育
成する場合を示す。磁場の強さを結晶育成開始時におい
ては、固液界面での融液中の酸素濃度が振動的になるこ
とを防げる最小の値である350ガウスとした。結晶育
成開始時の融液中の酸素濃度は3×1017atoms/
cm3 であった。結晶育成の進行に伴い融液の高さが低く
成るに伴い酸素センサーにより検知される融液の酸素濃
度が1×1017atoms/cm3 まで減少した。そこ
で、るつぼとヒーターとの相対位置を変化させ、結晶育
成が開始時と比較し、ヒーターの最高温度の位置が15
mm下方となるようにした。これにより、結晶中の酸素濃
度は結晶育成開始時の3×1017atoms/cm3 まで
に回復した。しかし、対流の強度が強くなったために融
液中の酸素濃度は振動的になった。そこで印加する磁場
を380ガウスまで増加したところ、酸素センサーで検
出される酸素濃度の振動現象は停止し、シリコン中に酸
素濃度が振動することによる成長縞の発生が止まった。
この結果結晶育成方向に酸素濃度が(2.2±0.0
7)×1018atoms/cm3 なシリコン結晶が得ら
れ、かつ成長縞の発生も抑制できた。(Embodiment 5) A case where a silicon crystal having a diameter of 12 inches is grown in a transverse magnetic field whose magnetic flux direction is parallel to the crystal growing direction is shown. The strength of the magnetic field was set to 350 gauss, which is the minimum value that can prevent the oxygen concentration in the melt at the solid-liquid interface from becoming oscillatory at the start of crystal growth. The oxygen concentration in the melt at the start of crystal growth is 3 × 10 17 atoms /
It was cm 3. As the height of the melt became lower as the crystal growth progressed, the oxygen concentration of the melt detected by the oxygen sensor decreased to 1 × 10 17 atoms / cm 3 . Therefore, the relative position between the crucible and the heater was changed, and the position of the maximum temperature of the heater was changed to 15 when compared with the start of crystal growth.
It was set to be mm downward. As a result, the oxygen concentration in the crystal was restored to 3 × 10 17 atoms / cm 3 at the start of crystal growth. However, the oxygen concentration in the melt became oscillatory due to the increased convection intensity. When the applied magnetic field was increased to 380 gauss, the oxygen concentration oscillation detected by the oxygen sensor stopped, and the generation of growth stripes due to the oxygen concentration oscillation in silicon stopped.
As a result, the oxygen concentration becomes (2.2 ± 0.0) in the crystal growth direction.
7) × 10 18 atoms / cm 3 of silicon crystal was obtained, and the generation of growth stripes could be suppressed.
【0020】(実施例6)フローティングゾーン法によ
り5インチ直径のシリコン結晶を育成する場合を示す。
結晶中の酸素濃度を、気相からの酸素の溶剤と酸素の融
液からの蒸発とをバランスさせて8×1017atoms
/cm3 とするために、気相中の酸素分圧を0.002気
圧とした。融体部に酸素センサーを挿入して、融液中の
酸素濃度を測定した。ヒーターパワーの変動により融液
中の酸素濃度が変動したが、これを酸素センサーで検出
し、気相中の酸素分圧を制御することにより、融液中の
酸素濃度を一定に保つことができた。(Embodiment 6) A case where a silicon crystal having a diameter of 5 inches is grown by the floating zone method is shown.
The oxygen concentration in the crystal was adjusted to 8 × 10 17 atoms by balancing the oxygen solvent from the gas phase with the evaporation of oxygen from the melt.
The oxygen partial pressure in the gas phase was set to 0.002 atm in order to obtain / cm 3 . An oxygen sensor was inserted in the melt to measure the oxygen concentration in the melt. The oxygen concentration in the melt fluctuated due to the change in the heater power.By detecting this with an oxygen sensor and controlling the oxygen partial pressure in the gas phase, the oxygen concentration in the melt could be kept constant. It was
【0021】これにより結晶育成開始から終了時まで、
酸素濃度が(2.1±0.07)×1018atoms/
cm3 のシリコン単結晶を得ることができた。As a result, from the start to the end of crystal growth,
Oxygen concentration is (2.1 ± 0.07) × 10 18 atoms /
A silicon single crystal of cm 3 could be obtained.
【0022】[0022]
【発明の効果】本発明によれば、結晶育成時におきる結
晶中の酸素濃度の変動を、融液中の酸素濃度をその場で
測定し、それをるつぼの回転数など成長育成条件系にフ
ィードバックすることにより、酸素濃度が結晶育成の長
手方向に均一で、また成長縞の発生が抑制された結晶中
において酸素濃度の変動の無い均一なシリコン結晶が得
られる。According to the present invention, the fluctuation of the oxygen concentration in the crystal during the crystal growth is measured in situ with the oxygen concentration in the melt, and the result is fed back to the growth and growth condition system such as the rotation speed of the crucible. By doing so, it is possible to obtain a uniform silicon crystal in which the oxygen concentration is uniform in the longitudinal direction of the crystal growth and the oxygen concentration does not vary in the crystal in which the growth fringes are suppressed.
【図1】本発明の一実施例である酸素センサーを用いた
結晶育成装置の構成を示す図。FIG. 1 is a diagram showing a configuration of a crystal growth apparatus using an oxygen sensor which is an embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/411 H01L 21/208 P H01L 21/208 G01N 27/58 C (72)発明者 向井 楠宏 福岡県北九州市戸畑区仙水町1番1号 九 州工業大学内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location G01N 27/411 H01L 21/208 P H01L 21/208 G01N 27/58 C (72) Inventor Kukai Kusunoki Hiroshi 1-1, Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Kyushu Institute of Technology
Claims (4)
の育成時に、固体電界質を用いた酸素センサーによりシ
リコン融液中の酸素濃度および、前記酸素濃度の時間的
変動を検出し、前記酸素濃度と前記時間的変動によりる
つぼ回転数を制御して、前記結晶中の酸素濃度を均一に
することを特徴とするシリコン結晶成長方法。1. When growing a silicon single crystal by the Czochralski method, an oxygen sensor using a solid electrolyte is used to detect the oxygen concentration in a silicon melt and the temporal variation of the oxygen concentration to determine the oxygen concentration and the oxygen concentration. A method for growing a silicon crystal, wherein the number of revolutions of the crucible is controlled by the temporal change to make the oxygen concentration in the crystal uniform.
の育成時に、固体電界質を用いた酸素センサーによりシ
リコン融液中の酸素濃度および、前記酸素濃度の時間的
変動を検出し、前記酸素濃度と前記時間的変動によりる
つぼを加熱するヒーター電力を制御し、るつぼである石
英の融液への溶解速度を制御することにより、前記結晶
中の酸素濃度を均一にすることを特徴とするシリコン結
晶成長方法。2. When growing a silicon single crystal by the Czochralski method, the oxygen concentration in the silicon melt and the temporal variation of the oxygen concentration are detected by an oxygen sensor using a solid electrolyte, and the oxygen concentration Silicon crystal growth characterized by making the oxygen concentration in the crystal uniform by controlling the heater power for heating the crucible by the temporal fluctuation and controlling the dissolution rate of the crucible in the melt. Method.
の育成時に、固体電界質を用いた酸素センサーによりシ
リコン融液中の酸素濃度および、前記酸素濃度の時間的
変動を検出し、前記酸素濃度と前記時間的変動によりる
つぼと前記るつぼを加熱するヒーターの相対位置を制御
することにより、前記結晶中の酸素濃度を均一にするこ
とを特徴とするシリコン結晶成長方法。3. When growing a silicon single crystal by the Czochralski method, the oxygen concentration in the silicon melt and the time variation of the oxygen concentration are detected by an oxygen sensor using a solid electrolyte, and the oxygen concentration A method for growing a silicon crystal, wherein the oxygen concentration in the crystal is made uniform by controlling the relative positions of the crucible and a heater for heating the crucible by the temporal fluctuation.
グゾーン法によるシリコン単結晶の育成時に、固体電界
質を用いた酸素センサーによりシリコン融液中の酸素濃
度および、前記酸素濃度の時間的変動を検出し、前記酸
素濃度と前記時間的変動により前記融液に印加する磁場
を制御することにより、前記結晶中の酸素濃度を均一に
することを特徴とするシリコン結晶成長方法。4. When growing a silicon single crystal by the Czochralski method or the floating zone method, an oxygen sensor using a solid electrolyte is used to detect the oxygen concentration in the silicon melt and the temporal variation of the oxygen concentration, A method for growing a silicon crystal, wherein the oxygen concentration in the crystal is made uniform by controlling a magnetic field applied to the melt according to the oxygen concentration and the temporal variation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7064065A JPH08259380A (en) | 1995-03-23 | 1995-03-23 | Growing method for silicon crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7064065A JPH08259380A (en) | 1995-03-23 | 1995-03-23 | Growing method for silicon crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08259380A true JPH08259380A (en) | 1996-10-08 |
Family
ID=13247329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7064065A Pending JPH08259380A (en) | 1995-03-23 | 1995-03-23 | Growing method for silicon crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08259380A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228286A (en) * | 1998-02-13 | 1999-08-24 | Shin Etsu Handotai Co Ltd | Production of single crystal |
WO2000056955A1 (en) * | 1999-03-24 | 2000-09-28 | Nec Corporation | Method for controlling melt and method for growing crystal |
JP2005320179A (en) * | 2004-05-06 | 2005-11-17 | Sumco Corp | Method of manufacturing single crystal |
KR100831052B1 (en) * | 2007-07-04 | 2008-05-22 | 주식회사 실트론 | Oxygen concentration control method of silicon single crystal ingot, ingot manufactured using the same |
JP2022101008A (en) * | 2020-12-24 | 2022-07-06 | 株式会社Sumco | Method for manufacturing single crystal silicon ingot |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211594A (en) * | 1991-03-12 | 1994-08-02 | Sumitomo Sitix Corp | Method for growing single crystal and apparatus therefor |
-
1995
- 1995-03-23 JP JP7064065A patent/JPH08259380A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06211594A (en) * | 1991-03-12 | 1994-08-02 | Sumitomo Sitix Corp | Method for growing single crystal and apparatus therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228286A (en) * | 1998-02-13 | 1999-08-24 | Shin Etsu Handotai Co Ltd | Production of single crystal |
WO2000056955A1 (en) * | 1999-03-24 | 2000-09-28 | Nec Corporation | Method for controlling melt and method for growing crystal |
JP2005320179A (en) * | 2004-05-06 | 2005-11-17 | Sumco Corp | Method of manufacturing single crystal |
JP4513407B2 (en) * | 2004-05-06 | 2010-07-28 | 株式会社Sumco | Method for producing single crystal |
KR100831052B1 (en) * | 2007-07-04 | 2008-05-22 | 주식회사 실트론 | Oxygen concentration control method of silicon single crystal ingot, ingot manufactured using the same |
JP2022101008A (en) * | 2020-12-24 | 2022-07-06 | 株式会社Sumco | Method for manufacturing single crystal silicon ingot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW219955B (en) | ||
EP1605079B1 (en) | Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length | |
US5462010A (en) | Apparatus for supplying granular raw material for a semiconductor single crystal pulling apparatus | |
EP0432914B1 (en) | A method of controlling oxygen concentration in single crystal | |
JP3242292B2 (en) | Method and apparatus for manufacturing polycrystalline semiconductor | |
JPH03159987A (en) | Process for controlling specific resistance of single crystal and apparatus therefor | |
Muiznieks et al. | Floating zone growth of silicon | |
JP2008526667A (en) | Electromagnetic pumping of liquid silicon in the crystal growth process. | |
WO2007100158A1 (en) | METHOD FOR MANUFACTURING Si SINGLE CRYSTAL INGOT BY CZ METHOD | |
WO2004061166A1 (en) | Graphite heater for producing single crystal, single crystal productin system and single crystal productin method | |
JPH08259380A (en) | Growing method for silicon crystal | |
TW446762B (en) | Method of pulling semiconductor single crystals | |
CN112204174A (en) | Method for estimating oxygen concentration of silicon single crystal and method for producing silicon single crystal | |
JP3770013B2 (en) | Single crystal pulling method | |
WO2006025238A1 (en) | Magnetic field application method of pulling silicon single crystal | |
US3700412A (en) | Crystal pulling apparatus having means for maintaining liquid solid crystal interface at a constant temperature | |
KR102666361B1 (en) | Method for estimating oxygen concentration in silicon single crystal, manufacturing method for silicon single crystal, and silicon single crystal manufacturing device | |
JPH0930889A (en) | Pull device for semiconductor single crystal | |
JPH11180798A (en) | Production of silicon single crystal and apparatus for production therefor | |
US7767020B2 (en) | Method for manufacturing single crystal semiconductor | |
JP4066710B2 (en) | Silicon single crystal manufacturing method, silicon single crystal manufacturing operation program, and silicon single crystal manufacturing apparatus | |
JPH09118585A (en) | Single crystal pulling apparatus and single crystal pulling method | |
KR20110088164A (en) | Melt gap control system, single crystal growth apparatus and single crystal growth method including the same | |
CN114908415B (en) | Method and apparatus for growing silicon single crystal ingot | |
JPH0639353B2 (en) | Silicon single crystal pulling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970902 |