JPH08254612A - Multilayer film optical component and manufacture thereof - Google Patents
Multilayer film optical component and manufacture thereofInfo
- Publication number
- JPH08254612A JPH08254612A JP8317695A JP8317695A JPH08254612A JP H08254612 A JPH08254612 A JP H08254612A JP 8317695 A JP8317695 A JP 8317695A JP 8317695 A JP8317695 A JP 8317695A JP H08254612 A JPH08254612 A JP H08254612A
- Authority
- JP
- Japan
- Prior art keywords
- film
- tio
- mgf
- ion
- films
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0833—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Optical Filters (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高反射膜(ミラー)や
ダイクロ膜(フィルタ)等の多層膜を基板に積層した多
層膜光学部品およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer optical component in which a multilayer film such as a highly reflective film (mirror) or a dichroic film (filter) is laminated on a substrate, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】基板に高反射膜を積層したミラーや、ダ
イクロ膜を積層したフィルタ等の多層膜光学部品は、各
種誘電体のなかから高屈折率材料と低屈折率材料の組み
合わせを適宜選定し、それぞれ真空蒸着法やスパッタリ
ング法等の成膜方法によって所定の層数の多層膜に成膜
することによって製作される。2. Description of the Related Art For a multilayer optical component such as a mirror having a highly reflective film laminated on a substrate or a filter having a dichroic film laminated, a combination of a high refractive index material and a low refractive index material is appropriately selected from various dielectric materials. Then, each is formed into a multilayer film having a predetermined number of layers by a film forming method such as a vacuum evaporation method or a sputtering method.
【0003】高屈折率を有する誘電体材料(高屈折率材
料)としてはTiO2 ,Ta2 O5,ZrO2 ,HfO2
等、低屈折率を有する誘電体材料(低屈折率材料)と
してはMgF2 ,SiO2 ,Al2 O3 等がそれぞれ単
独あるいは混合物として広く用いられており、多層膜の
製造コストを低減するためには、できるだけ屈折率の高
い高屈折率材料とできるだけ屈折率の低い低屈折率材料
を組み合わせて層数の少ない多層膜を設計するのが望ま
しい。Dielectric materials having a high refractive index (high refractive index materials) include TiO 2 , Ta 2 O 5 , ZrO 2 and HfO 2.
As a dielectric material having a low refractive index (low refractive index material), MgF 2 , SiO 2 , Al 2 O 3, etc. are widely used individually or as a mixture, in order to reduce the manufacturing cost of a multilayer film. Therefore, it is desirable to design a multilayer film having a small number of layers by combining a high refractive index material having a high refractive index with a low refractive index material having a low refractive index as much as possible.
【0004】理論上は、前記の誘電体材料のなかで最も
屈折率の高いTiO2 と最も屈折率の低いMgF2 を組
み合わせると、最も少ない層数で分光特性上のバンド幅
の広い良質の高反射膜等を得ることができるはずであ
る。Theoretically, if TiO 2 having the highest refractive index and MgF 2 having the lowest refractive index are combined among the above-mentioned dielectric materials, the number of layers is the smallest and the bandwidth is wide and the quality is high. It should be possible to obtain a reflective film or the like.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、実際に真空蒸着法あるいはスパッタリ
ング法によってTiO2 とMgF2 からなる高反射膜等
の多層膜を製作すると、MgF2 層にフッ素脱離等の内
部欠陥が発生したり、多層膜の内部歪みのためにクラッ
クが発生し、設計通りの良質の多層膜を得ることができ
ない。However, according to the above-mentioned conventional technique, when a multilayer film such as a highly reflective film made of TiO 2 and MgF 2 is actually manufactured by a vacuum deposition method or a sputtering method, fluorine is formed on the MgF 2 layer. Internal defects such as desorption occur, and cracks occur due to internal strain of the multilayer film, so that it is not possible to obtain a high-quality multilayer film as designed.
【0006】すなわち、MgF2 層の内部欠陥は、吸収
を増大させるために多層膜の光学特性を著しく損なうも
のであり、また、クラックの発生は、真空蒸着法によっ
て成膜されたTiO2 膜とMgF2 膜の内部応力がとも
に引張応力であるために多層膜の内部歪みが著しく増大
することに起因すると推察されるもので、多層膜の強度
や耐久性を大きく低下させる。That is, the internal defects of the MgF 2 layer significantly impair the optical characteristics of the multilayer film due to the increase in absorption, and the cracks are generated in the TiO 2 film formed by the vacuum deposition method. It is presumed that this is because the internal stress of the MgF 2 film is a tensile stress, and therefore the internal strain of the multilayer film is significantly increased, which greatly reduces the strength and durability of the multilayer film.
【0007】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであって、層数を削減する上で最
も望ましい組み合わせであるTiO2 膜とMgF2 膜か
らなり、しかもクラックや内部欠陥のない良質で安価な
多層膜を有する多層膜光学部品およびその製造方法を提
供することを目的とするものである。The present invention has been made in view of the above-mentioned problems of the prior art, and is composed of a TiO 2 film and a MgF 2 film, which is the most desirable combination in order to reduce the number of layers, and also has no cracks or cracks. It is an object of the present invention to provide a multilayer optical component having a high quality and inexpensive multilayer film without internal defects and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明の多層膜光学部品は、基体の表面に交互に積
層された複数対のTiO2 膜とMgF2 膜からなる多層
膜を有し、各対の前記TiO2 膜の内部応力が圧縮応力
であり、前記MgF2 膜の内部応力が引張応力であるこ
とを特徴とする。In order to achieve the above object, the multilayer optical component of the present invention has a multilayer film composed of a plurality of pairs of TiO 2 films and MgF 2 films alternately laminated on the surface of a substrate. However, the internal stress of each pair of the TiO 2 films is a compressive stress, and the internal stress of the MgF 2 film is a tensile stress.
【0009】4対以上のTiO2 膜とMgF2 膜を有す
るとよい。It is preferable to have four or more pairs of TiO 2 film and MgF 2 film.
【0010】本発明の多層膜光学部品の製造方法は、基
体の表面に交互に複数対のTiO2膜とMgF2 膜を成
膜する工程を有し、各対の少なくとも前記TiO2 膜を
イオンアシスト蒸着法によって成膜することを特徴とす
る。The method for producing a multilayer optical component of the present invention has a step of alternately forming a plurality of pairs of TiO 2 films and MgF 2 films on the surface of a substrate, and at least the TiO 2 films of each pair are ion-deposited. It is characterized in that the film is formed by the assisted vapor deposition method.
【0011】イオンアシスト蒸着法におけるイオンアシ
ストとして酸素イオンを用いるとよい。Oxygen ions may be used as ion assist in the ion assist deposition method.
【0012】また、各対のTiO2 膜とMgF2 膜を成
膜中基体が無加熱であってもよい。The substrate may be unheated during the formation of each pair of TiO 2 film and MgF 2 film.
【0013】また、基体の表面に複数対のTiO2 膜と
MgF2 膜を成膜する工程の前に、前記表面をイオン照
射によって清浄化するとよい。Before the step of forming a plurality of pairs of TiO 2 film and MgF 2 film on the surface of the substrate, the surface may be cleaned by ion irradiation.
【0014】[0014]
【作用】公知の真空蒸着法によって成膜されたTiO2
膜とMgF2 膜の内部応力は一般的に双方とも引張応力
であるが、TiO2 膜の成膜にイオンアシスト蒸着法を
用いてその成膜条件を制御すると内部応力が圧縮応力と
なり、MgF2 膜の引張応力を相殺する。その結果、多
層膜の内部歪みが大幅に低減され、クラックの発生を回
避できる。[Function] TiO 2 formed by a known vacuum deposition method
The internal stress of both the film and the MgF 2 film is generally a tensile stress, but when the film forming conditions are controlled by using the ion assisted vapor deposition method for forming the TiO 2 film, the internal stress becomes a compressive stress, and the MgF 2 film Cancels the tensile stress of the film. As a result, the internal strain of the multilayer film is significantly reduced, and the occurrence of cracks can be avoided.
【0015】また、MgF2 膜の成膜にイオンアシスト
蒸着法を採用すると、パッキング密度が大きくてフッ素
脱離等の内部欠陥のないMgF2 膜を得ることができ
る。Further, when employing the ion-assisted deposition to the deposition of the MgF 2 film, it is possible packing density to obtain a large MgF 2 film without internal defects fluorine desorption like.
【0016】そこで、TiO2 膜とMgF2 膜の双方を
イオンアシスト蒸着法によって成膜すれば、TiO2 膜
とMgF2 膜からなる多層膜のクラックや内部欠陥を発
生しやすい欠点を回避して、密着性および耐環境性に優
れた良質で安価な多層膜光学部品を製作できる。Therefore, by forming both the TiO 2 film and the MgF 2 film by the ion assisted vapor deposition method, the drawbacks such as cracks and internal defects of the multilayer film composed of the TiO 2 film and the MgF 2 film are easily avoided. It is possible to manufacture a high-quality and inexpensive multilayer optical component having excellent adhesion and environment resistance.
【0017】[0017]
【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0018】図1は第1実施例による多層膜光学部品の
製造方法に用いる成膜装置を説明する説明図であって、
これは、図示しない排気ポンプに接続された排気口1a
と酸素ガス等の反応ガスを導入する反応ガス導入口1b
を備えた真空室1を有し、真空室1の内部には、基板1
0を保持して回転する基板ホルダ2と、MgF2 膜の成
膜に用いる抵抗加熱蒸発源3、TiO2 膜の成膜に用い
る電子ビーム蒸発源4およびイオンを発生するイオン源
5が設けられる。また、イオン源5の近傍には、これか
ら発生されたイオンによる異常放電を防ぐためのニュー
トラライザー6が配設され、基板ホルダ2の中央には、
基板10に成膜中の薄膜の膜厚を検出して抵抗加熱蒸発
源3および電子ビーム蒸発源4による蒸着速度を制御す
るための水晶振動子7および光モニタ8が設けられる。FIG. 1 is an explanatory view for explaining a film forming apparatus used in the method of manufacturing a multilayer optical component according to the first embodiment.
This is an exhaust port 1a connected to an exhaust pump (not shown).
And a reaction gas inlet 1b for introducing a reaction gas such as oxygen gas
A vacuum chamber 1 having a substrate 1 is provided inside the vacuum chamber 1.
A substrate holder 2 which holds 0 and rotates, a resistance heating evaporation source 3 used for forming a MgF 2 film, an electron beam evaporation source 4 used for forming a TiO 2 film, and an ion source 5 for generating ions are provided. . Further, a neutralizer 6 for preventing abnormal discharge due to ions generated from the ion source 5 is provided in the vicinity of the ion source 5, and in the center of the substrate holder 2,
A crystal oscillator 7 and an optical monitor 8 are provided on the substrate 10 to detect the film thickness of the thin film being formed and control the deposition rate of the resistance heating evaporation source 3 and the electron beam evaporation source 4.
【0019】図1の装置を用いて図2に示す12層の多
層膜からなるミラーを製作する。The apparatus shown in FIG. 1 is used to fabricate a mirror having a multi-layered structure of 12 layers as shown in FIG.
【0020】まず、真空室1を所定の真空度に減圧しガ
ラス製(BK7)の基板10にイオン源5からArもし
くはO2 等のイオンを照射して基板10の表面を清浄化
(クリーニング)し、続いて電子ビーム蒸発源4と抵抗
加熱蒸発源3を交互に加熱して基板10の表面にそれぞ
れ光学膜厚nd=λ/4(λ=550nm)のTiO2
膜11とMgF2 膜12を交互に6層ずつ合計12層の
薄膜を積層し、高反射膜を得た。First, the vacuum chamber 1 is depressurized to a predetermined vacuum degree, and the glass (BK7) substrate 10 is irradiated with ions such as Ar or O 2 from the ion source 5 to clean the surface of the substrate 10 (cleaning). Then, the electron beam evaporation source 4 and the resistance heating evaporation source 3 are alternately heated to form TiO 2 having an optical film thickness nd = λ / 4 (λ = 550 nm) on the surface of the substrate 10.
The film 11 and the MgF 2 film 12 were alternately laminated to form a total of 12 thin films, 6 layers each, to obtain a high reflection film.
【0021】各TiO2 膜11の成膜は、反応ガス導入
口1bから反応ガスとして酸素ガスを導入して真空度1
×10-4Torrの酸素雰囲気中で蒸着速度を0.5n
m/secに制御し、イオンアシストとしてイオン源5
からイオンエネルギー500eV、イオン電流密度50
μA/cm2 の酸素イオンを発生させて行なわれた。The formation of each TiO 2 film 11 is carried out by introducing oxygen gas as a reaction gas from the reaction gas introduction port 1b to obtain a vacuum degree of 1
The deposition rate was 0.5n in an oxygen atmosphere of × 10 -4 Torr.
Controlled to m / sec, ion source 5 as ion assist
To ion energy 500 eV, ion current density 50
It was performed by generating oxygen ions of μA / cm 2 .
【0022】各MgF2 膜12の成膜は、反応ガスを導
入せず、蒸着速度を1.0nm/secに制御し、イオ
ンアシストとしてイオン源5からイオンエネルギー30
0eV、イオン電流密度30μA/cm2 の酸素イオン
を発生させて行なわれた。In forming each MgF 2 film 12, a reaction gas is not introduced, the vapor deposition rate is controlled to 1.0 nm / sec, and ion energy 30 is supplied from the ion source 5 as ion assist.
Oxygen ions having an ion current density of 30 μA / cm 2 were generated at 0 eV.
【0023】なお、各TiO2 膜11と各MgF2 膜1
2の成膜中はいずれもニュートラライザー6を稼動し、
基板10は無加熱であった。また、抵抗加熱蒸発源3と
電子ビーム蒸発源4の蒸発源にはそれぞれMgF2 材と
TiO2 材を用いた。Each TiO 2 film 11 and each MgF 2 film 1
Neutralizer 6 is operated during the film formation of 2.
The substrate 10 was not heated. Further, MgF 2 material and TiO 2 material were used for the evaporation sources of the resistance heating evaporation source 3 and the electron beam evaporation source 4, respectively.
【0024】上記の成膜条件で成膜されたTiO2 膜1
1と、MgF2 膜12の内部応力を調べたところ、Ti
O2 膜11の内部応力は圧縮応力であって応力値が3.
1×108 N/m2 、MgF2 膜12の内部応力は引張
応力であって応力値は2.3×108 N/m2 であり、
TiO2 膜11とMgF2 膜12を交互に積層するとこ
れらの内部応力の大部分が互いに相殺されて内部歪みが
大幅に低減される。TiO 2 film 1 formed under the above-mentioned film forming conditions
1 and the internal stress of the MgF 2 film 12 were examined.
The internal stress of the O 2 film 11 is a compressive stress and has a stress value of 3.
1 × 10 8 N / m 2 , the internal stress of the MgF 2 film 12 is tensile stress, and the stress value is 2.3 × 10 8 N / m 2 ,
When the TiO 2 films 11 and the MgF 2 films 12 are alternately laminated, most of these internal stresses cancel each other out, and the internal strain is greatly reduced.
【0025】イオンアシストを用いることなく、公知の
真空蒸着法によってTiO2 膜を成膜した場合は、Ti
O2 膜の内部応力は引張応力であるが、本実施例におい
ては、イオンアシストを用いるイオンアシスト蒸着法に
よってTiO2 膜を成膜したために圧縮方向の内部応力
が発生したと考えられる。また、MgF2 膜の場合もイ
オンアシストを用いるイオンアシスト蒸着法を採用した
ことで引張応力の応力値が幾分減少したと考えられる。When a TiO 2 film is formed by a known vacuum deposition method without using ion assist, Ti
Although the internal stress of the O 2 film is a tensile stress, it is considered that the internal stress in the compression direction was generated in this example because the TiO 2 film was formed by the ion assisted vapor deposition method using ion assist. Also in the case of the MgF 2 film, it is considered that the stress value of the tensile stress is somewhat reduced by adopting the ion assisted vapor deposition method using the ion assist.
【0026】なお、イオンアシストのガスの種類、イオ
ンエネルギーおよびイオン電流密度を変えることによ
り、TiO2 膜の圧縮応力やMgF2 膜の引張応力を広
範囲に制御できることが実験によって判明している。Experiments have shown that the compressive stress of the TiO 2 film and the tensile stress of the MgF 2 film can be controlled in a wide range by changing the kind of ion assist gas, ion energy and ion current density.
【0027】上記の方法によって製作されたミラーの分
光反射率を調べたところ、図3に示すように中心波長5
50nmで99.3%の反射率を有し、極めて高品質な
ミラーであることが判明した。MgF2 膜を真空蒸着法
等によって成膜するとフッ素脱離等を発生しやすいが、
イオンアシストを用いるイオンアシスト蒸着法を採用し
たことで、このような内部欠陥が回避されて光学特性が
大きく向上したものと推察される。When the spectral reflectance of the mirror manufactured by the above method was examined, as shown in FIG.
It was found to be a very high quality mirror with a reflectance of 99.3% at 50 nm. When the MgF 2 film is formed by a vacuum evaporation method or the like, fluorine desorption or the like is likely to occur,
It is speculated that the use of the ion assisted vapor deposition method using ion assist avoids such internal defects and greatly improves the optical characteristics.
【0028】また、サンプル数30について、粘着テー
プによる密着力の試験と、シルボン紙による摩擦試験
と、有機溶剤による溶剤試験を行なったところ、結果が
不良なサンプルは皆無であった。Further, with respect to 30 samples, an adhesion test with an adhesive tape, a friction test with sillbon paper, and a solvent test with an organic solvent were carried out. As a result, no sample had a bad result.
【0029】次に、各サンプルを温度70℃湿度80%
の高温高湿環境下に500時間放置する耐環境テストを
行なったうえで、上記と同様の密着力の試験と摩擦試験
と溶剤試験を行なったところ、やはり不良サンプルは皆
無であり、さらに分光反射率を調べたところ中心波長に
おける反射率99.2%で、波長シフト量は±1nm以
下であった。Next, each sample was subjected to a temperature of 70 ° C. and a humidity of 80%.
After carrying out the environment resistance test of leaving it in the high temperature and high humidity environment for 500 hours, the same adhesion test, friction test and solvent test as above were carried out. When the reflectance was examined, the reflectance at the central wavelength was 99.2%, and the wavelength shift amount was ± 1 nm or less.
【0030】これは、前述のように、イオンアシストを
用いて特にTiO2 膜の内部応力を制御することで多層
膜(高反射膜)の内部歪みを大幅に低減したため、クラ
ック等の発生が回避されて機械的強度等が大幅に向上し
た結果であり、また、耐環境テスト後の波長シフトが少
ないのは、TiO2 膜とMgF2 膜の双方をイオンアシ
スト蒸着法によって成膜することで両者のパッキング密
度を大きく向上させたことによるものであると推察され
る。This is because the internal strain of the multilayer film (highly reflective film) is greatly reduced by controlling the internal stress of the TiO 2 film by using the ion assist, as described above, so that the occurrence of cracks is avoided. The result is that the mechanical strength and the like are significantly improved, and that the wavelength shift after the environment resistance test is small is that both of the TiO 2 film and the MgF 2 film are formed by the ion assisted vapor deposition method. It is presumed that this is due to a significant improvement in the packing density of.
【0031】数多くの実験を行なった結果、イオンアシ
スト蒸着法を採用するとTiO2 膜とMgF2 膜の層数
が合計20層以上であってもクラックの発生を回避でき
ることが判明した。As a result of numerous experiments, it was found that the use of the ion assisted vapor deposition method can avoid the occurrence of cracks even if the total number of TiO 2 films and MgF 2 films is 20 or more.
【0032】本実施例によれば、少ない層数ですぐれた
光学特性を有し、密着力や耐摩耗性等の機械的強度や耐
溶剤性等も充分であり、耐環境性にもすぐれた極めて良
質でしかも安価な多層膜光学部品を得ることができる。
なお、本実施例においてはTiO2 膜を成膜するときの
蒸発源にTiO2 材を用いたが替わりにTiあるいはT
iOx (0<x<2)を用いることもできる。また、必
要であれば、基板を例えば100℃ないし300℃に加
熱してもよい。According to this embodiment, the optical characteristics are excellent with a small number of layers, the mechanical strength such as adhesion and abrasion resistance, the solvent resistance, etc. are sufficient, and the environment resistance is also excellent. It is possible to obtain an extremely high-quality and inexpensive multilayer optical component.
In this example, the TiO 2 material was used as the evaporation source when forming the TiO 2 film, but Ti or T was used instead.
It is also possible to use iO x (0 <x <2). If necessary, the substrate may be heated to, for example, 100 ° C to 300 ° C.
【0033】(比較例)図1の装置を用いて図2のミラ
ーと同様にTiO2 膜とMgF2 膜からなる合計12層
のミラーを設計し、BK7製の基板を300℃に加熱し
て、各TiO2膜と各MgF2 膜をイオンアシストを用
いることなくそれぞれ成膜した。(Comparative Example) Using the apparatus of FIG. 1, a total of 12 layers of TiO 2 film and MgF 2 film were designed in the same manner as the mirror of FIG. 2, and the substrate made of BK7 was heated to 300 ° C. , Each TiO 2 film and each MgF 2 film were formed without using ion assist.
【0034】TiO2 膜の成膜は、蒸着速度0.5nm
/sec、真空度1×10-4Torrの酸素雰囲気中で
行なわれ、MgF2 膜の成膜は、蒸着速度1.0nm/
sec、反応ガスの導入は無しで行なわれた。TiO2
膜とMgF2 膜の内部応力はともに引張応力であって応
力値はそれぞれ2.1×108 N/m2 、2.5×10
8 N/m2 であり、極めて大きな内部歪みが発生してい
ると推定される。The deposition rate of the TiO 2 film is 0.5 nm.
/ Sec and the degree of vacuum is 1 × 10 −4 Torr in an oxygen atmosphere, and the MgF 2 film is formed at a deposition rate of 1.0 nm /
sec, the reaction gas was not introduced. TiO 2
Both the internal stress of the film and the MgF 2 film are tensile stress, and the stress values are 2.1 × 10 8 N / m 2 and 2.5 × 10, respectively.
It is 8 N / m 2 , and it is estimated that an extremely large internal strain is generated.
【0035】すべての層の成膜後に基板を取り出したと
ころ、多層膜に多数のクラックが発生していた。When the substrate was taken out after forming all the layers, many cracks were generated in the multilayer film.
【0036】そこで、TiO2 膜とMgF2 膜のペア数
を減らして5ペア(合計10層)のミラーを設計し、上
記と同様の方法で全膜厚が780nmの多層膜を成膜し
た。分光反射率を測定したものを図4に示す。中心波長
550nmにおける反射率は97.4%であり、成膜直
後はクラックが無かったが、前述の耐環境テストの結果
多くのクラックが発生した。Therefore, the number of pairs of the TiO 2 film and the MgF 2 film was reduced to design a mirror of 5 pairs (10 layers in total), and a multilayer film having a total film thickness of 780 nm was formed by the same method as described above. The measured spectral reflectance is shown in FIG. The reflectance at the center wavelength of 550 nm was 97.4%, and there were no cracks immediately after film formation, but many cracks were generated as a result of the above-mentioned environment resistance test.
【0037】耐環境テスト後もクラックが発生しないよ
うにするためには、TiO2 膜とMgF2 膜のペア数を
4以下にしなくてはならないことが判明した。It was found that the number of pairs of the TiO 2 film and the MgF 2 film must be 4 or less in order to prevent cracks from occurring even after the environment resistance test.
【0038】次に、図5に示すように、TiO2 膜21
とSiO2 膜22を7ペア合計14層のミラーを設計
し、各TiO2 膜21とSiO2 膜22を公知の成膜方
法で基板20を300℃に加熱して成膜した。SiO2
膜とTiO2 膜の組み合わせを用いて本実施例のTiO
2 膜とMgF2 膜6ペアからなる高反射膜と同じ光学特
性を得るには7ペア必要であり、その分だけ製造コスト
が上昇する。Next, as shown in FIG. 5, a TiO 2 film 21 is formed.
A mirror having a total of 14 pairs of 7 pairs of SiO 2 film 22 and SiO 2 film 22 was designed, and each TiO 2 film 21 and SiO 2 film 22 were formed by heating the substrate 20 at 300 ° C. by a known film forming method. SiO 2
Of the TiO 2 film of this embodiment by using a combination of the film and the TiO 2 film.
To obtain the same optical characteristics as a high reflection film composed of 2 film and the MgF 2 film 6 pairs requires 7 pairs, that much manufacturing cost is increased.
【0039】TiO2 膜21の成膜は真空度1×10-4
Torrの酸素雰囲気中で蒸着速度を0.5nm/se
cに制御して行なわれ、SiO2 膜22の成膜は真空度
1×10-5Torrの酸素雰囲気中で蒸着速度を1.0
nm/secに制御して行なわれた。SiO2 膜22の
内部応力は圧縮応力であって応力値は2.3×108N
/m2 であった。このミラーの分光反射率を測定したと
ころ、図6に示すように、中心波長550nmにおける
反射率は99.3%であり、成膜直後と前述の耐環境テ
スト後の機械的強度は充分であったが、耐環境テスト後
の波長シフトが5〜8nmであり、中心波長550nm
における反射率が99%以下のサンプルもあった。The TiO 2 film 21 is formed at a vacuum degree of 1 × 10 -4.
Vapor deposition rate of 0.5 nm / se in oxygen atmosphere of Torr
The deposition rate of the SiO 2 film 22 is 1.0 in an oxygen atmosphere with a vacuum degree of 1 × 10 −5 Torr.
Control was performed at nm / sec. The internal stress of the SiO 2 film 22 is a compressive stress and the stress value is 2.3 × 10 8 N
/ M 2 . When the spectral reflectance of this mirror was measured, as shown in FIG. 6, the reflectance at the central wavelength of 550 nm was 99.3%, and the mechanical strength immediately after film formation and after the above-mentioned environment resistance test was sufficient. However, the wavelength shift after the environment resistance test is 5 to 8 nm, and the center wavelength is 550 nm.
In some samples, the reflectance was 99% or less.
【0040】このように、TiO2 膜とSiO2 膜を組
み合わせた場合には、TiO2 膜とMgF2 膜の組み合
わせに比べて必要層数が多くコスト高になるばかりでな
く、耐久性等においても不充分であることが判明した。As described above, when the TiO 2 film and the SiO 2 film are combined, not only the number of layers required is higher and the cost is higher than the combination of the TiO 2 film and the MgF 2 film, but also the durability and the like are improved. Turned out to be insufficient.
【0041】図7は第2実施例による多層膜光学部品で
ある赤外カットフィルタの膜構成を示すもので、これ
は、ガラス製(BK7)の基板30の上面にTiO2 膜
31とMgF2 膜32を7層ずつ合計14層、基板30
の下面にTiO2 膜31とMgF2 膜32を5層ずつ合
計10層をそれぞれ、図1の装置を用いてイオンアシス
ト蒸着法によって積層したものである。FIG. 7 shows a film structure of an infrared cut filter which is a multilayer optical component according to the second embodiment. This is a glass (BK7) substrate 30 having a TiO 2 film 31 and a MgF 2 film on the upper surface thereof. A total of 14 layers of 7 layers of film 32, substrate 30
The TiO 2 film 31 and the MgF 2 film 32 are laminated on the lower surface of each of the above by a total of 10 layers by ion-assisted vapor deposition using the apparatus of FIG.
【0042】まず、真空室1を所定の真空度に減圧し基
板30にイオン源5からArあるいはO2 等のイオンを
照射して基板30の表面を清浄化(クリーニング)し
た。First, the vacuum chamber 1 was depressurized to a predetermined vacuum degree, and the substrate 30 was irradiated with ions such as Ar or O 2 from the ion source 5 to clean the surface of the substrate 30.
【0043】各TiO2 膜31の成膜は、反応ガス導入
口1bから反応ガスとして酸素ガスを導入して真空度1
×10-4Torrの酸素雰囲気中で蒸着速度を0.4n
m/secに制御し、イオンアシストとしてイオン源5
からイオンエネルギー500eV、イオン電流密度40
μA/cm2 の酸素イオンを発生させて行なわれた。The formation of each TiO 2 film 31 is performed by introducing oxygen gas as a reaction gas from the reaction gas inlet 1b and setting the degree of vacuum to 1
The deposition rate was 0.4n in an oxygen atmosphere of × 10 -4 Torr.
Controlled to m / sec, ion source 5 as ion assist
From ion energy 500 eV, ion current density 40
It was performed by generating oxygen ions of μA / cm 2 .
【0044】各MgF2 膜32の成膜は、反応ガスを導
入せず、蒸着速度を1.0nm/secに制御し、イオ
ンアシストとしてイオン源5からイオンエネルギー40
0eV、イオン電流密度35μA/cm2 の酸素イオン
を発生させて行なわれた。In forming each MgF 2 film 32, the reaction gas is not introduced, the vapor deposition rate is controlled to 1.0 nm / sec, and the ion energy 40 from the ion source 5 is used as ion assist.
Oxygen ions having an ion current density of 35 μA / cm 2 were generated at 0 eV.
【0045】なお、各TiO2 膜31と各MgF2 膜3
2の成膜中はいずれもニュートラライザー6を稼動し、
基板30は無加熱であった。Each TiO 2 film 31 and each MgF 2 film 3
Neutralizer 6 is operated during the film formation of 2.
The substrate 30 was not heated.
【0046】上記の成膜条件で成膜されたTiO2 膜3
1と、MgF2 膜32の内部応力を調べたところ、Ti
O2 膜31の内部応力は圧縮応力であって応力値が3.
5×108 N/m2 、MgF2 膜32の内部応力は引張
応力であって応力値は2.5×108 N/m2 であり、
TiO2 膜31とMgF2 膜32の内部応力の大部分が
互いに相殺されて内部歪みが大幅に低減されることが判
明した。TiO 2 film 3 formed under the above film forming conditions
1 and the internal stress of the MgF 2 film 32 were examined.
The internal stress of the O 2 film 31 is compressive stress and the stress value is 3.
5 × 10 8 N / m 2 , the internal stress of the MgF 2 film 32 is tensile stress, and the stress value is 2.5 × 10 8 N / m 2 ,
It was found that most of the internal stresses of the TiO 2 film 31 and the MgF 2 film 32 cancel each other out and the internal strain is greatly reduced.
【0047】上記の方法によって、製作された赤外カッ
トフィルタの分光特性を調べたところ、図8に示すよう
に赤外領域(波長780〜1150nm)において透過
率が3%以下で可視領域(波長400〜720nm)に
おいて透過率の平均が85%以上であり、極めて良質な
赤外カットフィルタであることが判明した。When the spectral characteristics of the manufactured infrared cut filter were examined by the above method, as shown in FIG. 8, the transmittance was 3% or less in the infrared region (wavelength 780 to 1150 nm) and the visible region (wavelength was It was found that the average transmittance was 85% or more in the range of 400 to 720 nm), and that the infrared cut filter had an extremely high quality.
【0048】また、サンプル数30について、粘着テー
プによる密着力の試験と、シルボン紙による摩擦試験
と、有機溶剤による溶剤試験を行なったところ、結果が
不良なサンプルは皆無であった。Further, when 30 samples were subjected to an adhesion test with an adhesive tape, a friction test with sillbon paper, and a solvent test with an organic solvent, none of the samples had a bad result.
【0049】次に、各サンプルを温度70℃湿度80%
の高温高湿環境下に500時間放置する耐環境テストを
行なったうえで、上記と同様の密着力の試験と摩擦試験
と溶剤試験を行なったところ、やはり不良サンプルは皆
無であり、さらに透過率を調べたところ波長740nm
における透過率50%に対してシフト量は±2nm以下
であった。Next, each sample was subjected to a temperature of 70 ° C. and a humidity of 80%.
After carrying out the environment resistance test of leaving it in a high temperature and high humidity environment for 500 hours, the same adhesion test, friction test and solvent test as described above were carried out. When we examined the wavelength 740nm
The shift amount was ± 2 nm or less with respect to the transmittance of 50%.
【0050】(比較例)図9に示すように、ガラス製
(BK7)の基板40の上面にTiO2 膜41とSiO
2 膜42を合計16層、下面にTiO2 膜41とSiO
2 膜42を合計12層公知の成膜方法で積層して赤外カ
ットフィルタを製作した。(Comparative Example) As shown in FIG. 9, a TiO 2 film 41 and SiO 2 were formed on the upper surface of a glass (BK7) substrate 40.
16 layers of 2 films 42 in total, and TiO 2 film 41 and SiO 2 on the lower surface
A total of 12 layers of the two films 42 were laminated by a known film forming method to manufacture an infrared cut filter.
【0051】TiO2 膜41の成膜は、蒸着速度0.5
nm/sec、真空度1×10-4Torrの酸素雰囲気
中で行なわれ、SiO2 膜42の成膜は、蒸着速度1.
0nm/sec、反応ガスの導入は無しで行なわれた。
SiO2 膜42の内部応力は圧縮応力であって応力値は
それぞれ2.3×108 N/m2 であった。分光透過率
を測定したものを図10に示す。成膜直後と耐環境テス
ト後の機械的強度は充分であったが、耐環境テスト後の
波長740nmの50%の透過率に対するシフト量が+
5〜+10nmであり、赤外領域の透過率が3%以上に
なったサンプルもあった。The TiO 2 film 41 is formed at a vapor deposition rate of 0.5.
nm / sec and a vacuum degree of 1 × 10 −4 Torr in an oxygen atmosphere, and the SiO 2 film 42 is formed at a deposition rate of 1.
0 nm / sec, the reaction gas was not introduced.
The internal stress of the SiO 2 film 42 was compressive stress, and the stress value was 2.3 × 10 8 N / m 2 , respectively. The measured spectral transmittance is shown in FIG. The mechanical strength was sufficient immediately after film formation and after the environment resistance test, but the shift amount for the 50% transmittance at the wavelength of 740 nm after the environment resistance test was +
In some samples, the transmittance was 5 to +10 nm, and the transmittance in the infrared region was 3% or more.
【0052】[0052]
【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0053】層数を削減するうえで最も望ましい組み合
わせであるTiO2 膜とMgF2 膜からなる多層膜のク
ラックや内部欠陥を発生しやすい欠点を回避し、少ない
層数で優れた光学特性を有し、かつ機械的強度や耐環境
性等も充分である多層膜を得ることができる。このよう
な多層膜を用いることで、ミラーやフィルタ等の多層膜
光学部品の品質向上と低コスト化を大きく促進できる。In order to reduce the number of layers, it is possible to avoid the defect that cracks and internal defects of the multilayer film composed of TiO 2 film and MgF 2 film, which are the most desirable combination, and to have excellent optical characteristics with a small number of layers. In addition, a multilayer film having sufficient mechanical strength and environmental resistance can be obtained. By using such a multilayer film, quality improvement and cost reduction of the multilayer film optical component such as a mirror and a filter can be greatly promoted.
【図1】成膜装置を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a film forming apparatus.
【図2】第1実施例によるミラーの膜構成を示すもので
ある。FIG. 2 shows a film structure of a mirror according to the first embodiment.
【図3】図2のミラーの分光反射率を示すグラフであ
る。FIG. 3 is a graph showing the spectral reflectance of the mirror of FIG.
【図4】第1実施例の一比較例の分光反射率を示すグラ
フである。FIG. 4 is a graph showing a spectral reflectance of a comparative example of the first embodiment.
【図5】第1実施例の別の比較例の膜構成を示すもので
ある。FIG. 5 shows a film structure of another comparative example of the first embodiment.
【図6】図5のミラーの分光反射率を示すグラフであ
る。6 is a graph showing the spectral reflectance of the mirror of FIG.
【図7】第2実施例による赤外カットフィルタの膜構成
を示すものである。FIG. 7 shows a film structure of an infrared cut filter according to a second embodiment.
【図8】図7の赤外カットフィルタの分光特性を示すグ
ラフである。8 is a graph showing the spectral characteristics of the infrared cut filter of FIG.
【図9】第2実施例の一比較例の膜構成を示すものであ
る。FIG. 9 shows a film structure of a comparative example of the second embodiment.
【図10】図9の赤外カットフィルタの分光特性を示す
グラフである。10 is a graph showing the spectral characteristics of the infrared cut filter of FIG.
10,20,30,40 基板 11,21,31,41 TiO2 膜 12,32 MgF2 膜 22,42 SiO2 膜10, 20, 30, 40 Substrate 11, 21, 31, 41 TiO 2 film 12, 32 MgF 2 film 22, 42 SiO 2 film
Claims (9)
TiO2 膜とMgF2 膜からなる多層膜を有し、各対の
前記TiO2 膜の内部応力が圧縮応力であり、前記Mg
F2 膜の内部応力が引張応力であることを特徴とする多
層膜光学部品。1. A multilayer film comprising a plurality of pairs of TiO 2 films and MgF 2 films alternately laminated on the surface of a substrate, wherein the internal stress of each pair of the TiO 2 films is compressive stress, and the Mg
A multilayer optical component in which the internal stress of the F 2 film is a tensile stress.
TiO2 膜とMgF2 膜からなる多層膜を有し、各対の
少なくとも前記TiO2 膜がイオンアシスト蒸着法によ
って成膜されたものであることを特徴とする多層膜光学
部品。2. A multilayer film comprising a plurality of pairs of TiO 2 films and MgF 2 films alternately laminated on the surface of a substrate, and at least the TiO 2 films of each pair are formed by an ion assisted vapor deposition method. A multilayer optical component characterized by being a thing.
することを特徴とする請求項1または2記載の多層膜光
学部品。3. The multilayer optical component according to claim 1, which has four or more pairs of TiO 2 films and MgF 2 films.
とMgF2 膜を成膜する工程を有し、各対の少なくとも
前記TiO2 膜をイオンアシスト蒸着法によって成膜す
ることを特徴とする多層膜光学部品の製造方法。4. A step of alternately forming a plurality of pairs of TiO 2 films and MgF 2 films on the surface of a substrate, wherein at least the TiO 2 films of each pair are formed by an ion assisted vapor deposition method. And a method for manufacturing a multilayer optical component.
それぞれイオンアシスト蒸着法によって成膜することを
特徴とする多層膜光学部品の製造方法。5. A method for manufacturing a multilayer optical component, characterized in that both the TiO 2 film and the MgF 2 film of each pair are formed by an ion assisted vapor deposition method.
シストとして酸素イオンを用いることを特徴とする請求
項4または5記載の多層膜光学部品の製造方法。6. The method for producing a multilayer optical component according to claim 4, wherein oxygen ions are used as ion assist in the ion assisted vapor deposition method.
を調節することで、各対の少なくともTiO2 膜の内部
応力を制御することを特徴とする請求項4ないし6いず
れか1項記載の多層膜光学部品の製造方法。7. The multilayer film according to claim 4, wherein the internal stress of at least the TiO 2 film of each pair is controlled by adjusting the film forming conditions in the ion assisted vapor deposition method. Optical component manufacturing method.
基体が無加熱であることを特徴とする請求項4ないし7
いずれか1項記載の多層膜光学部品の製造方法。8. The substrate is not heated during formation of each pair of TiO 2 film and MgF 2 film.
A method for manufacturing a multilayer optical component according to any one of claims 1.
F2 膜を成膜する工程の前に、前記表面をイオン照射に
よって清浄化することを特徴とする請求項4ないし8い
ずれか1項記載の多層膜光学部品の製造方法。9. A plurality of pairs of TiO 2 films and Mg are formed on the surface of a substrate.
9. The method for manufacturing a multilayer optical component according to claim 4, wherein the surface is cleaned by ion irradiation before the step of forming the F 2 film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8317695A JPH08254612A (en) | 1995-03-15 | 1995-03-15 | Multilayer film optical component and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8317695A JPH08254612A (en) | 1995-03-15 | 1995-03-15 | Multilayer film optical component and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08254612A true JPH08254612A (en) | 1996-10-01 |
Family
ID=13794988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8317695A Pending JPH08254612A (en) | 1995-03-15 | 1995-03-15 | Multilayer film optical component and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08254612A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046421A1 (en) * | 1998-03-13 | 1999-09-16 | Honeywell Inc. | Ion assisted electron beam deposition of ring laser gyro mirrors |
JP2003321763A (en) * | 2002-04-26 | 2003-11-14 | Toshiba Tungaloy Co Ltd | Coated member |
JP2005321753A (en) * | 2004-04-05 | 2005-11-17 | Olympus Corp | Vertical illumination microscope and fluorescence filter set |
WO2005114266A1 (en) * | 2004-05-24 | 2005-12-01 | Jenoptik Laser Optik Systeme Gmbh | High-reflecting dielectric mirror and method for the production thereof |
JP2007063574A (en) * | 2005-08-29 | 2007-03-15 | Showa Shinku:Kk | Method for forming multilayer film and film-forming apparatus |
WO2010034367A1 (en) * | 2008-09-29 | 2010-04-01 | Carl Zeiss Smt Ag | Dielectric mirror and method for the production thereof, and a projection illumination system for microlithography having such a mirror |
JP2010210782A (en) * | 2009-03-09 | 2010-09-24 | Ricoh Co Ltd | Micromirror apparatus |
JP2011008070A (en) * | 2009-06-26 | 2011-01-13 | Ricoh Co Ltd | Micromirror device |
JP2011242522A (en) * | 2010-05-17 | 2011-12-01 | Ricoh Co Ltd | Micromirror device |
WO2015097898A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社シンクロン | Process for forming multilayer antireflection film |
US9128279B2 (en) | 2010-08-25 | 2015-09-08 | Seiko Epson Corporation | Wavelength-tunable interference filter, optical module, and optical analysis apparatus |
US9297936B2 (en) | 2010-05-27 | 2016-03-29 | Carl Zeiss Laser Optics Gmbh | Mirror with dielectric coating |
US9557554B2 (en) | 2010-08-25 | 2017-01-31 | Seiko Epson Corporation | Wavelength-variable interference filter, optical module, and optical analysis device |
CN112408810A (en) * | 2020-11-24 | 2021-02-26 | 中国电子科技集团公司第十八研究所 | Laser protection glass cover plate for space solar cell and preparation method thereof |
CN114180854A (en) * | 2021-11-23 | 2022-03-15 | 成都国泰真空设备有限公司 | A process of changing the ultimate pressure of flat glass after coating |
WO2023133643A1 (en) * | 2022-01-14 | 2023-07-20 | 12180235 Canada Ltd. | Reflective surface for a photochemistry chamber |
-
1995
- 1995-03-15 JP JP8317695A patent/JPH08254612A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046421A1 (en) * | 1998-03-13 | 1999-09-16 | Honeywell Inc. | Ion assisted electron beam deposition of ring laser gyro mirrors |
JP2003321763A (en) * | 2002-04-26 | 2003-11-14 | Toshiba Tungaloy Co Ltd | Coated member |
JP2005321753A (en) * | 2004-04-05 | 2005-11-17 | Olympus Corp | Vertical illumination microscope and fluorescence filter set |
WO2005114266A1 (en) * | 2004-05-24 | 2005-12-01 | Jenoptik Laser Optik Systeme Gmbh | High-reflecting dielectric mirror and method for the production thereof |
JP2007063574A (en) * | 2005-08-29 | 2007-03-15 | Showa Shinku:Kk | Method for forming multilayer film and film-forming apparatus |
WO2010034367A1 (en) * | 2008-09-29 | 2010-04-01 | Carl Zeiss Smt Ag | Dielectric mirror and method for the production thereof, and a projection illumination system for microlithography having such a mirror |
JP2010210782A (en) * | 2009-03-09 | 2010-09-24 | Ricoh Co Ltd | Micromirror apparatus |
JP2011008070A (en) * | 2009-06-26 | 2011-01-13 | Ricoh Co Ltd | Micromirror device |
JP2011242522A (en) * | 2010-05-17 | 2011-12-01 | Ricoh Co Ltd | Micromirror device |
US9297936B2 (en) | 2010-05-27 | 2016-03-29 | Carl Zeiss Laser Optics Gmbh | Mirror with dielectric coating |
US9128279B2 (en) | 2010-08-25 | 2015-09-08 | Seiko Epson Corporation | Wavelength-tunable interference filter, optical module, and optical analysis apparatus |
US9557554B2 (en) | 2010-08-25 | 2017-01-31 | Seiko Epson Corporation | Wavelength-variable interference filter, optical module, and optical analysis device |
WO2015097898A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社シンクロン | Process for forming multilayer antireflection film |
CN112408810A (en) * | 2020-11-24 | 2021-02-26 | 中国电子科技集团公司第十八研究所 | Laser protection glass cover plate for space solar cell and preparation method thereof |
CN114180854A (en) * | 2021-11-23 | 2022-03-15 | 成都国泰真空设备有限公司 | A process of changing the ultimate pressure of flat glass after coating |
WO2023133643A1 (en) * | 2022-01-14 | 2023-07-20 | 12180235 Canada Ltd. | Reflective surface for a photochemistry chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08254612A (en) | Multilayer film optical component and manufacture thereof | |
EP2027076B1 (en) | Low-e glazing | |
EP1980539A1 (en) | Glazing with low emissivity | |
JP6995491B2 (en) | Manufacturing method of optical thin film, optical element, optical element | |
JP2006091694A (en) | Nd filter, its manufacturing method, and light quantity control diaphragm device | |
JP4623349B2 (en) | Thin film type ND filter and manufacturing method thereof | |
JP2003322709A (en) | Thin film type nd filter | |
TWI588517B (en) | Optical element | |
JP4351678B2 (en) | Silver mirror and manufacturing method thereof | |
JP4804830B2 (en) | Multilayer film forming method and film forming apparatus | |
JP2003004919A (en) | High reflective mirror | |
JP4929842B2 (en) | ND filter and method of manufacturing ND filter | |
WO2017119335A1 (en) | Method for manufacturing reflective film | |
JPH05323103A (en) | Optical element | |
JPS63159811A (en) | Reflecting mirror consisting of multi-layered films and its production | |
JPH07248415A (en) | Production of optical thin film | |
JPS61196201A (en) | Formation of film by low temperature vapor deposition | |
JPH09189801A (en) | Optical parts with heat resistant antireflection film | |
JP3320148B2 (en) | Manufacturing method of metal mirror | |
JP2000171622A (en) | Internal reflection type optical element and its production | |
JP2003277911A (en) | Optical thin film | |
JP3689923B2 (en) | Method for producing plastic film having antireflection film | |
JP3352172B2 (en) | Optical thin film of plastic optical component and method of forming the same | |
JP3278194B2 (en) | Optical components | |
JP2546203B2 (en) | Optical element using TiOx thin film |