[go: up one dir, main page]

JPH08254189A - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH08254189A
JPH08254189A JP5903696A JP5903696A JPH08254189A JP H08254189 A JPH08254189 A JP H08254189A JP 5903696 A JP5903696 A JP 5903696A JP 5903696 A JP5903696 A JP 5903696A JP H08254189 A JPH08254189 A JP H08254189A
Authority
JP
Japan
Prior art keywords
bearing
eccentric
crankshaft
component
spiral blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5903696A
Other languages
Japanese (ja)
Other versions
JP2663934B2 (en
Inventor
Kiyoshi Sawai
清 沢井
Michio Yamamura
道生 山村
Shuichi Yamamoto
修一 山本
Hiroshi Karato
宏 唐土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8059036A priority Critical patent/JP2663934B2/en
Publication of JPH08254189A publication Critical patent/JPH08254189A/en
Application granted granted Critical
Publication of JP2663934B2 publication Critical patent/JP2663934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: To prevent the generation of large vibration and noise resulting from collision between a fixed helical blade part and a revolving helical blade part. CONSTITUTION: An eccentric bearing groove 10 having a side paralleling the axis of a crankshaft 8 and a central line extending through the axis of a crankshaft 8 is formed in one end on the revolving helical blade part 2 side of a crankshaft 8. An eccentric bearing 11 in which the drive shaft of the revolving helical blade part is rotatably fitted is slidably disposed inside the eccentric drive bearing groove 10. A bearing hole for the eccentric bearing 11 in which the drive shaft 4 of the revolving helical blade part is formed in such a state to be deviated to one of the slide surface of the eccentric bearing 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空調用あるいは空気
圧縮用に用いられるスクロール圧縮機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scroll compressor used for air conditioning or air compression.

【0002】[0002]

【従来の技術】従来この種の圧縮機は、例えば第3図の
ような構造になっていた。
2. Description of the Related Art Conventionally, a compressor of this type has a structure as shown in FIG. 3, for example.

【0003】第3図に示す構造は、一定回転数で運転す
る圧縮機に適用され、旋回渦巻羽根2aと固定渦巻羽根
1aとを常に接触させながら動作させて、羽根の半径方
向隙間を縮小に保ち、圧縮室内での洩れを最小限にとど
め、圧縮効率を向上させるものであった。
The structure shown in FIG. 3 is applied to a compressor operating at a constant rotation speed, and the swirling spiral blade 2a and the fixed spiral blade 1a are operated while always in contact with each other to reduce the radial clearance of the blade. This was to keep the leakage in the compression chamber to a minimum and improve the compression efficiency.

【0004】すなわち、クランク軸8の上端面にその軸
心0をはずれて伸びる軸受嵌合穴10aが形成され、こ
の軸受嵌合穴10aには偏心軸受11が長手方向に滑動
可能に、かつ回転しない様に嵌合されている。そして、
偏心軸受11が軸受嵌合穴10aの外方の壁面に接触す
る前に、両羽根が接触する関係寸法になっている。ま
た、上記軸受嵌合穴10aの長手方向と、旋回渦巻羽根
部品2に働くガス圧縮力fgと遠心力fcとの合力Fが
なす角は、一定回転数かつ許容し得るガス圧縮負荷のも
とで、90°以下に設定されている。従って、通常の運
転状態では、旋回渦巻羽根部品2に働く合力Fが、軸受
嵌合穴10aの壁面におって偏心軸受嵌合穴10aの外
方へ移動させる。その結果、このような圧縮機では、常
に旋回渦巻羽根2aと固定渦巻羽根1aとが、いずれか
の点で接触しながら動作することになる。
That is, a bearing fitting hole 10a is formed on the upper end surface of the crankshaft 8 so as to extend away from its axis 0, and an eccentric bearing 11 is slidable in the longitudinal direction and rotatable in this bearing fitting hole 10a. It is fitted so as not to. And
Before the eccentric bearing 11 contacts the outer wall surface of the bearing fitting hole 10a, both blades are in contact with each other. In addition, the angle formed by the longitudinal direction of the bearing fitting hole 10a and the resultant force F of the gas compression force fg acting on the swirling spiral blade component 2 and the centrifugal force fc is constant rotation speed and under an allowable gas compression load. Therefore, it is set to 90 ° or less. Therefore, in a normal operating state, the resultant force F acting on the swirling spiral blade component 2 moves to the outside of the eccentric bearing fitting hole 10a on the wall surface of the bearing fitting hole 10a. As a result, in such a compressor, the swirling spiral blade 2a and the fixed spiral blade 1a always operate while contacting at any point.

【0005】[0005]

【発明が解決しようとする課題】この構造のものでは、
クランク軸8の端部に軸芯から固定された距離で規定の
角度の溝を加工して仕上げる必要がある。この時、加工
の基準面がクランク軸8の外周になるため、そこからの
角度、偏芯量の設定が必要となり、高精度な加工は期待
できない。これらの精度が悪いと、羽根の接触力や羽根
の間の隙間が調整できず、羽根の形状精度が少しでも悪
いと、旋回渦巻羽根2aと固定渦巻羽根1aとが接触す
る点が連続的につながらず、常に偏心量が変動し、とき
には羽根どうしが衝突する場合も生じて、振動、騒音が
大きいという問題があった。
With this structure,
It is necessary to machine and finish a groove of a prescribed angle at a fixed distance from the shaft center at the end of the crankshaft 8. At this time, since the reference plane for processing is the outer periphery of the crankshaft 8, it is necessary to set the angle and the amount of eccentricity therefrom, and high-precision processing cannot be expected. If the precision is poor, the contact force of the blades and the gap between the blades cannot be adjusted. If the shape precision of the blades is poor, the contact point between the swirling spiral blade 2a and the fixed spiral blade 1a is continuous. However, the eccentricity constantly fluctuates, and sometimes the blades collide with each other, which causes a problem of large vibration and noise.

【0006】また、既に述べた様に、この構成は一定回
転数で運転する圧縮機に適するもので、近年空調用圧縮
機として主流である可変速型圧縮機には適用できないと
いう問題があった。すなわち、ある特定の回転数で旋回
渦巻羽根22aと固定渦巻羽根1aとの接触力を適正な
値に設定すると、それより低速の回転数域では旋回渦巻
羽根部品2に働く遠心力fcが減小するので、それに伴
って羽根の接触力も低下し、旋回渦巻羽根2aが固定渦
巻羽根1a上で振動したり、場合によって羽根の半径方
向に大きな隙間ができ、圧縮中のガスが低圧側へ洩れて
運転ができなくなるという問題があった。
Further, as described above, this configuration is suitable for a compressor operating at a constant rotation speed, and has a problem that it cannot be applied to a variable speed compressor which has been mainly used as an air conditioning compressor in recent years. . That is, when the contact force between the swirling spiral blade 22a and the fixed spiral blade 1a is set to an appropriate value at a certain specific rotation speed, the centrifugal force fc acting on the swirling spiral blade component 2 is reduced in the lower rotation speed range. As a result, the contact force of the blades also decreases, the swirling spiral blades 2a vibrate on the fixed spiral blades 1a, and in some cases a large gap is created in the radial direction of the blades, causing the gas being compressed to leak to the low pressure side. There was the problem of being unable to drive.

【0007】また、高速回転数域では、羽根どうしの接
触力過大になって羽根が摩耗するという問題があった。
Further, in the high speed rotation speed range, there is a problem that the blades wear due to excessive contact force between the blades.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、壁体の一方の面に渦巻状の羽根をそれぞれ
設けるとともにそれぞれの羽根を互いに組み合わせた固
定渦巻羽根部品及び旋回渦巻羽根部品と、前記旋回渦巻
羽根部品を偏心駆動するクランク軸と前記クランク軸を
支承する軸受部品と、前記旋回渦巻羽根部品の自転を拘
束する拘束部品とを含み成るスクロール圧縮機構であっ
て、前記クランク軸の前記旋回渦巻羽根部品側の一端に
溝の側面が前記クランク軸の軸線に平行でかつその中心
線が前記クランク軸の軸線を通る偏心駆動軸受溝を形成
し、この偏心駆動軸受溝の内側に、前記旋回渦巻羽根部
品の駆動軸が回転可能に嵌合した偏心軸受を滑動可能に
配設し、前記旋回渦巻羽根部品の駆動軸が嵌合する偏心
軸受の軸受穴を、前記偏心軸受の滑動面のー方に偏って
穿孔してなるものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a fixed spiral blade component and a spiral spiral blade in which spiral blades are provided on one surface of a wall body and the respective blades are combined with each other. A scroll compression mechanism comprising: a component, a crankshaft that eccentrically drives the orbiting spiral vane component, a bearing component that supports the crankshaft, and a restraint component that constrains the rotation of the orbital spiral vane component. An eccentric drive bearing groove is formed at one end of the shaft on the side of the orbiting spiral vane component, the side surface of the groove being parallel to the axis of the crankshaft and the center line of which passes through the axis of the crankshaft. The eccentric bearing in which the drive shaft of the swirling spiral blade component is rotatably fitted is slidably arranged, and the bearing hole of the eccentric bearing in which the drive shaft of the swirling spiral blade component is fitted is provided. Serial those formed by drilling biased towards over side sliding surface of the eccentric bearing.

【0009】この構成により、偏心量の設定を容易に行
なうことができるとともに広い回転数域で羽根の半径方
向の隙間を一定に保つことができるので、低振動・低騒
音でかつ効率の高い圧縮機が実現できる。
With this configuration, the amount of eccentricity can be easily set, and the radial gap of the blades can be kept constant in a wide rotational speed range, so that low vibration, low noise, and high compression efficiency can be achieved. Machine can be realized.

【0010】そして、旋回渦巻羽根部品の駆動軸が回転
可能に嵌合する軸受穴を、偏心軸受の滑動面の一方に偏
って穿孔することによって偏心駆動軸受溝の角度設定を
容易に行なうことができる。
Then, the bearing hole into which the drive shaft of the swirling spiral blade part is rotatably fitted is formed in one of the sliding surfaces of the eccentric bearing in a biased manner so that the angle of the eccentric drive bearing groove can be easily set. it can.

【0011】[0011]

【発明の実施の形態】上記課題を解決するために本発明
は、壁体の一方の面に渦巻状の羽根をそれぞれ設けると
ともにそれぞれの羽根を互いに組み合わせた固定渦巻羽
根部品及び旋回渦巻羽根部品と、前記旋回渦巻羽根部品
を偏心駆動するクランク軸と前記クランク軸を支承する
軸受部品と、前記旋回渦巻羽根部品の自転を拘束する拘
束部品とを含み成るスクロール圧縮機構であって、前記
クランク軸の前記旋回渦巻羽根部品側の一端に溝の側面
が前記クランク軸の軸線に平行でかつその中心線が前記
クランク軸の軸線を通る偏心駆動軸受溝を形成し、この
偏心駆動軸受溝の内側に、前記旋回渦巻羽根部品の駆動
軸が回転可能に嵌合した偏心軸受を滑動可能に配設し、
前記旋回渦巻羽根部品の駆動軸が嵌合する偏心軸受の軸
受穴を、前記偏心軸受の滑動面のー方に偏って穿孔して
なるものである。
In order to solve the above problems, the present invention provides a fixed spiral blade component and a swirl spiral blade component in which spiral blades are provided on one surface of a wall body and the respective blades are combined with each other. A scroll compression mechanism comprising: a crankshaft that eccentrically drives the swirl-vortex-blade component; a bearing component that supports the crankshaft; and a restraint component that restrains rotation of the swirl-vortex-blade component. An eccentric drive bearing groove whose side surface is parallel to the axis of the crankshaft and whose center line passes through the axis of the crankshaft is formed at one end on the side of the orbiting spiral blade component, and inside the eccentric drive bearing groove, An eccentric bearing in which the drive shaft of the swirling spiral blade component is rotatably fitted is slidably disposed,
A bearing hole of the eccentric bearing into which the drive shaft of the swirling spiral blade part is fitted is formed so as to be biased toward the sliding surface of the eccentric bearing.

【0012】この構成により、偏心量の設定を容易に行
なうことができるとともに広い回転数域で羽根の半径方
向の隙間を一定に保つことができるので、低振動・低騒
音でかつ効率の高い圧縮機が実現できる。
With this configuration, the amount of eccentricity can be easily set, and the radial gap of the blade can be kept constant over a wide rotation speed range, so that low vibration, low noise and highly efficient compression can be achieved. Machine can be realized.

【0013】そして、旋回渦巻羽根部品の駆動軸が回転
可能に嵌合する軸受穴を、偏心軸受の滑動面の一方に偏
って穿孔することによって偏心駆動軸受溝の角度設定を
容易に行なうことができる。
The angle of the eccentric drive bearing groove can be easily set by forming a bearing hole in which the drive shaft of the swirling spiral blade part is rotatably fitted to one of the sliding surfaces of the eccentric bearing. it can.

【0014】[0014]

【実施例】以下、本発明の一実施例を添付図面に基つい
て説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0015】第1図、第2図は、本発明に係わるスクロ
ール圧縮機を、例えば、空調用冷媒圧縮機として構成し
たものである。
FIG. 1 and FIG. 2 show the scroll compressor according to the present invention configured as a refrigerant compressor for air conditioning, for example.

【0016】同図において、1は固定渦巻羽根部品、1
aは固定渦巻羽根、1bは固定渦巻羽根の壁体であり、
2は旋回渦巻羽根部品、2aは旋回渦巻羽根、2bは旋
回渦巻羽根の壁体である。前記固定渦巻羽根1aと旋回
渦巻羽根2aはインボリュート曲線あるいはそれに近い
曲線より構成されたもので、互いに噛み合って圧縮室3
を形成する。4は前記旋回渦巻羽根部品2の駆動軸で、
本実施例では前記旋回渦巻部品2の壁体2bの背面中央
から突出している。5は旋回渦巻羽根2aの壁体2bを
支承するスラスト軸受、6は固定渦巻羽根部品1とボル
ト等で固定された軸受部品、7は旋回渦巻羽根部品2と
軸受部品6とに係合して旋回渦巻部品2の自転を防止す
る自転拘束部品、8は旋回渦巻羽根部品2を駆動するク
ランク軸でこのクランク軸8内には軸心部に長手方向の
油穴9が形成されている。8aはクランク軸の第1主
軸、8bはクランク軸の第2主軸、6aは軸受部品6の
上方にあって前記第1主軸8aを支承する第1軸受、6
bは軸受部品6の下方に位置し、前記第2主軸8bを支
承する第2軸受である。10は第1主軸8aの施固渦巻
羽根部品2側の端面に、溝の側面がクランク軸8の軸線
に平行で、また溝の中心線がクランク軸8の軸線を通る
ように形成した偏心駆動軸受溝である。11は旋回渦巻
羽根部品2の駆動軸4と回転可能に嵌合した偏心軸受
で、偏心軸受11は偏心駆動軸受溝10内でその長手方
向には滑動可能に、かつ回転しないように偏心駆動軸受
溝10に嵌合している。12は偏心駆動軸受溝10内の
クランク軸8の軸心側に入れられ、偏心軸受11を偏心
駆動軸受溝10の外方の壁面に押し付けるコイルバネで
ある。そして、偏心軸受11が偏心駆動軸受溝10の外
方の壁面に押し付けられた状態において、固定渦巻羽根
1aと旋回渦巻羽根2aの半径方向の最近接部には徽小
な隙間が存在するように、偏心駆動軸受溝10の長手方
向寸法およぴ偏心軸受11の寸法が設定してある。13
はクランク軸8を回転駆動する電動機、13aはクラン
ク軸8と一体になった電動機13のロータ、13bは電
動機13のステータである。14は圧縮全体を密封する
密閉容器、15はクランク軸8の一端に結合され、クラ
ンク軸8と共に回転するオイルポンプで、オイルポンプ
15の軸は密閉容器14の下部に結合されて、回転止め
されている。16は冷凍機油、17は密閉容器に結合し
た吸入管である。18は固定渦巻羽根部品の生体1bの
中心部に設けた吐出穴、19は吐出穴をおおうように設
けた吐出弁、20は弁押え、21は吐出室、22は吐出
管である。
In the figure, 1 is a fixed spiral blade component, 1
a is a fixed spiral blade, 1b is a wall body of the fixed spiral blade,
Reference numeral 2 is a swirl spiral blade component, 2a is a swirl spiral blade, and 2b is a wall body of the swirl spiral blade. The fixed spiral blade 1a and the swirling spiral blade 2a are configured by an involute curve or a curve close to the involute curve.
To form. 4 is a drive shaft of the swirling spiral blade part 2,
In this embodiment, it projects from the center of the back surface of the wall body 2b of the swirling spiral component 2. Reference numeral 5 denotes a thrust bearing for supporting the wall body 2b of the swirling spiral blade 2a, 6 denotes a bearing component fixed to the fixed spiral blade component 1 with bolts, and 7 denotes engagement with the swirl spiral blade component 2 and the bearing component 6. A rotation restraint component for preventing rotation of the swirling spiral component 2, 8 is a crankshaft for driving the swirling spiral blade component 2, and a longitudinal oil hole 9 is formed in the crankshaft 8 at its axial center. Reference numeral 8a is a first main shaft of the crankshaft, 8b is a second main shaft of the crankshaft, 6a is a first bearing above the bearing component 6 and supporting the first main shaft 8a, 6
Reference numeral b is a second bearing located below the bearing component 6 and supporting the second main shaft 8b. An eccentric drive 10 is formed on the end face of the first main shaft 8a on the side of the swirling vane component 2 so that the side surface of the groove is parallel to the axis of the crankshaft 8 and the centerline of the groove passes through the axis of the crankshaft 8. It is a bearing groove. Reference numeral 11 denotes an eccentric bearing which is rotatably fitted to the drive shaft 4 of the swirling spiral blade part 2. The eccentric bearing 11 is slidable in the longitudinal direction of the eccentric drive bearing groove 10 and is eccentric so as not to rotate. It fits in the groove 10. Reference numeral 12 is a coil spring that is inserted into the eccentric drive bearing groove 10 on the axial center side of the crankshaft 8 and presses the eccentric bearing 11 against the outer wall surface of the eccentric drive bearing groove 10. Then, in a state where the eccentric bearing 11 is pressed against the outer wall surface of the eccentric drive bearing groove 10, a small gap exists between the fixed spiral blade 1a and the swirling spiral blade 2a at the closest points in the radial direction. The longitudinal dimension of the eccentric drive bearing groove 10 and the dimension of the eccentric bearing 11 are set. Thirteen
Is an electric motor that rotationally drives the crankshaft 8, 13a is a rotor of the electric motor 13 integrated with the crankshaft 8, and 13b is a stator of the electric motor 13. 14 is an airtight container that seals the entire compression, 15 is an oil pump that is connected to one end of the crankshaft 8 and rotates together with the crankshaft 8. The shaft of the oil pump 15 is connected to the lower part of the airtight container 14 to stop rotation. ing. Reference numeral 16 is refrigerating machine oil, and 17 is a suction pipe connected to a closed container. Reference numeral 18 is a discharge hole provided at the center of the living body 1b of the fixed spiral blade component, 19 is a discharge valve provided so as to cover the discharge hole, 20 is a valve retainer, 21 is a discharge chamber, and 22 is a discharge pipe.

【0017】また第2図において、 はクランク軸8の
軸心Oから旋回渦巻羽根の駆動軸4の中心Oまでの偏心
量、今クランク軸8の回転方向を矢印Aの方向とする
と、fgは施固渦巻羽根部品2に働く遠心力、fgは施
固渦巻羽根部品2に働くガス圧縮力であり、Fはfcと
fgの合力である。また、旋回渦巻羽根部品2の偏心方
向と偏心駆動軸受溝10の長手方向となす角をαとし、
偏心方向と前記合力Fとのなす角をβとする。
In FIG. 2, eccentricity from the axis O of the crankshaft 8 to the center O of the drive shaft 4 of the swirling spiral blade. If the rotation direction of the crankshaft 8 is now in the direction of arrow A, fg is The centrifugal force acting on the hardened spiral blade component 2, fg is the gas compressive force acting on the hardened spiral blade component 2, and F is the combined force of fc and fg. Further, the angle formed by the eccentric direction of the swirling spiral blade component 2 and the longitudinal direction of the eccentric drive bearing groove 10 is α,
The angle between the eccentric direction and the resultant force F is β.

【0018】このように構成された圧縮機において、電
動機13のステータ13bに通電すると、ロータ13a
はトルクを発生してクランク軸8とともに回転する。ク
ランク軸8が回転すると、偏心駆動軸受溝10、偏心軸
受11を介して旋回渦巻羽根の駆動軸4にトルクが伝達
され、旋回渦巻羽根部品2は、スラスト軸受5の上を、
自転拘束部品7によって姿勢を保たれながら、クランク
軸8の軸心Oのまわりを旋回運動し、圧縮作用を行な
う。
In the compressor thus constructed, when the stator 13b of the electric motor 13 is energized, the rotor 13a
Generates torque and rotates with the crankshaft 8. When the crankshaft 8 rotates, torque is transmitted to the drive shaft 4 of the swirling spiral blade via the eccentric drive bearing groove 10 and the eccentric bearing 11, and the swirling spiral blade component 2 moves above the thrust bearing 5.
While the posture is maintained by the rotation restraint component 7, it makes a swiveling motion around the axis O of the crankshaft 8 to perform a compression action.

【0019】これに伴い気体は、吸入管17より吸い込
まれ、一旦密閉容器14内に入り、軸受部品6の開口部
を経て、圧縮室3に取り込まれる(矢印は気体の流れを
示す)。圧縮室3内で圧縮されて高圧・高温になった気
体は、吐出穴18より吐出室21へ吐き出され、この後
吐出管22より外部へ送り出される。
Along with this, the gas is sucked in through the suction pipe 17, once enters the closed container 14, and is taken into the compression chamber 3 through the opening of the bearing component 6 (the arrow indicates the gas flow). The gas that has been compressed in the compression chamber 3 and has a high pressure and high temperature is discharged from the discharge hole 18 to the discharge chamber 21, and then discharged from the discharge pipe 22 to the outside.

【0020】このように通常の運転が行なわれるが、本
実施例では、ガス圧縮力fgと遠心力fcとの合力F
と、偏心駆動軸受溝10の長手方向とのなす角(α+
β)が90°以上に設定してある。従って、合力Fは旋
回渦巻羽根部品2の偏心量とを減小せしめる方向に偏心
軸受11を滑動させようとするが、偏心軸受11を定め
られた位置、すなわち偏心駆動軸受溝10の外方の壁面
に圧接させるために最低限必要な力を出すようにコイル
バネ12の拝し付け力を設定している。従って、広い回
転数域で偏心量が一定に保たれるので、両羽根は接触す
ることなく半径方向隙間も一定に保たれる。
As described above, the normal operation is performed. In this embodiment, the resultant force F of the gas compressing force fg and the centrifugal force fc is used.
And the angle formed by the longitudinal direction of the eccentric drive bearing groove 10 (α +
β) is set to 90 ° or more. Therefore, the resultant force F tends to slide the eccentric bearing 11 in a direction to reduce the eccentric amount of the swirling spiral blade part 2, but the eccentric bearing 11 is slid in a predetermined position, that is, outside the eccentric drive bearing groove 10. The adhering force of the coil spring 12 is set so that a minimum necessary force is applied to press the wall against the wall. Therefore, the amount of eccentricity is kept constant in a wide rotational speed range, so that the blades are not in contact with each other and the radial gap is also kept constant.

【0021】よって広い回転数域で振動・騒音が小さ
く、羽根の摩耗もなく、圧縮効率も高いものとなる。
Therefore, the vibration and noise are small in a wide rotation speed range, the blade is not worn, and the compression efficiency is high.

【0022】また、このような構成をとれば、低速で運
転する圧縮機においても、偏心駆動軸受溝10と偏心方
向とのなす角αを大きく設定することができる。する
と、低速だけでなく高速時においても、圧縮室3に冷媒
液または油等が吸い込まれて圧縮負荷が許容値を超えた
場合には、圧縮負荷fgが大きなるに伴って、偏心駆動
軸受溝10の長手方向と合力Fとがなす角(α+β)が
90°を大きく超えるので、この時合力Fの分力F=|
Fcos(α+β)|がコイルバネ12の押し付け力に打ち
勝って、偏心軸受11を偏心駆動軸受溝10の長手方向
に浴って滑動させ偏心量とが減小する。すると、羽根の
半径方向隙間が拡大し、高圧の圧縮室3から低圧の圧縮
室3へと洩れ量が増加して、負荷が軽減され、液圧縮か
ら圧縮機が保護される。
Further, with such a structure, the angle α formed between the eccentric drive bearing groove 10 and the eccentric direction can be set large even in a compressor operating at a low speed. Then, not only at low speed but also at high speed, when the refrigerant liquid or oil is sucked into the compression chamber 3 and the compression load exceeds the allowable value, the eccentric drive bearing groove increases as the compression load fg increases. Since the angle (α + β) formed by the longitudinal direction of 10 and the resultant force F greatly exceeds 90 °, the component force F of the resultant force F = |
Fcos (α + β) | overcomes the pressing force of the coil spring 12 and causes the eccentric bearing 11 to slide in the longitudinal direction of the eccentric drive bearing groove 10 to reduce the amount of eccentricity. Then, the radial gap between the blades is expanded, the amount of leakage increases from the high pressure compression chamber 3 to the low pressure compression chamber 3, the load is reduced, and the compressor is protected from liquid compression.

【0023】また、異物が圧縮室3に取り込まれた場合
にも、偏心量εが減小して、羽根の半径方向隙間が拡大
し、異物が吐出穴18より排出されるまですみやかな運
転を続けることができる。
Also, when foreign matter is taken into the compression chamber 3, the eccentricity ε is reduced, the radial gap of the blade is enlarged, and the foreign matter is discharged from the discharge hole 18 so that a prompt operation is possible. I can continue.

【0024】そして、第2図に示すように、偏心軸受1
1の軸受穴を偏心軸受11の滑動面の一方に偏って穿孔
することによって、偏心方向と偏心駆動軸受溝10の長
手方向とのなす角を設定しているので、偏心駆動軸受溝
10はクランク軸8の軸心Oを通るように設置すればよ
く、偏心駆動軸受溝10の加工を容易に行なうことがで
きる。
Then, as shown in FIG.
The angle between the eccentric direction and the longitudinal direction of the eccentric drive bearing groove 10 is set by piercing the one bearing hole to one of the sliding surfaces of the eccentric bearing 11 so that the eccentric drive bearing groove 10 is What is necessary is just to install so that it may pass through the axis O of the shaft 8, and the eccentric drive bearing groove 10 can be processed easily.

【0025】[0025]

【発明の効果】以上詳述した通り、本発明は、壁体の一
方の面に渦巻状の羽根をそれぞれ設けるとともにそれぞ
れの羽根を互いに組み合わせた固定渦巻羽根部品及び旋
回渦巻羽根部品と、前記旋回渦巻羽根部品を偏心駆動す
るクランク軸と前記クランク軸を支承する軸受部品と、
前記旋回渦巻羽根部品の自転を拘束する拘束部品とを含
み成るスクロール圧縮機構であって、前記クランク軸の
前記旋回渦巻羽根部品側の一端に溝の側面が前記クラン
ク軸の軸線に平行でかつその中心線が前記クランク軸の
軸線を通る偏心駆動軸受溝を形成し、この偏心駆動軸受
溝の内側に、前記旋回渦巻羽根部品の駆動軸が回転可能
に嵌合した偏心軸受を滑動可能に配設し、前記旋回渦巻
羽根部品の駆動軸が嵌合する偏心軸受の軸受穴を、前記
偏心軸受の滑動面のー方に偏って穿孔してなることによ
り、偏心量の設定を容易に行なうことができるとともに
広い回転数域で羽根の半径方向の隙間を一定に保つこと
ができるので、低振動・低騒音でかつ効率の高い圧縮機
が実現できる。
As described above in detail, according to the present invention, the fixed spiral blade component and the swirl spiral blade component in which the spiral blades are provided on one surface of the wall body and the respective blades are combined with each other, and the swirl A crankshaft for eccentrically driving the spiral blade part, and a bearing part for supporting the crankshaft,
A scroll compression mechanism including a restraint component that restrains rotation of the swirl spiral blade component, wherein a side surface of a groove is parallel to an axis of the crank shaft at one end of the crank shaft on the swirl spiral blade component side. An eccentric drive bearing groove whose center line passes through the axis of the crankshaft is formed, and an eccentric bearing in which the drive shaft of the swirling spiral blade component is rotatably fitted is slidably disposed inside the eccentric drive bearing groove. The bearing hole of the eccentric bearing, into which the drive shaft of the swirling spiral blade part fits, is formed so as to be biased toward the sliding surface of the eccentric bearing, so that the amount of eccentricity can be easily set. In addition, since the radial gap of the blades can be kept constant in a wide rotation speed range, a compressor with low vibration and noise and high efficiency can be realized.

【0026】そして、旋回渦巻羽根部品の駆動軸が回転
可能に嵌合する軸受穴を、偏心軸受の滑動面の一方に偏
って穿孔することによって偏心駆動軸受溝の角度設定を
容易に行なうことができる。
Then, the bearing hole into which the drive shaft of the swirling spiral blade component is rotatably fitted is formed in one of the sliding surfaces of the eccentric bearing in a biased manner so that the angle of the eccentric drive bearing groove can be easily set. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るスクロール圧縮機の縦断面図FIG. 1 is a vertical sectional view of a scroll compressor according to the present invention.

【図2】同スクロール圧縮機の要部横断面図FIG. 2 is a cross-sectional view of a main part of the scroll compressor.

【図3】(a)は従来のスクロール圧縮機の要部横断面
図 (b)は同要部横断面図
FIG. 3A is a cross-sectional view of a main part of a conventional scroll compressor, and FIG. 3B is a cross-sectional view of the same part.

【符号の説明】[Explanation of symbols]

1 固定渦巻羽根部品 2 旋回渦巻羽根部品 3 圧縮室 4 駆動軸 5 スラスト軸受 6 軸受部品 7 自転拘束部品 8 クランク軸 10 偏心駆動軸受溝 11 偏心軸受 12 コイルバネ 13 電動機 14 密閉容器 15 オイルポンプ DESCRIPTION OF SYMBOLS 1 Fixed spiral blade part 2 Swirling spiral blade part 3 Compression chamber 4 Drive shaft 5 Thrust bearing 6 Bearing part 7 Rotation restraint part 8 Crankshaft 10 Eccentric drive bearing groove 11 Eccentric bearing 12 Coil spring 13 Electric motor 14 Airtight container 15 Oil pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐土 宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Karato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】壁体の一方の面に渦巻状の羽根をそれぞれ
設けるとともにそれぞれの羽根を互いに組み合わせた固
定渦巻羽根部品及び旋回渦巻羽根部品と、前記旋回渦巻
羽根部品を偏心駆動するクランク軸と前記クランク軸を
支承する軸受部品と、前記旋回渦巻羽根部品の自転を拘
束する拘束部品とを含み成るスクロール圧縮機構であっ
て、前記クランク軸の前記旋回渦巻羽根部品側の一端に
溝の側面が前記クランク軸の軸線に平行でかつその中心
線が前記クランク軸の軸線を通る偏心駆動軸受溝を形成
し、この偏心駆動軸受溝の内側に、前記旋回渦巻羽根部
品の駆動軸が回転可能に嵌合した偏心軸受を滑動可能に
配設し、前記旋回渦巻羽根部品の駆動軸が嵌合する偏心
軸受の軸受穴を、前記偏心軸受の滑動面のー方に偏って
穿孔してなるスクロール圧縮機。
1. A fixed spiral vane component and a swirl spiral vane component in which spiral vanes are provided on one surface of a wall body and the respective vanes are combined with each other, and a crankshaft for eccentrically driving the swirl spiral vane component. A scroll compression mechanism including a bearing component that supports the crankshaft and a restraining component that restrains rotation of the swirling spiral vane component, wherein a side surface of a groove is provided at one end of the crankshaft on the swirling spiral vane component side. An eccentric drive bearing groove is formed whose center line is parallel to the axis of the crankshaft and passes through the axis of the crankshaft, and the drive shaft of the swirling spiral blade part is rotatably fitted inside the eccentric drive bearing groove. The eccentric bearing is fitted slidably, and the bearing hole of the eccentric bearing into which the drive shaft of the swirling spiral blade component fits is formed by biasing the bearing hole toward the sliding surface of the eccentric bearing. Lumpur compressor.
JP8059036A 1996-03-15 1996-03-15 Scroll compressor Expired - Lifetime JP2663934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8059036A JP2663934B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8059036A JP2663934B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61126058A Division JP2730625B2 (en) 1986-05-30 1986-05-30 Scroll compressor

Publications (2)

Publication Number Publication Date
JPH08254189A true JPH08254189A (en) 1996-10-01
JP2663934B2 JP2663934B2 (en) 1997-10-15

Family

ID=13101677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8059036A Expired - Lifetime JP2663934B2 (en) 1996-03-15 1996-03-15 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2663934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314899C (en) * 2002-05-28 2007-05-09 Lg电子株式会社 Swirl compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314899C (en) * 2002-05-28 2007-05-09 Lg电子株式会社 Swirl compressor

Also Published As

Publication number Publication date
JP2663934B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP2730625B2 (en) Scroll compressor
US5713731A (en) Radial compliance mechanism for co-rotating scroll apparatus
US5772415A (en) Scroll machine with reverse rotation sound attenuation
US5931650A (en) Hermetic electric scroll compressor having a lubricating passage in the orbiting scroll
JP2001221171A (en) Scroll machine
JPS59120794A (en) Scroll compressor
JPH05272472A (en) Scroll compressor
JP2000249086A (en) Scroll type compressor
KR100458799B1 (en) Scrolling element with thrust face
US6203301B1 (en) Fluid pump
WO2002061285A1 (en) Scroll compressor
JPH05248371A (en) Scroll fluid machine and scroll compressor
JPH08254189A (en) Scroll compressor
KR910001554B1 (en) Scroll compressor
JP2701826B2 (en) Scroll compressor
JP3252495B2 (en) Scroll compressor
JPH0942177A (en) Scroll compressor
JPH08270577A (en) Scroll compressor
JP2956294B2 (en) Scroll compressor
JPH08200250A (en) Axial penetration scroll compressor
JPH09310689A (en) Scroll type compressor
JPH03160177A (en) Scroll compressor
JP3596063B2 (en) Scroll compressor
JP2005147024A (en) Scroll type fluid machine
JPH07189941A (en) Scroll compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term