JPH08253324A - Ferroelectric thin film constitution body - Google Patents
Ferroelectric thin film constitution bodyInfo
- Publication number
- JPH08253324A JPH08253324A JP7079535A JP7953595A JPH08253324A JP H08253324 A JPH08253324 A JP H08253324A JP 7079535 A JP7079535 A JP 7079535A JP 7953595 A JP7953595 A JP 7953595A JP H08253324 A JPH08253324 A JP H08253324A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ferroelectric thin
- substrate
- film
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation Pyrometers (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば焦電型赤外線検
出素子、アクチュエータ、不揮発性かつ非破壊性のメモ
リなどに用いる強誘電体薄膜構成体に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric thin film structure for use in, for example, a pyroelectric infrared detecting element, an actuator, a non-volatile and non-destructive memory.
【0002】[0002]
【従来の技術】一般に強誘電体は、電場がなくても自発
分極PS が存在し、その向きを外部電場によって反転さ
せることのできる物質であり、焦電体型赤外線検出素
子、アクチュエータ、不揮発性かつ非破壊性のメモリ素
子等に広範に応用されている。BACKGROUND ART Generally Ferroelectrics electric field also exists spontaneous polarization P S without a substance capable of reversing its direction by an external electric field, a pyroelectric type infrared detection element, an actuator, a non-volatile Moreover, it is widely applied to non-destructive memory devices and the like.
【0003】例えば焦電型赤外線素子は、自発分極の温
度変化を利用するものであり、物質内の自発分極の向き
が一方向に揃っているときに最大限の出力を引き出すこ
とができる。しかしながら、現在実用化されている赤外
線検出素子は殆どが多結晶体のセラミックスで製造され
ており、結晶軸の方向が揃っていないため、分極処理を
しても自発分極の向きを完全に揃えることができない。For example, a pyroelectric infrared device utilizes a change in spontaneous polarization with temperature, and can maximize the output when the spontaneous polarization in a substance is aligned in one direction. However, most of the infrared detectors currently in practical use are made of polycrystalline ceramics, and the directions of the crystal axes are not aligned, so even if polarization treatment is performed, the direction of spontaneous polarization must be perfectly aligned. I can't.
【0004】近年、電子部品の小型化の要求が高まって
おり、これを達成するために、強誘電体材料も薄膜の形
態での利用が注目されている。その際にも、自発分極P
S の方向が一方向に揃っている強誘電体薄膜が有効とさ
れている。例えば結晶系が正方晶であるPbTiO3 、
Pb(Zr,Ti)O3 、(Pb,La)TiO3 など
の代表的な強誘電体は、結晶のc軸方向に自発分極の方
向を有するため、基板表面に対して垂直方向に結晶方位
のc軸を揃えると最大限の出力を引き出すことができ
る。In recent years, there has been an increasing demand for miniaturization of electronic parts, and in order to achieve this, the use of a ferroelectric material in the form of a thin film is drawing attention. Also in that case, the spontaneous polarization P
A ferroelectric thin film in which the S directions are aligned in one direction is considered effective. For example, PbTiO 3 whose crystal system is tetragonal,
A typical ferroelectric substance such as Pb (Zr, Ti) O 3 or (Pb, La) TiO 3 has a spontaneous polarization direction in the c-axis direction of the crystal, and therefore has a crystal orientation perpendicular to the substrate surface. The maximum output can be obtained by aligning the c-axes of.
【0005】上記のような強誘電体薄膜を作製する従来
例として、例えば特開昭58−186105号公報に記
されているように、{100}面に沿ってへき開したM
gO単結晶基板の下地基板の表面に、エピタキシャル成
長的に形成させて製造される前記のような化学組成の強
誘電体薄膜があげられる。上記のようなMgO単結晶の
{100}面上の格子は前記組成の強誘電体の{10
0}面上の格子と整合性がよいため、基板を550〜6
50℃に加熱しながらスパッタ成膜もしくはCVD成膜
すると、エピタキシャル膜が形成できる。このようにし
て製造された前記組成の強誘電体薄膜は、基板面に対し
て垂直方向にc軸の揃った薄膜であり特性が優れてい
る。As a conventional example for producing the ferroelectric thin film as described above, for example, as described in JP-A-58-186105, M cleaved along the {100} plane is disclosed.
An example of the ferroelectric thin film having the chemical composition as described above is manufactured by epitaxially growing the surface of a base substrate of a gO single crystal substrate. The lattice on the {100} plane of the MgO single crystal as described above is {10} of the ferroelectric substance having the above composition.
The substrate is 550-6 because it has a good match with the lattice on the 0} plane.
An epitaxial film can be formed by sputtering or CVD film formation while heating at 50 ° C. The ferroelectric thin film having the above composition produced in this manner is a thin film in which the c-axis is aligned in the direction perpendicular to the substrate surface, and has excellent characteristics.
【0006】[0006]
【発明が解決しようとする問題点】しかしながら、上記
のようなMgOの単結晶基板は高価であり、そのため上
記の基板を用いて作製した強誘電体薄膜構成体や、さら
に、その構成体から製造される電子部品や電子機器が高
価になってしまう等の問題があった。However, since the MgO single crystal substrate as described above is expensive, a ferroelectric thin film structure manufactured by using the above substrate and further manufactured from the structure. There has been a problem that the electronic components and electronic devices to be used become expensive.
【0007】本発明は上記の問題点に鑑みて提案された
もので、上記のようなMgO単結晶基板を用いなくて
も、また基板の種類の如何にかかわらず、基板面に垂直
にc軸の方向が揃った強誘電体薄膜を有する強誘電体薄
膜構成体を提供することを目的とする。The present invention has been proposed in view of the above problems, and the c-axis is perpendicular to the substrate surface without using the above MgO single crystal substrate and regardless of the type of the substrate. It is an object of the present invention to provide a ferroelectric thin film structure having a ferroelectric thin film having the same direction.
【0008】[0008]
【問題を解決するための手段】上記の目的を達成するた
めに本発明による強誘電体薄膜構成体は、以下の構成と
したものである。In order to achieve the above object, the ferroelectric thin film structure according to the present invention has the following structure.
【0009】即ち、Bi系層状ペロブスカイト型結晶構
造の酸化物薄膜が、その結晶軸のc軸が基板面に対して
垂直方向に揃うように基板上に形成され、さらにその酸
化物薄膜の上に一般式がABO3 で示されるペロブスカ
イト型結晶構造の強誘電体薄膜が形成されていることを
特徴とする。ただし上記一般式において、 A=Bi、Pb、Ba、Sr、Ca、Na、K、希土類
元素のうち1種又は2種以上 B=Ti、Nb、Ta、W、Mo、Fe、Co、Cr、
Zrのうち1種又は2種以上That is, an oxide thin film having a Bi-based layered perovskite crystal structure is formed on a substrate so that the c-axes of its crystal axes are aligned in the direction perpendicular to the substrate surface, and further on the oxide thin film. A ferroelectric thin film having a perovskite type crystal structure represented by the general formula of ABO 3 is formed. However, in the above general formula, A = Bi, Pb, Ba, Sr, Ca, Na, K, one or more kinds of rare earth elements B = Ti, Nb, Ta, W, Mo, Fe, Co, Cr,
One or more of Zr
【0010】上記のBi系層状ペロブスカイト型結晶構
造の酸化物としては、例えば下記の化学式で示されるも
のを用いる。 (Bi2 O2 )2+(Am-1 Bm O3m+1)2- ただし、 A=Bi、Pb、Ba、Sr、Ca、Na、K、希土類
元素のうち1種又は2種以上 B=Ti、Nb、Ta、W、Mo、Fe、Co、Crの
うち1種又は2種以上 m=1、2、3、4、5As the Bi-based layered perovskite type crystal structure oxide, for example, one represented by the following chemical formula is used. (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- However, A = Bi, Pb, Ba, Sr, Ca, Na, K, one or more of rare earth elements B = Ti, Nb, Ta, W, Mo, Fe, Co, Cr One or more kinds m = 1, 2, 3, 4, 5
【0011】[0011]
【作用】前述したように、強誘電体薄膜として、例え
ば、PbTiO3 、Pb(Zr、Ti)O3 、(Pb、
La)TiO3 なる組成の薄膜を用いる場合、結晶方位
をc軸に揃えると自発分極の向きが揃い、自発分極の温
度変化を利用するような焦電型赤外線検出素子に用いる
場合は最大限の出力を発揮するため都合がよい。As described above, as the ferroelectric thin film, for example, PbTiO 3 , Pb (Zr, Ti) O 3 , (Pb,
When a thin film of La) TiO 3 is used, if the crystal orientation is aligned with the c-axis, the directions of spontaneous polarization are aligned, and if it is used for a pyroelectric infrared detection element that utilizes the temperature change of spontaneous polarization, the maximum It is convenient because it produces output.
【0012】Bi系の層状ペロブスカイト構造を有する
化合物は、低対称な構造を有し、結晶軸のa軸、b軸方
向に結晶成長しやすい特徴をもつ。基板上にこのBi系
層状ペロブスカイト構造の化合物を形成すると、基板と
の格子整合性を持たなくても基板面方向にa軸もしくは
b軸が形成されやすく、基板面の垂直方向にc軸が形成
されるような膜構造をとりやすい。The compound having a Bi-based layered perovskite structure has a low symmetric structure and is characterized in that crystals easily grow in the a-axis and b-axis directions of the crystal axis. When the compound having the Bi-based layered perovskite structure is formed on the substrate, the a-axis or the b-axis is easily formed in the substrate surface direction without forming the lattice matching with the substrate, and the c-axis is formed in the direction perpendicular to the substrate surface. It is easy to take a film structure like that.
【0013】一方、Bi系の層状ペロブスカイト構造化
合物のab面上の格子とペロブスカイト型ABO3 構造
のPbTiO3 、Pb(Zr、Ti)O3 、(Pb、L
a)TiO3 のab面上の格子とは整合性がよいため、
このような格子整合性を持ちながらBi系層状ペロブス
カイト構造化合物のc軸配向膜上にはこれらの組成の薄
膜を成膜するとc軸配向しやすい。On the other hand, the lattice on the ab plane of the Bi-based layered perovskite structure compound and PbTiO 3 , Pb (Zr, Ti) O 3 , (Pb, L of the perovskite type ABO 3 structure).
a) Since it has good compatibility with the lattice on the ab plane of TiO 3 ,
If a thin film of these compositions is formed on the c-axis oriented film of the Bi-based layered perovskite structure compound while having such a lattice matching property, the c-axis oriented state is likely to occur.
【0014】よって、高価なMgO単結晶基板を用いな
くてもc軸配向性を有する特性の優れたPbTiO3 、
Pb(Zr、Ti)O3 、(Pb、La)TiO3 等の
膜を有する強誘電体薄膜構成体を作製することが可能と
なる。Therefore, PbTiO 3 , which has c-axis orientation and excellent characteristics, without using an expensive MgO single crystal substrate,
It is possible to produce a ferroelectric thin film structure having a film of Pb (Zr, Ti) O 3 , (Pb, La) TiO 3, or the like.
【0015】[0015]
【実施例】以下、本発明による強誘電体薄膜構成体を、
実施例に基づいて具体的に説明する。EXAMPLE A ferroelectric thin film structure according to the present invention will be described below.
A specific description will be given based on examples.
【0016】〔実施例〕以下の実施例では強誘電体薄膜
構成体を高周波スパッタリング法で作製した。先ず、実
施例1においてはBi系層状ペロブスカイト型結晶構造
の酸化物薄膜としてBi4 Ti3 O12薄膜をスパッタに
より基板上に形成した。そのターゲット材料としてはB
i4 Ti3 O12の粉末と、これに対して20モル%のB
i2 O3を混合した粉末を用い、この粉末を無酸素銅製
のターゲット皿に敷き詰めて表面を平にしながら押し固
めてターゲットとした。スパッタの雰囲気ガスは、Ar
が90%、O2 が10%の混合気体を用い、全圧は1P
aとした。[Example] In the following examples, a ferroelectric thin film structure was produced by a high frequency sputtering method. First, in Example 1, a Bi 4 Ti 3 O 12 thin film was formed on a substrate by sputtering as an oxide thin film having a Bi-based layered perovskite type crystal structure. B as the target material
i 4 Ti 3 O 12 powder and 20 mol% B based on this powder
A powder mixed with i 2 O 3 was used, and the powder was spread on a target dish made of oxygen-free copper and pressed while flattening the surface to obtain a target. Atmosphere gas for sputtering is Ar
90% and O 2 10% mixed gas, total pressure 1P
a.
【0017】基板にはコーニング7059ガラスを用
い、これを基板ホルダに固定してターゲットとの距離を
10cmに設定し、基板を650℃まで加熱しながら厚
さ0.5μmの薄膜を形成した。この薄膜についてX線
回折測定法による構造解析と、ICP発光分析法による
組成分析を行ったところ、得られた膜は強くc軸配向し
ているBi4 Ti3 O12であることが確認された。Corning 7059 glass was used as the substrate, and this was fixed to a substrate holder, the distance from the target was set to 10 cm, and a thin film having a thickness of 0.5 μm was formed while heating the substrate to 650 ° C. Structural analysis of this thin film by X-ray diffractometry and composition analysis by ICP emission spectrometry confirmed that the resulting film was Bi 4 Ti 3 O 12 strongly oriented in the c-axis. .
【0018】次に、このBi4 Ti3 O12膜上に下部電
極として0.1μmの白金膜を高周波スパッタ法で作製
した。そのスパッタには白金板ターゲットを用い、その
ターゲットと基板との距離を10cmとし、基板を60
0℃に加熱してArガス雰囲気中で全圧0.5Paの条
件で行った。Next, a 0.1 μm platinum film was formed as a lower electrode on the Bi 4 Ti 3 O 12 film by a high frequency sputtering method. A platinum plate target was used for the sputtering, the distance between the target and the substrate was 10 cm, and the substrate was 60
The heating was performed at 0 ° C. and the total pressure was 0.5 Pa in an Ar gas atmosphere.
【0019】さらに、上記の下部電極の上に、次の条件
でPbTiO3 薄膜をスパッタにより作製した。ターゲ
ット材料には、PbTiO3 に20モル%のPbOを混
合した粉末を用い、これを無酸素銅製のターゲット皿に
敷き詰めて表面を平に押し固めてターゲットとした。ス
パッタ雰囲気はArが90%、O2 が10%の混合気体
を用いて全圧を1Paとし、基板を620℃に加熱して
厚さ1.0μmのPbTiO3 薄膜を形成した。Further, a PbTiO 3 thin film was formed on the above lower electrode under the following conditions by sputtering. A powder of PbTiO 3 mixed with 20 mol% of PbO was used as the target material, and the powder was spread on a target dish made of oxygen-free copper and the surface was flatly pressed to form a target. The sputtering atmosphere was a mixed gas of 90% Ar and 10% O 2 at a total pressure of 1 Pa, and the substrate was heated to 620 ° C. to form a PbTiO 3 thin film having a thickness of 1.0 μm.
【0020】上記のようにして得られた薄膜の結晶構造
および組成を、X線回折測定法およびICP発光分析法
で調べたところ、c軸配向性の強いPbTiO3 膜が作
製されていることがわかった。またX線回折ピーク強度
から下記の式を用いてc軸配向率α(%)を算出したと
ころ、95%であった。 α={I001 /(I001 +I100 +I101 +I110 +I
111 )}×100When the crystal structure and composition of the thin film obtained as described above were examined by X-ray diffraction measurement and ICP emission spectrometry, it was found that a PbTiO 3 film having a strong c-axis orientation was produced. all right. The c-axis orientation rate α (%) was calculated from the X-ray diffraction peak intensity using the following formula, and was found to be 95%. α = {I 001 / (I 001 + I 100 + I 101 + I 110 + I
111 )} × 100
【0021】次に実施例2〜9として、上記実施例1と
ほぼ同様の要領で、基板およびBi系層状ペロブスカイ
ト型結晶構造酸化物の組成を変えて、種々の組成の強誘
電体薄膜を作製し、それらのc軸配向率を調べた。以上
の結果を下記表1にまとめて示す。Next, as Examples 2 to 9, ferroelectric films having various compositions were prepared by changing the compositions of the substrate and the Bi-based layered perovskite type crystal structure oxide in the same manner as in Example 1 above. Then, their c-axis orientation rates were investigated. The above results are summarized in Table 1 below.
【0022】 [0022]
【0023】〔比較例〕上記実施例に対する比較例とし
てコーニング7059ガラス上に下地膜としてBi 系の
層状ペロブスカイト酸化物を形成することなく、強誘電
体薄膜を形成した場合と、従来の{100}面でへき開
したMgO単結晶基板上に強誘電体薄膜を成膜した場合
のc軸配向率を下記表2に示す。[Comparative Example] As a comparative example to the above example, a ferroelectric thin film was formed on a Corning 7059 glass without forming a Bi-based layered perovskite oxide as a base film, and a conventional {100}. Table 2 below shows the c-axis orientation ratio when a ferroelectric thin film is formed on a MgO single crystal substrate cleaved at the plane.
【0024】 [0024]
【0025】上記表2中の比較例1に示したように、基
板としてコーニング7059ガラスを用い、その基板上
に下地膜としてBi 系の層状ペロブスカイト酸化物を形
成することなく強誘電体薄膜を成膜した場合のc軸配向
率は非常に低いのに対し、本発明による前記各実施例の
ようにBi系層状ペロブスカイト酸化物を下地膜として
設けると、その表面に前記表1のようにc軸配向率の高
い強誘電体薄膜を形成することができる。しかも、その
各実施例のc軸配向率αは、上記表2の比較例2で示し
た従来の高価なMgO単結晶基板を用いた場合と同等
か、もしくはそれ以上であり、極めて配向率のよい強誘
電体薄膜を形成できるものである。As shown in Comparative Example 1 in Table 2 above, Corning 7059 glass was used as a substrate, and a ferroelectric thin film was formed on the substrate without forming a Bi-based layered perovskite oxide as an underlayer. The c-axis orientation ratio in the case of forming a film is very low. A ferroelectric thin film having a high orientation rate can be formed. Moreover, the c-axis orientation rate α of each Example is equal to or higher than that when the conventional expensive MgO single crystal substrate shown in Comparative Example 2 of Table 2 above is used, and the orientation rate is extremely high. It is possible to form a good ferroelectric thin film.
【0026】その結果、本発明による強誘電体薄膜構成
体は、焦電型赤外線検出素子やアクチュエータ等に有用
な特性のよい強誘電体素子として用いることができる。
この場合、電極は強誘電体薄膜の両側に設けるもので、
上記実施例のようにBi系層状ペロブスカイト型結晶構
造の酸化物薄膜の上に下部電極と強誘電体薄膜とを順に
形成した後に、強誘電体薄膜上に上部電極を形成する。
或いは強誘電体薄膜上に上部電極を形成し、基板を下部
電極として利用することもできる。その場合、強誘電体
薄膜は、上記の酸化物薄膜の上に、実施例のような下部
電極を形成することなく成膜するものであるが、そのよ
うな場合にも配向率の高い強誘電体薄膜を形成できるこ
とは勿論である。As a result, the ferroelectric thin film structure according to the present invention can be used as a ferroelectric element having good characteristics which is useful for a pyroelectric infrared detecting element, an actuator and the like.
In this case, the electrodes are provided on both sides of the ferroelectric thin film,
After the lower electrode and the ferroelectric thin film are sequentially formed on the oxide thin film having the Bi-based layered perovskite type crystal structure as in the above embodiment, the upper electrode is formed on the ferroelectric thin film.
Alternatively, the upper electrode may be formed on the ferroelectric thin film and the substrate may be used as the lower electrode. In that case, the ferroelectric thin film is formed on the above-mentioned oxide thin film without forming the lower electrode as in the embodiment, and even in such a case, the ferroelectric thin film having a high orientation rate is used. Of course, a body thin film can be formed.
【0027】[0027]
【発明の効果】以上詳述したように、本発明による強誘
電体薄膜構成体は、Bi系層状ペロブスカイト型結晶構
造の酸化物薄膜が、その結晶軸のc軸が基板に垂直方向
に揃うように基板上に配置され、さらにその上に一般式
がABO3 で示されるペロブスカイト型結晶構造の強誘
電体薄膜が配置された構成としたから、従来のように下
地基板として高価なMgO単結晶基板を用いることな
く、安価な他の基板を用いて、MgO単結晶基板を用い
た場合と同等もしくはそれよりもc軸配向性のよい強誘
電体薄膜を有する構成体が得られる。その結果、焦電型
赤外線検出素子やアクチュエータあるいは不揮発性かつ
非破壊性のメモリなどの電子部品を安価に製造できる等
の効果がある。As described in detail above, in the ferroelectric thin film structure according to the present invention, the oxide thin film of the Bi-based layered perovskite type crystal structure has its crystal axis c-axis aligned in the direction perpendicular to the substrate. Since a ferroelectric thin film having a perovskite type crystal structure represented by the general formula ABO 3 is further arranged on the substrate, a MgO single crystal substrate which is expensive as a base substrate is conventionally used. , A structure having a ferroelectric thin film having a c-axis orientation which is equal to or better than the case of using the MgO single crystal substrate can be obtained by using another inexpensive substrate. As a result, there is an effect that an electronic component such as a pyroelectric infrared detecting element, an actuator, or a nonvolatile and nondestructive memory can be manufactured at low cost.
Claims (4)
酸化物薄膜が、その結晶軸のc軸が基板面に対して垂直
方向に揃うように基板上に形成され、さらにその酸化物
薄膜の上に一般式がABO3 で示されるペロブスカイト
型結晶構造の強誘電体薄膜が形成されていることを特徴
とする強誘電体薄膜構成体。ただし上記一般式におい
て、 A=Bi、Pb、Ba、Sr、Ca、Na、K、希土類
元素のうち1種又は2種以上 B=Ti、Nb、Ta、W、Mo、Fe、Co、Cr、
Zrのうち1種又は2種以上1. An oxide thin film having a Bi-based layered perovskite crystal structure is formed on a substrate such that the c-axes of its crystal axes are aligned in the direction perpendicular to the substrate surface, and further on the oxide thin film. A ferroelectric thin film structure characterized in that a ferroelectric thin film having a perovskite crystal structure represented by the general formula of ABO 3 is formed. However, in the above general formula, A = Bi, Pb, Ba, Sr, Ca, Na, K, one or more kinds of rare earth elements B = Ti, Nb, Ta, W, Mo, Fe, Co, Cr,
One or more of Zr
構造の酸化物は下記の化学式であることを特徴とする請
求項1記載の強誘電体薄膜構成体。 (Bi2 O2 )2+(Am-1 Bm O3m+1)2- ただし、 A=Bi、Pb、Ba、Sr、Ca、Na、K、希土類
元素のうち1種又は2種以上 B=Ti、Nb、Ta、W、Mo、Fe、Co、Crの
うち1種又は2種以上 m=1、2、3、4、52. The ferroelectric thin film structure according to claim 1, wherein the oxide of the Bi-based layered perovskite type crystal structure has the following chemical formula. (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- However, A = Bi, Pb, Ba, Sr, Ca, Na, K, one or more of rare earth elements B = Ti, Nb, Ta, W, Mo, Fe, Co, Cr One or more kinds m = 1, 2, 3, 4, 5
し、基板を下部電極とした請求項1または2記載の強誘
電体薄膜構成体。3. The ferroelectric thin film structure according to claim 1, wherein an upper electrode is formed on the ferroelectric thin film and a substrate serves as a lower electrode.
造の酸化物薄膜と強誘電体薄膜との間に下部電極を形成
すると共に、強誘電体薄膜上に上部電極を形成してなる
請求項1または2記載の強誘電体薄膜構成体。4. A lower electrode is formed between the oxide thin film having the Bi-based layered perovskite crystal structure and the ferroelectric thin film, and an upper electrode is formed on the ferroelectric thin film. 2. The ferroelectric thin film structure described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079535A JPH08253324A (en) | 1995-03-10 | 1995-03-10 | Ferroelectric thin film constitution body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079535A JPH08253324A (en) | 1995-03-10 | 1995-03-10 | Ferroelectric thin film constitution body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08253324A true JPH08253324A (en) | 1996-10-01 |
Family
ID=13692698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7079535A Pending JPH08253324A (en) | 1995-03-10 | 1995-03-10 | Ferroelectric thin film constitution body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08253324A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098212A1 (en) * | 2000-06-21 | 2001-12-27 | Seiko Epson Corporation | Ceramic film and method for its preparation, and semiconductor device and piezoelectric element |
WO2002102709A1 (en) * | 2001-06-13 | 2002-12-27 | Seiko Epson Corporation | Ceramics film and production method therefor, and ferroelectric capacitor, semiconductor device, other elements |
WO2003021606A1 (en) * | 2001-08-28 | 2003-03-13 | Tdk Corporation | Composition for thin-film capacitive device, high-dielectric constant insulating film, thin-film capacitive device, and thin-film mulitlayer ceramic capacitor |
KR100425531B1 (en) * | 2001-04-04 | 2004-03-30 | 학교법인 포항공과대학교 | Ferroelectric bismuth titanate having rare earth elements |
WO2004044935A1 (en) * | 2002-11-12 | 2004-05-27 | Tdk Corporation | Capacitor composite circuit element and ic card multilayer capacitor |
WO2004044934A1 (en) * | 2002-11-12 | 2004-05-27 | Tdk Corporation | Thin film capacitor for reducing power supply noise |
WO2004055876A1 (en) * | 2002-12-17 | 2004-07-01 | Ibule Photonics Inc. | Method for preparation of ferroelectric single crystal film structure using deposition method |
WO2004065668A1 (en) * | 2003-01-21 | 2004-08-05 | Tdk Corporation | Composition for thin film capacitance element, insulating film of high dielectric constant, thin film capacitance element, thin film laminated capacitor and method for manufacturing thin film capacitance element |
WO2005102958A1 (en) * | 2004-04-26 | 2005-11-03 | Tdk Corporation | Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device |
JPWO2004061881A1 (en) * | 2002-12-27 | 2006-05-18 | Tdk株式会社 | Thin film capacitor and manufacturing method thereof |
US7145198B2 (en) | 2001-08-28 | 2006-12-05 | Tdk Corporation | Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor |
CN100441543C (en) * | 2000-06-21 | 2008-12-10 | 精工爱普生株式会社 | Ceramic film and method of manufacturing the same, semiconductor device, and piezoelectric device |
EP2784459A1 (en) * | 2013-03-25 | 2014-10-01 | Seiko Epson Corporation | Infrared sensor and heat sensing element |
CN110917906A (en) * | 2019-12-11 | 2020-03-27 | 南京大学 | Ferroelectric nanofiltration membrane material, preparation method and application |
-
1995
- 1995-03-10 JP JP7079535A patent/JPH08253324A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441543C (en) * | 2000-06-21 | 2008-12-10 | 精工爱普生株式会社 | Ceramic film and method of manufacturing the same, semiconductor device, and piezoelectric device |
JP2009107923A (en) * | 2000-06-21 | 2009-05-21 | Seiko Epson Corp | Ceramic film, manufacturing method thereof, semiconductor device, piezoelectric element and actuator |
EP2248765A1 (en) * | 2000-06-21 | 2010-11-10 | Seiko Epson Corporation | Ceramic film and manufacturing method therefor, semiconductor device and piezoelectric device |
US6602344B2 (en) | 2000-06-21 | 2003-08-05 | Seiko Epson Corporation | Ceramic film and method of manufacturing the same, semiconductor device, and piezoelectric device |
CN1296283C (en) * | 2000-06-21 | 2007-01-24 | 精工爱普生株式会社 | Ceramic film and method for its preparation, and semiconductor device and piezoelectric element |
JP2009117851A (en) * | 2000-06-21 | 2009-05-28 | Seiko Epson Corp | Ceramic film, manufacturing method thereof, semiconductor device, piezoelectric element and actuator |
JP2009117852A (en) * | 2000-06-21 | 2009-05-28 | Seiko Epson Corp | Ceramic film, manufacturing method thereof, semiconductor device, piezoelectric element and actuator |
JP2009107345A (en) * | 2000-06-21 | 2009-05-21 | Seiko Epson Corp | Ceramic film, manufacturing method thereof, semiconductor device, piezoelectric element and actuator |
WO2001098212A1 (en) * | 2000-06-21 | 2001-12-27 | Seiko Epson Corporation | Ceramic film and method for its preparation, and semiconductor device and piezoelectric element |
US7138013B2 (en) | 2000-06-21 | 2006-11-21 | Seiko Epson Corporation | Ceramic film and method of manufacturing the same, semiconductor device, and piezoelectric device |
KR100425531B1 (en) * | 2001-04-04 | 2004-03-30 | 학교법인 포항공과대학교 | Ferroelectric bismuth titanate having rare earth elements |
US7956519B2 (en) | 2001-06-13 | 2011-06-07 | Seiko Epson Corporation | Piezoelectric device having a ferroelectric film including a solid solution |
WO2002102709A1 (en) * | 2001-06-13 | 2002-12-27 | Seiko Epson Corporation | Ceramics film and production method therefor, and ferroelectric capacitor, semiconductor device, other elements |
US7825569B2 (en) | 2001-06-13 | 2010-11-02 | Seiko Epson Corporation | Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element |
US7960901B2 (en) | 2001-06-13 | 2011-06-14 | Seiko Epson Corporation | Piezoelectric device having a ferroelectric film including a ferroelectric material |
US7205056B2 (en) | 2001-06-13 | 2007-04-17 | Seiko Epson Corporation | Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element |
EP1422727A4 (en) * | 2001-08-28 | 2009-01-21 | Tdk Corp | COMPOSITION FOR A CAPACITIVE THIN FILM DEVICE, HIGH DIELECTRICITY CONSTANT ISOLATION FILM, CAPACITIVE THIN FILM DEVICE AND MULTILAYER CERAMIC THIN FILM CONDENSER |
US7242044B2 (en) | 2001-08-28 | 2007-07-10 | Tdk Corporation | Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor |
CN1295710C (en) * | 2001-08-28 | 2007-01-17 | Tdk株式会社 | Compositions for thin-film capacitive device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer ceramic capacitor |
US7145198B2 (en) | 2001-08-28 | 2006-12-05 | Tdk Corporation | Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor |
WO2003021606A1 (en) * | 2001-08-28 | 2003-03-13 | Tdk Corporation | Composition for thin-film capacitive device, high-dielectric constant insulating film, thin-film capacitive device, and thin-film mulitlayer ceramic capacitor |
WO2004044934A1 (en) * | 2002-11-12 | 2004-05-27 | Tdk Corporation | Thin film capacitor for reducing power supply noise |
WO2004044935A1 (en) * | 2002-11-12 | 2004-05-27 | Tdk Corporation | Capacitor composite circuit element and ic card multilayer capacitor |
WO2004055876A1 (en) * | 2002-12-17 | 2004-07-01 | Ibule Photonics Inc. | Method for preparation of ferroelectric single crystal film structure using deposition method |
JPWO2004061881A1 (en) * | 2002-12-27 | 2006-05-18 | Tdk株式会社 | Thin film capacitor and manufacturing method thereof |
WO2004065668A1 (en) * | 2003-01-21 | 2004-08-05 | Tdk Corporation | Composition for thin film capacitance element, insulating film of high dielectric constant, thin film capacitance element, thin film laminated capacitor and method for manufacturing thin film capacitance element |
US7745869B2 (en) | 2003-01-21 | 2010-06-29 | Tdk Corporation | Thin film capacitance element composition, high permittivity insulation film, thin film capacitance element, thin film multilayer capacitor and production method of thin film capacitance element |
JPWO2004065668A1 (en) * | 2003-01-21 | 2006-05-18 | Tdk株式会社 | Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor |
JP4706479B2 (en) * | 2003-01-21 | 2011-06-22 | Tdk株式会社 | Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor |
US7580241B2 (en) | 2004-04-26 | 2009-08-25 | Tdk Corporation | Thin film capacitor element composition, high permittivity insulation film, thin film capacitor element, thin film multilayer capacitor, and method of production of thin film capacitor element |
WO2005102958A1 (en) * | 2004-04-26 | 2005-11-03 | Tdk Corporation | Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device |
EP2784459A1 (en) * | 2013-03-25 | 2014-10-01 | Seiko Epson Corporation | Infrared sensor and heat sensing element |
CN104075813A (en) * | 2013-03-25 | 2014-10-01 | 精工爱普生株式会社 | Infrared sensor and heat sensing element |
US9274004B2 (en) | 2013-03-25 | 2016-03-01 | Seiko Epson Corporation | Infrared sensor and heat sensing element |
CN110917906A (en) * | 2019-12-11 | 2020-03-27 | 南京大学 | Ferroelectric nanofiltration membrane material, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Garg et al. | Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi 4− x Nd x Ti 3 O 12 films | |
Iijima et al. | Preparation of c‐axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties | |
Tuttle et al. | Solution deposition of ferroelectric thin films | |
US7368172B2 (en) | Membrane multi-layer structure, and actuator element, capacitive element and filter element using the same | |
JPH08253324A (en) | Ferroelectric thin film constitution body | |
JPH06350154A (en) | Piezoelectric thin film element | |
JPH07106658A (en) | Thin film material | |
JPH08186182A (en) | Ferroelectric thin-film element | |
JP2834355B2 (en) | Method of manufacturing ferroelectric thin film construct | |
JPH05235416A (en) | Ferroelectric thin-film element | |
Shoyama et al. | Dielectric properties of alkoxy-derived Sr 2 Nb 2 O 7 thin films crystallized via rapid thermal annealing | |
JPH11103024A (en) | Ferroelectric element and semiconductor device | |
JPH10245298A (en) | Crystal oriented ceramic substrate and device | |
JPH1153935A (en) | LSRO thin film and manufacturing method thereof | |
JPH09315857A (en) | Perovskite oxide film and method of manufacturing the same | |
JPH1087400A (en) | Layered crystal structure oxide and method for producing the same | |
JPH09208394A (en) | Production of ferroelectric thin film and ferroelectric thin film capacitor | |
JPH0762235B2 (en) | Method of manufacturing ferroelectric thin film | |
Teowee et al. | Dielectric and Ferroelectric Properties of Sol-Gel Derived PLZT Films | |
Wang et al. | Preparation and Electrical Properties of Rhombohedral Pb (ZrxTi1-x) O3 Thin Films by RF Magnetron Sputtering Method | |
JP4573234B2 (en) | Bismuth layered ferroelectric, ferroelectric element, and method for manufacturing ferroelectric thin film | |
JPH07172984A (en) | Production of dielectric thin film and apparatus therefor | |
JPH053439B2 (en) | ||
JPS63236793A (en) | Orientating laminated film | |
JP2990527B2 (en) | Manufacturing method of thin film substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061010 |