JPH0825220B2 - Multi-layer container - Google Patents
Multi-layer containerInfo
- Publication number
- JPH0825220B2 JPH0825220B2 JP2476887A JP2476887A JPH0825220B2 JP H0825220 B2 JPH0825220 B2 JP H0825220B2 JP 2476887 A JP2476887 A JP 2476887A JP 2476887 A JP2476887 A JP 2476887A JP H0825220 B2 JPH0825220 B2 JP H0825220B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- layer
- mixed
- container
- gas barrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0811—Wall thickness
- B29C2949/0817—Wall thickness of the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0861—Other specified values, e.g. values or ranges
- B29C2949/0872—Weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/22—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/20—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
- B29C2949/24—Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3016—Preforms or parisons made of several components at body portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/302—Preforms or parisons made of several components at bottom portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
- B29C2949/3026—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
- B29C2949/3028—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
- B29C2949/3026—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
- B29C2949/3028—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
- B29C2949/303—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層容器に関するものであり、更に詳しく
は、透明性、層間接着強度、ガスバリヤー性及び機械的
強度に優れた多層容器に関する。TECHNICAL FIELD The present invention relates to a multilayer container, and more particularly to a multilayer container excellent in transparency, interlayer adhesion strength, gas barrier property and mechanical strength.
従来、炭酸飲料などの清涼飲料、ビール、日本酒など
の酒類、調味料、食用油、化粧品、洗剤などの容器とし
て、ガラスが広く使用されていたが、ガラス容器は、取
り扱い、安全性などの面での欠点を有している。Conventionally, glass has been widely used as a container for soft drinks such as carbonated drinks, beer, liquors such as sake, seasonings, edible oils, cosmetics, detergents, etc.However, glass containers are easy to handle and safe. It has the disadvantage of.
これらの欠点を解消するため、ガラス容器から種々の
プラスチック容器への転換が進んでいる。特に、透明性
が要求される調味料、清涼飲料、洗剤、化粧品等の分野
でポリエチレンテレフタレートを主体とした樹脂からな
る2軸延伸配向した容器が広く採用されている。In order to eliminate these drawbacks, conversion from glass containers to various plastic containers is in progress. In particular, biaxially stretched and oriented containers made of a resin mainly composed of polyethylene terephthalate are widely used in the fields of seasonings, soft drinks, detergents, cosmetics, etc., which require transparency.
しかし、ポリエチレンテレフタレートを主体とする熱
可塑性ポリエステル樹脂からなる2軸延伸配向した容器
も万全の性能を有している訳ではなく、特に充填する内
容物がガスバリヤー性を高度に要求する飲料品である場
合には、その酸素及び炭酸ガスに対するガスバリヤー性
が不十分である。However, a biaxially stretched and orientated container made of a thermoplastic polyester resin mainly composed of polyethylene terephthalate does not necessarily have perfect performance, and the content to be filled is a beverage product which particularly requires a high gas barrier property. In some cases, their gas barrier properties to oxygen and carbon dioxide are insufficient.
これまで、ガスバリヤー性を有する多層容器の製造に
関して、次の方法が知られている。Heretofore, the following methods have been known for producing a multi-layer container having a gas barrier property.
ガスバリヤー性を有する多層容器を製造するために、
熱可塑性ポリエステル樹脂用の射出シリンダーと、熱可
塑性ガスバリヤー性樹脂であるメタキシリレン基含有ポ
リアミド樹脂(以下「MXナイロン」と略記する)用の射
出シリンダーを有する射出成形機を用い、単一の金型に
一回の型締動作で、溶融した熱可塑性ポリエステル樹脂
およびMXナイロンを、熱可塑性ポリエステル樹脂、MXナ
イロンの順に連続的かつ順次に射出して、熱可塑性ポリ
エステル樹脂を内外表面層に、MXナイロンを内核層とし
た3層構造にする試みも既に開示されている。(特開昭
57−128516、特開昭57−128520) この場合、MXナイロンの層を薄くする、すなわちMXナ
イロンの射出量を少なくしようとした場合、MXナイロン
の層が容器の胴部全体に形成されない欠点がある。In order to produce a multi-layer container having gas barrier properties,
A single mold using an injection molding machine having an injection cylinder for a thermoplastic polyester resin and an injection cylinder for a polyamide resin containing a metaxylylene group (hereinafter abbreviated as "MX nylon") which is a thermoplastic gas barrier resin. In a single mold clamping operation, molten thermoplastic polyester resin and MX nylon are continuously and sequentially injected in the order of thermoplastic polyester resin and MX nylon, and the thermoplastic polyester resin is applied to the inner and outer surface layers and MX nylon. An attempt to make a three-layer structure in which is a core layer has already been disclosed. (JP Sho
57-128516, JP-A-57-128520) In this case, when the layer of MX nylon is made thin, that is, when the injection amount of MX nylon is reduced, there is a drawback that the layer of MX nylon is not formed on the entire body of the container. is there.
又、先ず熱可塑性ポリエステル樹脂を射出し、次にMX
ナイロンを射出するのに続いて、再度熱可塑性ポリエス
テル樹脂を射出することにより、熱可塑性ポリエステル
樹脂を2つの内外表面層と1つの中央層、MXナイロンを
内外表面層と中央層に囲まれた2つの中間層とした5層
構造とし、その結果として、MXナイロン層が、2層とな
るものの、極めて薄くすることができ、又MXナイロンの
射出量を前記の方法より少なくする方法も開示されてい
る。(特開昭60−240409号公報、特開昭61−108542号公
報) 更に、ガスバリヤー性樹脂の射出量を減少できる方法
として、特公昭60−16326号公報も開示されている。Also, first inject the thermoplastic polyester resin, then MX
By injecting the thermoplastic polyester resin again after injecting nylon, the thermoplastic polyester resin is surrounded by two inner and outer surface layers and one central layer, and MX nylon is surrounded by the inner and outer surface layers and the central layer. A five-layer structure with two intermediate layers, resulting in a two-layer MX nylon layer, which can be made extremely thin, and a method of making the injection amount of MX nylon less than the above method is also disclosed. There is. (JP-A-60-240409, JP-A-61-108542) Further, JP-B-60-16326 is also disclosed as a method for reducing the injection amount of the gas barrier resin.
この方法では、先ず熱可塑性ポリエステル樹脂の1部
を射出し、次いで熱可塑性ポリエステル樹脂とガスバリ
ヤー性樹脂とを同時に射出する。In this method, first, a part of the thermoplastic polyester resin is injected, and then the thermoplastic polyester resin and the gas barrier resin are simultaneously injected.
この場合、ガスバリヤー層が中央より外側に寄った3
層断面構造が得られる。In this case, the gas barrier layer is located outside the center 3
A layer cross-section structure is obtained.
しかし、MXナイロンを含めガスバリヤー性樹脂は、一
般に熱可塑性ポリエステル樹脂等との親和性に乏しいた
め、上記方法によって得られた多層容器における層間接
着強度は小さく、その結果容器を外部より変形させる
力、衝撃力、および炭酸ガスを溶解させた液を充填させ
た容器のように内圧が加わった場合、多層容器において
層間剥離が発生し易いという欠点がある。However, gas barrier resins, including MX nylon, generally have poor affinity with thermoplastic polyester resins and the like, so the interlayer adhesion strength in the multilayer container obtained by the above method is low, and as a result, the force that deforms the container from the outside However, when internal pressure is applied like a container filled with impact force and a liquid in which carbon dioxide gas is dissolved, there is a drawback that delamination is likely to occur in a multilayer container.
層間剥離をおこした容器は、その部分が2枚のフィル
ムに分離するため、いくぶん白く見え、外観上好ましく
ない。The delaminated container looks somewhat white and its appearance is unfavorable because its part separates into two films.
層間剥離を防止する対策として、ガスバリヤー層を樹
脂Aと樹脂Bの混合樹脂層とすることが、考えられる。As a measure for preventing delamination, it can be considered that the gas barrier layer is a mixed resin layer of resin A and resin B.
しかし、この場合には、混合樹脂中の樹脂Bの割合を
大きくすると、容器が乳白色又はパール状に濁るだけで
接着力は向上しない。However, in this case, when the ratio of the resin B in the mixed resin is increased, the container becomes cloudy or pearly and the adhesive strength is not improved.
他方、樹脂Aの割合を大きくすると、層間接着強度は
向上するが、この場合、樹脂混合の一般的な欠点である
乳白色又はパール状にヘイズ(くもり)が発生するとい
う問題点が生じる。本発明は、このような従来の問題点
を改良し、ガスバリヤー性、機械的性質、及び透明性を
低下させることなく、層間接着性を向上させた多層容器
を得ることを目的とする。On the other hand, when the proportion of the resin A is increased, the interlayer adhesion strength is improved, but in this case, there is a problem that haze is generated in a milky white or pearl shape which is a general drawback of resin mixing. It is an object of the present invention to improve such conventional problems and obtain a multi-layer container having improved interlayer adhesion without lowering gas barrier properties, mechanical properties, and transparency.
本発明者らは鋭意研究の結果、ガスバリヤー層とし
て、混合樹脂層を形成した場合、このような問題点は樹
脂の混合状態に起因して生じており、この混合樹脂層を
特定の混合状態とすることにより、この問題点は、解決
しうることを見出し、本発明に到達した。As a result of intensive studies by the present inventors, when a mixed resin layer is formed as a gas barrier layer, such a problem occurs due to the mixed state of the resin. It was found that this problem can be solved by the above, and the present invention was reached.
すなわち、本発明は少なくとも口部開口端部分が、熱
可塑性樹脂(樹脂A)から成る単一構造を有し、少なく
とも胴部肉薄部分が、樹脂Aと樹脂A以外の熱可塑性ガ
スバリヤー性樹脂(樹脂B)とが混合した樹脂混合物か
らなる一層以上の混合樹脂層と、この混合樹脂層より一
層多い樹脂A層とが交互に積層して形成され、かつ2軸
延伸配向した多層構造を有する容器において、上記混合
樹脂層における樹脂A粒子と樹脂B粒子とが長径10μ以
下で存在する割合は合わせて、10%以下となる状態であ
ることを特徴とする多層容器に関するものである。That is, according to the present invention, at least the mouth opening end portion has a single structure made of a thermoplastic resin (resin A), and at least the body thin portion has a resin A and a thermoplastic gas barrier resin other than the resin A ( A container having a multilayer structure in which one or more mixed resin layers made of a resin mixture mixed with resin B) and more resin A layers than the mixed resin layers are alternately laminated and biaxially stretched and oriented. In the above-mentioned mixed resin layer, the ratio of the resin A particles and the resin B particles having a major axis of 10 μm or less in total is 10% or less in total.
本発明者らは、樹脂Aおよび樹脂Bからなる混合樹脂
層を有するパリソンを2軸延伸ブロー成形して、容器を
製造する場合に、混合樹脂層は、樹脂A及びBが十分に
混合されていない状態(以下「粗混合状態」と記す)の
方がヘイズが少なく、かつ層間接着強度が向上する多層
容器が得られることを見出し、研究を重ねた。When the present inventors produce a container by biaxially stretch-blow molding a parison having a mixed resin layer composed of the resin A and the resin B, the mixed resin layer is sufficiently mixed with the resins A and B. The inventors have conducted further studies and found that a multilayer container having less haze and improved interlaminar adhesive strength can be obtained in the absence (hereinafter referred to as "coarse mixed state").
一般に容器の前駆体である多層パリソンを成形する場
合、通常の混合用スクリューを使用して2種の樹脂を混
合した溶融混合では、混合が十分に行われており、成形
後のパリソンの混合層において、量の多い樹脂に対し
て、量の少ない樹脂が微小粒子径で島状に点在する状態
で存在する。Generally, when molding a multi-layer parison that is a precursor of a container, the mixing is sufficiently performed in melt mixing in which two kinds of resins are mixed by using an ordinary mixing screw, and the mixed layer of the parison after molding is sufficient. In the above, the resin with a small amount is present in a state of being scattered in an island shape with a fine particle diameter with respect to the resin with a large amount.
このパリソンをブロー成形により面積比で5〜15倍に
延伸すると、この島状の粒子径は、長径で10μm以下の
微小粒子径となり、これがヘイズの原因となることがわ
かった。It was found that when this parison was stretched by blow molding to have an area ratio of 5 to 15 times, the island-shaped particle diameter became a fine particle diameter of 10 μm or less in major axis, which was a cause of haze.
上記多層パリソンを成形する際、樹脂の混合を粗混合
状態とすると、ブロー成形後の容器の混合樹脂層にこの
ような微粒子径の樹脂は、殆ど存在しておらず、このた
めヘイズが非常に少なくなることが判明した。When molding the above-mentioned multilayer parison, if the mixing of the resins is in a roughly mixed state, there is almost no resin having such a fine particle diameter in the mixed resin layer of the container after blow molding, and therefore the haze is very high. It turned out to be less.
その結果、容器として、一般に要求される曇度(JIS
K6714にもとずく測定値)を15%以下とするには、容
器の混合樹脂層中の樹脂A粒子と樹脂B粒子とが長径10
μm以下で存在する割合は、合わせて10%以下とするこ
とが必要であることを見出した。As a result, the haze (JIS
In order to reduce the measured value based on K6714) to 15% or less, the resin A particles and the resin B particles in the mixed resin layer of the container have a major axis of 10
It has been found that the proportion of particles present in the range of μm or less needs to be 10% or less in total.
このような粗混合状態とするには2種の樹脂を如何に
練り込まないでしかも入り組ませるかが重要であるが、
その方法としてはスタティックミキサーで混合する方法
や混練効果の低いスクリューを有するシリンダーでかつ
ステアリン酸やステアリン酸塩等の滑剤を添加して混合
する方法を例示することができ、以下に装置の例を説明
する。In order to achieve such a rough mixed state, it is important not to knead the two resins and to make them complicated.
Examples of the method include a method of mixing with a static mixer and a method of mixing with a cylinder having a screw with a low kneading effect and by adding a lubricant such as stearic acid or a stearate. explain.
第1図は、本発明の多層容器の前駆体であるパリソン
の成形装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a molding apparatus for a parison which is a precursor of a multilayer container of the present invention.
この装置は、通常の装置と同じく、樹脂A用シリンダ
ー1と樹脂B用シリンダー2とを有し、各々のシリンダ
ーで溶融した樹脂Aと樹脂Bとをゲート13を通って金型
8内のキャビテイ14内に樹脂A単独又は、樹脂Aと樹脂
Bとからなる混合樹脂を射出するためのものであるが、
樹脂Aと樹脂Bとから成る混合樹脂層を作るために、さ
らに切換バルブ15、連結管7およびスタテックミキサー
11を有している。This device has a cylinder 1 for resin A and a cylinder 2 for resin B, like a normal device, and the resin A and the resin B melted in each cylinder pass through a gate 13 and a cavity in the mold 8 is passed through. Injecting resin A alone or a mixed resin composed of resin A and resin B into 14
In order to form a mixed resin layer composed of resin A and resin B, a switching valve 15, a connecting pipe 7 and a static mixer are further added.
Have 11.
この装置において、切換バルブ15が樹脂A用ノズル5
と樹脂A金型内流路9を連結する状態にあるとき、従来
法の場合と同じく樹脂Aをキャビテイ14内に射出するこ
とが出来る。In this device, the switching valve 15 has the resin A nozzle 5
When the resin A and the in-mold flow path 9 are connected to each other, the resin A can be injected into the cavity 14 as in the conventional method.
他方、切換バルブ15を切り換えて、樹脂A用ノズル5
と連結管7とを連通させた状態では、樹脂A用シリンダ
ー1と樹脂B用シリンダー2とから同時に背圧をかける
ことにより、樹脂A用ノズル5と連結管7を通ってきた
溶融樹脂A3と樹脂B用ノズル6を通ってきた溶融樹脂B4
とをスタテックミキサー11内で粗混合状態とした後、混
合樹脂金型内流路10、ゲート13を通じてキャビテイ14内
に射出することが出来る。On the other hand, by switching the switching valve 15, the resin A nozzle 5
And the connecting pipe 7 are in communication with each other, by applying back pressure from the resin A cylinder 1 and the resin B cylinder 2 at the same time, the resin A nozzle 5 and the molten resin A3 flowing through the connecting pipe 7 Molten resin B4 passing through the resin B nozzle 6
After being roughly mixed in the static mixer 11, they can be injected into the cavity 14 through the mixed resin in-mold channel 10 and the gate 13.
第1図の装置を使用して、先ず樹脂A、次いで混合樹
脂、最後に樹脂Aの順序で射出した場合、第3図の模式
図に示すように5層断面構造のパリソンが得られる。When the resin A, then the mixed resin, and finally the resin A are injected in this order using the apparatus shown in FIG. 1, a parison having a five-layer cross-sectional structure is obtained as shown in the schematic view of FIG.
第2図は、他の射出成形装置の模式図である。第2図
の装置は、樹脂A用シリンダー1と、樹脂Aと樹脂Bを
粗混合した混合樹脂用シリンダー16を有しており、この
装置を使用して、先ず樹脂A3を射出し、次いで混合樹脂
17と樹脂A3を同時に射出すると第4図の模式図に示すよ
うな3層構造のパリソンが得られる。FIG. 2 is a schematic view of another injection molding device. The apparatus shown in FIG. 2 has a cylinder 1 for resin A and a cylinder 16 for mixed resin in which resin A and resin B are roughly mixed. Using this apparatus, resin A3 is first injected and then mixed. resin
When 17 and resin A3 are simultaneously injected, a three-layer structure parison as shown in the schematic view of FIG. 4 is obtained.
ガスバリヤー層である粗混合樹脂層における樹脂Aと
樹脂Bの含有重量比は、広い範囲にわたってとることが
できるが、樹脂A層との接着性から1:9〜9:1が適当であ
る。The content weight ratio of the resin A and the resin B in the crude mixed resin layer which is the gas barrier layer can be set in a wide range, but from the adhesiveness with the resin A layer, 1: 9 to 9: 1 is suitable.
又、ブロー成形後の容器中の混合樹脂層の厚みも広い
範囲に渡ってとることができるが、20〜100μmが適当
である。The thickness of the mixed resin layer in the container after blow molding can be set in a wide range, but 20 to 100 μm is suitable.
本発明で使用する樹脂Aとしては、熱可塑性ポリエス
テル樹脂、ポリオレフィン系樹脂、ポリカーボネート、
ポリアクリロニトリル、ポリ塩化ビニール、ポリスチレ
ン等があげられるがなかでも熱可塑性ポリエステル樹脂
が好ましい。The resin A used in the present invention includes thermoplastic polyester resin, polyolefin resin, polycarbonate,
Among them, polyacrylonitrile, polyvinyl chloride, polystyrene and the like can be mentioned, and among them, the thermoplastic polyester resin is preferable.
本発明で使用する樹脂B、すなわち熱可塑性ガスバリ
ヤー性樹脂としては、MXナイロン、エチレン・酢ビ共重
合樹脂ケン化物、ポリアクリロニトリル共重合樹脂、ポ
リ塩化ビニリデン樹脂等があげられるがなかでもMXナイ
ロンが好ましい。熱可塑性ポリエステル樹脂、ことにポ
リエチレンテレフタレートとMXナイロンとの組合せが最
も好ましいが、その理由としては、樹脂の持つ透明性、
機械的強度、射出成形性、延伸ブロー成形性の総てにお
いて優れているためである。Examples of the resin B used in the present invention, that is, the thermoplastic gas barrier resin include MX nylon, saponified ethylene / vinyl acetate copolymer resin, polyacrylonitrile copolymer resin, polyvinylidene chloride resin, and the like. Is preferred. A thermoplastic polyester resin, especially a combination of polyethylene terephthalate and MX nylon is most preferable, because the transparency of the resin is
This is because they are all excellent in mechanical strength, injection moldability, and stretch blow moldability.
上記熱可塑性ポリエステル樹脂とは、通常酸成分の80
モル%以上、好ましくは90モル%以上がテレフタル酸で
あり、グリコール成分の80モル%以上、好ましくは90モ
ル%以上がエチレングリコールであるポリエステルを意
味し、残部の他の酸成分としては、イソフタル酸、ジフ
ェニルエーテル−4,4−ジカルボン酸、ナフタレン−1,4
又は2,6−ジカルボン酸、アジピン酸、セバシン酸、デ
カン−1,10−ジカルボン酸、ヘキサヒドロテレフタル酸
を、又、他のグリコール成分としては、プロピレングリ
コール、1,4−ブタンジオール、ネオペンチルグリコー
ル、ジエチレングリコール、シクロヘキサンジメタノー
ル、2,2−ビス(4−ヒドロキシエトキシフェニル)プ
ロパン等を例示することができる。The thermoplastic polyester resin is usually an acid component of 80
A polyester in which terephthalic acid is terephthalic acid in an amount of not less than 90% by mole, preferably 80% by mole or more, and preferably not less than 90% by mole of a glycol component is ethylene glycol is used. Acid, diphenyl ether-4,4-dicarboxylic acid, naphthalene-1,4
Alternatively, 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane-1,10-dicarboxylic acid, hexahydroterephthalic acid, and other glycol components include propylene glycol, 1,4-butanediol and neopentyl. Examples thereof include glycol, diethylene glycol, cyclohexanedimethanol, and 2,2-bis (4-hydroxyethoxyphenyl) propane.
更に、オキシ酸としてP−オキシ安息香酸等を含有す
るポリエステル樹脂も例示することができる。Further, a polyester resin containing P-oxybenzoic acid or the like as the oxyacid can be exemplified.
これらの熱可塑性ポリエステル樹脂の固有粘度は、0.
55以上が適当であり、好ましくは0.65〜1.4である。The intrinsic viscosity of these thermoplastic polyester resins is 0.
A value of 55 or more is suitable, and preferably 0.65 to 1.4.
固有粘度が0.55未満では、多層パリソンを透明な非晶
状態で得ることは困難であるほか、得られる容器の機械
的強度も不十分である。When the intrinsic viscosity is less than 0.55, it is difficult to obtain the multilayer parison in a transparent amorphous state, and the mechanical strength of the obtained container is insufficient.
一方のMXナイロンとは、メタキシリレンジアミン単
独、又はメタキシリレンジアミン及び全量の30%以下の
パラキシリレンジアミンを含む混合キシリレンジアミン
と炭素数6〜10のα,ω−直鎖脂肪族ジカルボン酸とか
ら得られる構成単位を少なくとも70モル%以上含有する
重合体を意味する。On the other hand, MX nylon is metaxylylenediamine alone or mixed xylylenediamine containing metaxylylenediamine and paraxylylenediamine of 30% or less of the total amount and α, ω-linear aliphatic having 6 to 10 carbon atoms. It means a polymer containing at least 70 mol% or more of a constitutional unit obtained from dicarboxylic acid.
これらの重合体の例としては、ポリメタキシリレンア
ジパミド(以下「N−MXD6」と略記する)、ポリメタキ
シリレンセバカミド、ポリメタキシリレンスペラミド等
のような単独重合体、メタキシリレン/パラキシリレン
アジパミド共重合体、メタキシリレン/パラキシリレン
スペラミド共重合体のような共重合体及びこれらの単独
もしくは共重合体を例示できる。Examples of these polymers include homopolymers such as polymeta-xylylene adipamide (hereinafter abbreviated as "N-MXD6"), poly-meta-xylylene sebacamide, poly-meta-xylylene speramide, meta-xylylene / para. Examples thereof include copolymers such as xylylene adipamide copolymer and metaxylylene / paraxylylene speramide copolymer, and homopolymers or copolymers thereof.
さらに、上記単独もしくは共重合体の原料ノ一部を、
ヘキサメチレンジアミンのような脂肪族ジアミン、ピペ
ラジンのような脂還式ジアミン、パラ−ビス−(2−ア
ミノエチル)ベンゼンのような芳香族ジアミン、テレフ
タル酸のような芳香族ジカルボン酸、ε−カプロラクタ
ムのようなラクタム、ω−アミノヘプタン酸のようなω
−アミノカルボン酸、パラ−アミ安息香酸のような芳香
族アミノカルボン酸で置き換えた物も例示することがで
きる。Furthermore, a part of the raw material of the above homopolymer or copolymer,
Aliphatic diamines such as hexamethylenediamine, cycloaliphatic diamines such as piperazine, aromatic diamines such as para-bis- (2-aminoethyl) benzene, aromatic dicarboxylic acids such as terephthalic acid, ε-caprolactam. Lactams like, ω-aminoheptanoic acid like ω
-Substituted with an aromatic aminocarboxylic acid such as -aminocarboxylic acid or para-amibenzoic acid can also be exemplified.
又、これらの重合体に、例えばナイロン6、ナイロン
66、ナイロン610、ナイロン11等の重合体を含有させて
もよい。In addition, for example, nylon 6, nylon
Polymers such as 66, nylon 610 and nylon 11 may be contained.
上記のMXナイロンの相対粘度は、1.5以上であり、好
ましくは2.0〜4.0である。The above MX nylon has a relative viscosity of 1.5 or more, preferably 2.0 to 4.0.
一方これらのガスバリヤー性熱可塑性樹脂以外の他の
熱可塑性樹脂としては、熱可塑性ポリエステル樹脂、ポ
リオレフィン系樹脂、ポリカーボネート、ポリアクリロ
ニトリル、ポリ塩化ビニル、ポリスチレン等があげられ
るが、なかでも、熱可塑性ポリエステル樹脂が好まし
い。On the other hand, examples of the thermoplastic resin other than these gas barrier thermoplastic resins include thermoplastic polyester resins, polyolefin resins, polycarbonate, polyacrylonitrile, polyvinyl chloride, polystyrene, and the like. Resins are preferred.
本発明においては、必要に応じて樹脂A、樹脂Bの一
方または両方に、着色剤、紫外線吸収剤、帯電防止剤、
酸化防止剤、滑剤、核剤等を本発明の目的を損なわない
範囲内で配合することができる。In the present invention, one or both of the resin A and the resin B may contain a colorant, an ultraviolet absorber, an antistatic agent, if necessary.
Antioxidants, lubricants, nucleating agents and the like can be added within a range that does not impair the object of the present invention.
本発明の多層容器は、パリソンを70〜130℃の温度
で、軸方向に1〜4倍、周方向に2〜7倍、面積延伸倍
率で5〜15倍に2軸延伸して製造されるが、熱可塑性ガ
スバリヤー性樹脂である樹脂Bは、無延伸状態では内容
物の水分を吸収して白化したり、ガスバリヤー性が低下
したりするため、少なくとも口部開口端部の無延伸部分
は、樹脂Aの単一層から形成されていることが必要であ
る。The multi-layer container of the present invention is produced by biaxially stretching a parison at a temperature of 70 to 130 ° C in an axial direction of 1 to 4 times, in a circumferential direction of 2 to 7 times, and an area stretching ratio of 5 to 15 times. However, since the resin B, which is a thermoplastic gas barrier resin, absorbs moisture in the content and whitens in the unstretched state, or the gas barrier property deteriorates, at least the unstretched portion of the mouth opening end portion. Must be formed from a single layer of resin A.
容器全体における樹脂Bの使用量は、1〜10容量%の
範囲で選択し得るが、一般にガスバリヤー性樹脂は、高
価であるので必要とするガスバリヤー性能が得られる最
小量以上であれば良い。混合樹脂層の数に制限はない
が、生産性を考慮すれば、1〜3層が適当である。The amount of the resin B used in the entire container can be selected in the range of 1 to 10% by volume, but since the gas barrier resin is generally expensive, it may be at least the minimum amount that can provide the required gas barrier performance. . The number of mixed resin layers is not limited, but 1-3 layers are suitable in view of productivity.
多層容器の肉厚は、200〜500μm、好ましくは250〜4
50μmである。The wall thickness of the multi-layer container is 200 to 500 μm, preferably 250 to 4
It is 50 μm.
本発明によれば、内外表面層である樹脂Aの間に特定
された状態の粗混合樹脂層を存在させることにより、優
れた層間接着強度とヘイズの少ない多層容器が得られ
る。According to the present invention, the presence of the crude mixed resin layer in the specified state between the resin A as the inner and outer surface layers makes it possible to obtain a multilayer container having excellent interlayer adhesive strength and less haze.
本発明の多層容器は、層間接着強度、透明性、ガスバ
リヤー性、機械的強度にも優れたものであり、従来にな
い画期的なものである。The multi-layer container of the present invention is excellent in interlayer adhesion strength, transparency, gas barrier property, and mechanical strength, and is an epoch-making thing that has never been seen before.
以下、実施例により本発明を詳細に説明する。尚、採
用した特性等の測定方法は、次の通りである。Hereinafter, the present invention will be described in detail with reference to examples. The method of measuring the characteristics and the like adopted is as follows.
(1)ポリエステル樹脂固有粘度〔η〕: フェノール/テトラクロロエタン=6/4(重量比)の
混合溶媒使用、測定温度30℃ (2)ポリアミド樹脂相対粘度〔ηrel.〕: 樹脂1gを96硫酸100mlに溶解し、温度25℃で測定した (3)曇度: 〔拡散透過率(光量)/全透過率(光量)〕×100 JIS K−6714又はASTM D883−62Tに準拠して行っ
た。(1) Polyester resin intrinsic viscosity [η]: Phenol / tetrachloroethane = 6/4 (weight ratio) mixed solvent used, measurement temperature 30 ° C. (2) Polyamide resin relative viscosity [ηrel.]: Resin 1 g, 96 sulfuric acid 100 ml (3) Haze: [diffuse transmittance (light quantity) / total transmittance (light quantity)] × 100 JIS K-6714 or ASTM D883-62T.
日本電色工業株式会社製デジタル量度計NDH−2D使用 (4)層間接着強度: 剥離方向;180度 剥離速度;300mm/min 試料寸法;25mm幅×170mm長 (5)酸素透過率: 酸素透過率の測定は、モダンコントロール社製、オキ
シトラン(OXTRAN)100を使用して、ASTM D3985に準拠
しておこなった。Digital Density Meter NDH-2D manufactured by Nippon Denshoku Industries Co., Ltd. (4) Interlayer adhesion strength: peeling direction: 180 degrees Peeling speed: 300mm / min Specimen size: 25mm width x 170mm length (5) Oxygen permeability: Oxygen permeability Was measured in accordance with ASTM D3985 using OXTRAN100 manufactured by Modern Control.
測定温度20℃、内側相対湿度100%、外側相対湿度65
% (6)混合樹脂層における長径が10μ以下の粒子の含有
割合: 混合樹脂層のN−MXD6のみを染色する染料(日本化薬
株式会社製、商品名:カヤノール レッド NB No Q02
705)にて処理し、顕微鏡にて樹脂粒子の大きさおよび
その表面積を測定し、その層面積の全体の面積に対して
占める割合を100分率で示した。Measurement temperature 20 ℃, inner relative humidity 100%, outer relative humidity 65
% (6) Content ratio of particles having a major axis of 10 μm or less in the mixed resin layer: A dye that dyes only N-MXD6 in the mixed resin layer (manufactured by Nippon Kayaku Co., Ltd., trade name: Kyanol Red NB No Q02
705) and the size and surface area of the resin particles were measured with a microscope, and the ratio of the layer area to the total area was shown as a percentage.
実施例1〜2 樹脂Aは、固有粘度0.75のポリエチレンテレフタレー
ト(以下「PET」と略記する)を、混合樹脂は、上記の
樹脂A(PET)と樹脂Bとして相対粘度2.1のN−MXD6を
所定の割合に配合したものを使用し、第2図に示した装
置(射出成形機は、株式会社名機製作所製、型式:M200P
DM−MJを用いた)を用いてパリソンの成形を行った。Examples 1 and 2 Resin A is polyethylene terephthalate (hereinafter abbreviated as "PET") having an intrinsic viscosity of 0.75, and mixed resin is N-MXD6 having a relative viscosity of 2.1 as the resin A (PET) and the resin B described above. The equipment shown in Fig. 2 is used (the injection molding machine is manufactured by Meiki Co., Ltd., model: M200P).
The parison was molded using (DM-MJ was used).
混合樹脂用シリンダー16としては、スクリューが次に
記す練り効果の悪いものを用いた。As the mixed resin cylinder 16, a screw having a bad kneading effect described below was used.
使用したスクリューの仕様 外径:40mmφ、ピッチ:40mm 山数:19、圧縮比:2.3 混合樹脂としては、PETとN−MXD6との混合割合(重
量比)を7:3(施例1)又は3:7(実施例2)とした。Specifications of screw used Outer diameter: 40 mmφ, Pitch: 40 mm Number of threads: 19, Compression ratio: 2.3 As a mixed resin, the mixing ratio (weight ratio) of PET and N-MXD6 is 7: 3 (Example 1) or 3: 7 (Example 2).
第2図における混合樹脂用シリンダーの作動性を良く
するために、混合樹脂に対し0.1重量%のステアリン酸
カルシウムを添加した。In order to improve the operability of the mixed resin cylinder in FIG. 2, 0.1% by weight of calcium stearate was added to the mixed resin.
射出の順序は、先ず樹脂Aのみを射出し、次いで混合
樹脂と樹脂Aを同時に射出した。The order of injection was such that only the resin A was injected first, and then the mixed resin and the resin A were simultaneously injected.
各々の射出量をキャビティー容量に対する割合で示す
と次の通りである。The injection amount of each is shown as a ratio to the cavity volume as follows.
1回目の射出量 樹脂A :70% 2回目の射出量 混合樹脂:15% 樹脂A :15% 射出時の温度条件は、次の通りである。First injection amount Resin A: 70% Second injection amount Mixed resin: 15% Resin A: 15% The temperature conditions at the time of injection are as follows.
樹脂A用射出シリンダー :270℃ 混合樹脂用射出シリンダー:260℃ 金型内樹脂流路 :270℃ 金型冷却水 : 15℃ 上記射出により、第4図の模式図に示す肉厚約4.5mm
で3層構造の胴部を有する、重さ約59gのパリソンを得
た。Injection cylinder for resin A: 270 ℃ Injection cylinder for mixed resin: 260 ℃ Resin flow path in mold: 270 ℃ Mold cooling water: 15 ℃ With the above injection, the wall thickness of about 4.5 mm shown in the schematic diagram of Fig. 4
As a result, a parison having a three-layer body and weighing about 59 g was obtained.
このパリソンを、2軸延伸ブロー成形機を用いて、パ
リソンの表面温度が95℃になるまで石英ヒーターで加熱
した後、吹込金型内に移送し、延伸ロッドの移送速度20
cm/sec、延伸吹込圧力20Kg/cm2Gの条件下で2軸延伸ブ
ロー成形し、全長300mm、外径90mmφ、内容積1500ml、
胴部の肉厚400μのボトル形状中空多層容器を得た。This parison was heated by a quartz heater using a biaxial stretch blow molding machine until the surface temperature of the parison reached 95 ° C, and then transferred into a blow mold, and the transfer speed of the draw rod was 20.
Biaxial stretch blow molding under conditions of cm / sec, stretching blow pressure 20 kg / cm 2 G, total length 300 mm, outer diameter 90 mmφ, inner volume 1500 ml,
A bottle-shaped hollow multi-layer container having a body thickness of 400μ was obtained.
胴部の3層部分における各層の厚さの比は、内側PET
側:混合樹脂層:外側PET層=2:2:6であった。The thickness ratio of each layer in the 3 layer part of the body is
Side: mixed resin layer: outer PET layer = 2: 2: 6.
得られた多層容器の酸素透過率を測定すると共に、胴
部より試験片を切出し、混合樹脂層における長径10μ以
下の粒子の含有割合、曇度および層間接着強度を測定し
た。得られた結果を第1表に示した。The oxygen transmission rate of the obtained multilayer container was measured, and a test piece was cut out from the body to measure the content ratio of particles having a major axis of 10 μm or less in the mixed resin layer, haze and interlayer adhesion strength. The obtained results are shown in Table 1.
比較例1〜2 比較のため、混合樹脂用シリンダーを実施例1〜2で
使用した粗混合樹脂用シリンダーのスクリューよりも練
り効果のよい、次に記すスクリューを使用した。Comparative Examples 1 and 2 For comparison, the following mixed resin cylinder was used, which has a better kneading effect than the screw of the crude mixed resin cylinder used in Examples 1 and 2.
使用したスクリューの仕様 外径:40mmφ、ピッチ:30mm 山数:25、圧縮比:3.03 尚、テアリン酸カルシウムは添加しなかった。Specifications of screw used Outer diameter: 40 mmφ, Pitch: 30 mm Number of ridges: 25, Compression ratio: 3.03 Calcium theearate was not added.
使用した樹脂は、いずれも実施例1〜2と同様のもの
であり、混合樹脂としては、PETとN−MXD6の配合割合
(重量比)を7:3(比較例1)または3:7(比較例2)と
した。The resins used were all the same as those used in Examples 1 and 2, and as a mixed resin, the compounding ratio (weight ratio) of PET and N-MXD6 was 7: 3 (Comparative Example 1) or 3: 7 ( It was set as Comparative Example 2).
その他の条件は実施例1〜2と同様に行った。得られ
た結果をまとめて第1表に示した。Other conditions were the same as in Examples 1 and 2. The results obtained are summarized in Table 1.
比較例3〜4 比較のため、実施例1〜2よりは練り効果が良く、比
較例1〜2よりは練り効果の悪い、次に記すスクリュー
を使用した。Comparative Examples 3 to 4 For comparison, a screw described below, which has a better kneading effect than Examples 1 and 2 and a poorer kneading effect than Comparative Examples 1 and 2, was used.
使用したスクリューの仕様 外径:40mmφ、ピッチ:35mm 山数:22、圧縮比:3.03 尚、テアリン酸カルシウムを0.01重量%に減じて、練
り効果を実施例1〜2よりは高めた。Specifications of screw used Outer diameter: 40 mmφ, pitch: 35 mm, number of ridges: 22, compression ratio: 3.03 Calcium theearate was reduced to 0.01% by weight to improve the kneading effect from Examples 1 and 2.
尚、使用した樹脂は、いずれも実施例1〜2と同様の
ものであり、混合樹脂としては、PETとN−MXD6の配合
割合(重量比)を7:3(比較例3)または3:7(比較例
4)とした。The resins used were all the same as those used in Examples 1 and 2, and as the mixed resin, the mixing ratio (weight ratio) of PET and N-MXD6 was 7: 3 (Comparative Example 3) or 3 :. 7 (Comparative Example 4).
その他の条件は実施例1〜2と同様である。 Other conditions are the same as in Examples 1 and 2.
結果をまとめて第1表に示した。 The results are summarized in Table 1.
比較例5 比較のため、混合樹脂の代わりに実施例1〜2で用い
たと同様のN−MXD6を使用し、その他の条件は、実施例
1〜2と同じくし、3層構造のパリソンを得た。延伸ブ
ロー後の胴部3層部分における各層の厚みの比は、内側
PET層:N−MXD6層:外側PET層=6:2:2であった。Comparative Example 5 For comparison, the same N-MXD6 as that used in Examples 1-2 was used instead of the mixed resin, and the other conditions were the same as those in Examples 1-2, and a three-layer structure parison was obtained. It was The ratio of the thickness of each layer in the three-layered body part after stretch blow is
PET layer: N-MXD6 layer: outer PET layer = 6: 2: 2.
得られた試験結果を第1表に示した。 The test results obtained are shown in Table 1.
但し:混合状態とは、混合樹脂層に於ける長径が10μ
m以下の粒子の含有割合を意味する。 However: Mixed state means that the major axis in the mixed resin layer is 10μ
It means the content ratio of particles of m or less.
接着強度とは、混合樹脂層を挟んで位置する樹脂A層
の内側と外側との接着強度を意味する。The adhesive strength means the adhesive strength between the inside and the outside of the resin A layer located with the mixed resin layer interposed therebetween.
第1図および第2図は、本発明における多層容器の前駆
体であるパリソンを成形するための装置の例を示す模式
図であり、第3図および第4図は本発明における多層容
器の前駆体であるパリソンの断面の模式図である。1 and 2 are schematic views showing an example of an apparatus for molding a parison which is a precursor of a multi-layer container according to the present invention, and FIGS. 3 and 4 are precursors of the multi-layer container according to the present invention. It is a schematic diagram of the cross section of the parison which is a body.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−128516(JP,A) 特開 昭57−128520(JP,A) 特開 昭60−240409(JP,A) 特開 昭61−108542(JP,A) 特開 昭62−52021(JP,A) 特開 昭51−68373(JP,A) 特公 昭60−16326(JP,B2) ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-57-128516 (JP, A) JP-A-57-128520 (JP, A) JP-A-60-240409 (JP, A) JP-A 61- 108542 (JP, A) JP 62-52021 (JP, A) JP 51-68373 (JP, A) JP 60-16326 (JP, B2)
Claims (2)
脂(樹脂A)から成る単一構造を有し、少なくとも胴部
肉薄部分が、樹脂Aと樹脂A以外の熱可塑性ガスバリヤ
ー性樹脂(樹脂B)とが混合した樹脂混合物から成る一
層以上の混合樹脂層と、この混合樹脂層より一層多い樹
脂A層とが交互に積層して形成され、かつ2軸延伸配向
した多層構造を有する容器において、上記混合樹脂層に
おける樹脂A粒子と樹脂B粒子とが長径10μm以下の粒
子で存在する割合は、10%以下となる状態であることを
特徴とする多層容器。1. At least an opening end portion of a mouth portion has a single structure made of a thermoplastic resin (resin A), and at least a thin portion of a body portion has a resin A and a thermoplastic gas barrier resin other than the resin A ( A container having a multilayer structure in which one or more mixed resin layers made of a resin mixture mixed with resin B) and more resin A layers than the mixed resin layers are alternately laminated and biaxially stretched and oriented. In the above multi-layer container, the ratio of the resin A particles and the resin B particles present in the mixed resin layer in the form of particles having a major axis of 10 μm or less is 10% or less.
樹脂Bがメタキシリレン基含有ポリアミド樹脂である特
許請求の範囲(1)項記載の多層容器。2. A multilayer container according to claim 1, wherein the resin A is a thermoplastic polyester resin and the resin B is a metaxylylene group-containing polyamide resin.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2476887A JPH0825220B2 (en) | 1987-02-06 | 1987-02-06 | Multi-layer container |
AU11241/88A AU610555B2 (en) | 1987-02-06 | 1988-02-03 | Parison and blow-moulded containers and processes for production thereof |
CA 558054 CA1288912C (en) | 1987-02-06 | 1988-02-03 | Parison and blow-molded containers and processes for production thereof |
DE8888101619T DE3867858D1 (en) | 1987-02-06 | 1988-02-04 | PREFORMING AND BLOWN CONTAINER AND METHOD FOR THE PRODUCTION THEREOF. |
EP19880101619 EP0278403B1 (en) | 1987-02-06 | 1988-02-04 | Parison and blow-molded containers and processes for production thereof |
KR1019880001123A KR920005541B1 (en) | 1987-02-06 | 1988-02-06 | Parison and blow molding container and manufacturing method |
US07/394,292 US4994313A (en) | 1987-02-06 | 1989-08-15 | Parison and blow-molded container and processes for production thereof |
AU72064/91A AU7206491A (en) | 1987-02-06 | 1991-03-04 | Parison and blow-molded containers and processes for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2476887A JPH0825220B2 (en) | 1987-02-06 | 1987-02-06 | Multi-layer container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63203540A JPS63203540A (en) | 1988-08-23 |
JPH0825220B2 true JPH0825220B2 (en) | 1996-03-13 |
Family
ID=12147339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2476887A Expired - Lifetime JPH0825220B2 (en) | 1987-02-06 | 1987-02-06 | Multi-layer container |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0825220B2 (en) |
AU (1) | AU7206491A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004182344A (en) * | 2002-10-09 | 2004-07-02 | Toyo Seikan Kaisha Ltd | Packing multi-layered structure |
JP2005059859A (en) * | 2003-08-14 | 2005-03-10 | Toyo Seikan Kaisha Ltd | Plastic package |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2219257C (en) * | 1997-10-23 | 2005-05-31 | Mold-Masters Limited | Sprue gated five layer injection molding apparatus |
EP2783831B1 (en) * | 2005-04-28 | 2016-03-09 | Yoshino Kogyosho Co., Ltd. | Synthetic resin bottle having a gradation pattern, and process for injection molding the preform for use in such a bottle |
JP5585024B2 (en) * | 2009-08-11 | 2014-09-10 | 三菱瓦斯化学株式会社 | Polyester container |
JP6305182B2 (en) * | 2014-04-16 | 2018-04-04 | 三笠産業株式会社 | Multi-layer container |
-
1987
- 1987-02-06 JP JP2476887A patent/JPH0825220B2/en not_active Expired - Lifetime
-
1991
- 1991-03-04 AU AU72064/91A patent/AU7206491A/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004182344A (en) * | 2002-10-09 | 2004-07-02 | Toyo Seikan Kaisha Ltd | Packing multi-layered structure |
JP2005059859A (en) * | 2003-08-14 | 2005-03-10 | Toyo Seikan Kaisha Ltd | Plastic package |
Also Published As
Publication number | Publication date |
---|---|
AU7206491A (en) | 1991-05-30 |
JPS63203540A (en) | 1988-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4994313A (en) | Parison and blow-molded container and processes for production thereof | |
US4816308A (en) | Multilayered container | |
AU613654B2 (en) | Multilayered container and process for production thereof | |
EP0180191B1 (en) | Multilayered container | |
US4398642A (en) | Multi-ply vessel and method for production thereof | |
EP0186154B1 (en) | Multilayer parison, process for its production and multilayer container | |
EP0161625B1 (en) | Process for producing multi-layer parison | |
JPH05309648A (en) | Multi-layer vessel and its manufacture | |
KR20180025920A (en) | Multilayer preform and multilayer stretch blow molding container | |
JPH0227124B2 (en) | ||
JPH0825220B2 (en) | Multi-layer container | |
JPH0227942B2 (en) | TASOYOKI | |
JPS60232952A (en) | Polyester laminate molded product and its uses | |
JPS6239088B2 (en) | ||
JPH01294426A (en) | Multiple layer container | |
JPS63178930A (en) | Multilayer vessel | |
JPH01139334A (en) | Parison and blow-molded container | |
JPH05309649A (en) | Multi-layer vessel and its manufacture | |
CA1301089C (en) | Multilayered container and process for production thereof | |
JPH01153444A (en) | Hollow container | |
JP2570779B2 (en) | Polyester hollow molded body | |
JPS61152412A (en) | Manufacture of multilayered parison |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |