[go: up one dir, main page]

JPH08250811A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH08250811A
JPH08250811A JP4683795A JP4683795A JPH08250811A JP H08250811 A JPH08250811 A JP H08250811A JP 4683795 A JP4683795 A JP 4683795A JP 4683795 A JP4683795 A JP 4683795A JP H08250811 A JPH08250811 A JP H08250811A
Authority
JP
Japan
Prior art keywords
layer
clad layer
clad
light emitting
ingap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4683795A
Other languages
Japanese (ja)
Other versions
JP4024319B2 (en
Inventor
Hideki Asano
英樹 浅野
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4683795A priority Critical patent/JP4024319B2/en
Publication of JPH08250811A publication Critical patent/JPH08250811A/en
Application granted granted Critical
Publication of JP4024319B2 publication Critical patent/JP4024319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To enable a semiconductor light emitting device to oscillate in a single transverse mode when the device operates at a high output level by forming a p-type InGaAsP light guide layer having a refractive index higher than that of an InGaP clad layer and lower than that of GaAs. CONSTITUTION: A light emitting area A is formed by successively forming an n-type InGaP clad layer 2, an active layer 3, a p-type InGaP clad layer 4, a p-type InGaAsP light guide layer 5, p-type InGaP clad layers 4 and 7, and a p-type GaAs contact layer 8 on an n-type GaAs substrate 1. Current block sections formed as buried areas B are formed by successively forming the clad layer 2, an active layer 3, a clad layer 4, an n-type InGaP current blocking layer 6, a clad layer 7, and a contact layer 8 on the substrate 1. The refractive index of the guide layer 5 is made higher than that of the clad layer 4 and lower than that of GaAs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザー等の半導
体発光装置に関し、特に詳細には、単一横モード化が図
られた半導体発光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device such as a semiconductor laser, and more particularly to a semiconductor light emitting device having a single transverse mode.

【0002】[0002]

【従来の技術】従来、発振波長が0.6 〜1.1 μm帯にあ
る半導体発光装置として、例えば文献“High power COD
-free operation of 0.98 μm InGaAs/GaA
s/InGaP lasers with non-injection regions n
ear the facets”,M.Sagawaet.al.,Electronics Lette
rs Vol.30 No.17 pp141 0〜1411(1994)に示されるもの
が知られている。
2. Description of the Related Art Conventionally, as a semiconductor light emitting device having an oscillation wavelength in a band of 0.6 to 1.1 μm, for example, a document "High power COD
-free operation of 0.98 μm InGaAs / GaA
s / InGaP lasers with non-injection regions n
ear the facets ”, M. Sagawaet.al., Electronics Lette
The one shown in rs Vol.30 No.17 pp141 0-1411 (1994) is known.

【0003】この半導体発光装置は図6に概略正面形状
を示すように、発光領域Aがn−GaAs基板1上にn
−InGaPクラッド層2、活性層3、p−InGaP
クラッド層4、p−GaAs光ガイド層14、p−InG
aPクラッド層4,7、およびコンタクト層8がこの順
に積層されてなり、埋め込み領域Bである電流阻止部が
n−GaAs基板1上にn−InGaPクラッド層2、
活性層3、p−InGaPクラッド層4、n−InGa
P電流ブロック層6、p−InGaPクラッド層7、お
よびコンタクト層8がこの順に積層されてなるものであ
る。なお、図中の9はp電極、10はn電極である。ま
た、導波方向は紙面に垂直な方向である。
In this semiconductor light emitting device, as shown in the schematic front view of FIG. 6, the light emitting region A is n on the n-GaAs substrate 1.
-InGaP clad layer 2, active layer 3, p-InGaP
Cladding layer 4, p-GaAs optical guide layer 14, p-InG
The aP cladding layers 4 and 7 and the contact layer 8 are laminated in this order, and the current blocking portion which is the buried region B is formed on the n-GaAs substrate 1 by the n-InGaP cladding layer 2.
Active layer 3, p-InGaP clad layer 4, n-InGa
The P current blocking layer 6, the p-InGaP cladding layer 7, and the contact layer 8 are laminated in this order. In the figure, 9 is a p-electrode and 10 is an n-electrode. Further, the waveguiding direction is a direction perpendicular to the paper surface.

【0004】この種の半導体発光装置においては、例え
ば情報・画像処理の高機能化等の要求に応えるために、
そのビーム品質を向上させることが望まれている。そし
て、このようにビーム品質を向上させるための一方策と
して、単一横モード化が考えられている。従来は、この
単一横モード化を果たすために、上記のように発光領域
AにInGaPよりも屈折率が大きいGaAs光ガイド
層を設けて、横モードを制御するようにしていた。
In this type of semiconductor light emitting device, in order to meet the demand for higher functionality of information / image processing, for example,
It is desired to improve the beam quality. Then, as one measure for improving the beam quality in this way, a single transverse mode is considered. Conventionally, in order to achieve this single transverse mode, a GaAs optical guide layer having a larger refractive index than InGaP is provided in the light emitting region A as described above to control the transverse mode.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のように
して単一横モード化を図る場合は、GaAs光ガイド層
の厚さを非常に薄い範囲内で制御する必要がある。つま
り、高出力化を果たすためには発光領域Aの幅をできる
だけ広くする必要があり、そのためには、発光領域Aと
埋め込み領域B内の活性層部での実効屈折率差ΔNefを
かなり高い精度で制御しなければならないのである。
However, in the case of achieving the single transverse mode as described above, it is necessary to control the thickness of the GaAs optical guide layer within a very thin range. In other words, in order to achieve high output, it is necessary to make the width of the light emitting region A as wide as possible. For that purpose, the effective refractive index difference ΔNef between the active layer portions in the light emitting region A and the embedding region B is set to a considerably high accuracy. Must be controlled by.

【0006】図7は、GaAs光ガイド層の厚さと、上
記実効屈折率差ΔNefとの関係を計算した結果を示すも
のであるが、この場合は、実効屈折率差ΔNefを例えば
0.006 〜0.007 の範囲で制御しようとすると、GaAs
光ガイド層厚を18〜21nmの範囲で制御しなければなら
ない。しかし実際の製造レベルでは、光ガイド層厚をこ
のような範囲に再現性良く制御するのは極めて困難であ
る。そのため、高出力動作時に単一横モード発振する半
導体発光装置は製造する上で歩留まりが低く、それが製
造コストの上昇につながっていた。
FIG. 7 shows the calculation result of the relationship between the thickness of the GaAs optical guide layer and the effective refractive index difference ΔNef. In this case, the effective refractive index difference ΔNef is expressed as, for example,
If you try to control in the range of 0.006 to 0.007,
The thickness of the light guide layer must be controlled within the range of 18-21 nm. However, at the actual manufacturing level, it is extremely difficult to control the thickness of the light guide layer within this range with good reproducibility. Therefore, a semiconductor light emitting device that oscillates in a single transverse mode during high-power operation has a low yield in manufacturing, which leads to an increase in manufacturing cost.

【0007】また上記の従来装置では、InGaPクラ
ッド層を成長させた後にGaAs光ガイド層を成長させ
る場合に、良好な結晶性が得られ難いという問題も有
る。すなわち、InGaPとGaAsとでは、それらの
界面においてV族原子が完全にP(リン)からAs(砒
素)に切り換わる必要があるが、現在の結晶成長装置で
はそれを実現するのは非常に難しくなっている。
The above conventional device also has a problem that it is difficult to obtain good crystallinity when growing the GaAs optical guide layer after growing the InGaP cladding layer. That is, in InGaP and GaAs, the group V atom needs to be completely switched from P (phosphorus) to As (arsenic) at the interface between them, but it is very difficult to realize it with the current crystal growth apparatus. Has become.

【0008】本発明は上記の事情に鑑みてなされたもの
であり、高出力動作時も単一横モード発振可能で、かつ
製造容易な半導体発光装置を提供することを目的とする
ものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor light emitting device that can oscillate in a single transverse mode even during high-power operation and is easy to manufacture.

【0009】[0009]

【課題を解決するための手段】本発明による第1の半導
体発光装置は、発光領域が第1クラッド層、活性層、第
2クラッド層、横モード制御用の第2光ガイド層、第2
クラッド層およびコンタクト層がこの順に積層されてな
り、埋め込み領域である電流阻止部が第1クラッド層、
活性層、第2クラッド層、第1電流ブロック層、第2ク
ラッド層およびコンタクト層がこの順に積層されてなり
(ただし第1、第2はそれぞれ、n型とp型の一方と他
方を示す)、上記第2クラッド層がInGaPクラッド
層である埋め込み構造型の半導体発光装置において、第
2光ガイド層が、屈折率が上記InGaPクラッド層よ
りも大きくて、GaAsよりも小さいInGaAsPか
ら形成されていることを特徴とするものである。
In a first semiconductor light emitting device according to the present invention, a light emitting region has a first cladding layer, an active layer, a second cladding layer, a second optical guide layer for transverse mode control, and a second light guiding layer.
The clad layer and the contact layer are laminated in this order, and the current blocking portion that is the buried region is the first clad layer,
An active layer, a second clad layer, a first current blocking layer, a second clad layer, and a contact layer are laminated in this order (however, the first and second indicate one and the other of n-type and p-type, respectively). In the buried structure type semiconductor light emitting device in which the second cladding layer is an InGaP cladding layer, the second optical guide layer is made of InGaAsP having a refractive index larger than that of the InGaP cladding layer and smaller than GaAs. It is characterized by that.

【0010】また本発明による第2の半導体発光装置
は、発光領域および電流阻止部が上記と同様の基本的層
構成を有し、そして第2クラッド層がInGaAsPク
ラッド層である埋め込み構造型の半導体発光装置におい
て、第2光ガイド層が、屈折率が上記InGaAsPク
ラッド層よりも大きくて、GaAsよりも小さいInG
aAsPから形成されていることを特徴とするものであ
る。
A second semiconductor light emitting device according to the present invention is a buried structure type semiconductor in which the light emitting region and the current blocking portion have the same basic layer structure as described above, and the second cladding layer is an InGaAsP cladding layer. In the light emitting device, the second light guide layer has a refractive index larger than that of the InGaAsP cladding layer and smaller than that of GaAs.
It is characterized by being formed from aAsP.

【0011】[0011]

【作用および発明の効果】従来装置において、光ガイド
層の厚さを非常に薄い範囲内で制御しなければならない
のは、第2クラッド層を形成しているInGaPと、光
ガイド層を形成しているGaAsとの間の屈折率差が大
き過ぎるためである。
In the conventional device, it is necessary to control the thickness of the light guide layer within a very thin range because the InGaP forming the second cladding layer and the light guide layer are formed. This is because the difference in the refractive index between GaAs and GaAs is too large.

【0012】そこで、本発明の第1の半導体発光装置に
おいて、第2光ガイド層を屈折率がGaAsよりも小さ
い(光を導波させるために、InGaP第2クラッド層
よりは屈折率大である)InGaAsPから形成する
と、この第2光ガイド層の厚さの許容範囲が大きくな
り、現在提供されているエピタキシャル成長装置(例え
ば有機金属気相結晶成長装置:MOVPE)を用いて
も、高出力動作時に単一横モード発振する半導体発光装
置を高歩留まりで製造可能となる。
Therefore, in the first semiconductor light emitting device of the present invention, the refractive index of the second optical guide layer is smaller than that of GaAs (the refractive index is larger than that of the InGaP second cladding layer in order to guide light). ) When formed from InGaAsP, the allowable range of the thickness of this second optical guide layer becomes large, and even when the currently provided epitaxial growth apparatus (for example, metal organic vapor phase crystal growth apparatus: MOVPE) is used, at the time of high output operation. A semiconductor light emitting device that oscillates in a single transverse mode can be manufactured with a high yield.

【0013】本発明の第2の半導体発光装置は、第2ク
ラッド層がInGaAsPからなる点で上記第1の半導
体発光装置とは異なるものであるが、この場合も第2光
ガイド層を屈折率がGaAsよりも小さい(光を導波さ
せるために、InGaAsP第2クラッド層よりは屈折
率大である)InGaAsPから形成すると、上記と同
様に第2光ガイド層の厚さの許容範囲が大きくなり、高
出力動作時に単一横モード発振する半導体発光装置を高
歩留まりで製造可能となる。
The second semiconductor light emitting device of the present invention is different from the first semiconductor light emitting device in that the second cladding layer is made of InGaAsP, but in this case as well, the second optical guide layer has a refractive index. Is smaller than GaAs (which has a higher refractive index than the second cladding layer of InGaAsP to guide light), the allowable range of the thickness of the second optical guide layer becomes large as described above. A semiconductor light-emitting device that oscillates in a single transverse mode during high-power operation can be manufactured with high yield.

【0014】また、本発明の第1の半導体発光装置にお
ける第2クラッド層から第2光ガイド層への結晶成長
は、InGaPからInGaAsPへの結晶成長である
ので、本装置では結晶性も従来に比べて良好となる。
Further, since the crystal growth from the second cladding layer to the second optical guide layer in the first semiconductor light emitting device of the present invention is crystal growth from InGaP to InGaAsP, the crystallinity of the present device is also conventional. It will be better than that.

【0015】一方、本発明の第2の半導体発光装置にお
ける第2クラッド層から第2光ガイド層への結晶成長
は、InGaAsPからInGaAsPへの結晶成長で
あるので、本装置でも結晶性が従来に比べて良好とな
る。
On the other hand, the crystal growth from the second cladding layer to the second optical guide layer in the second semiconductor light emitting device of the present invention is the crystal growth from InGaAsP to InGaAsP. It will be better than that.

【0016】そして、第2光ガイド層をInGaAsP
を用いて形成することにより、GaAsを用いる場合よ
りも光の吸収損失が小さくなり、それにより共振器内損
失を小さく抑えて、微分量子効率を高めることができ
る。
Then, the second optical guide layer is formed of InGaAsP.
The absorption loss of light becomes smaller than that of the case where GaAs is used, whereby the intracavity loss can be suppressed small and the differential quantum efficiency can be increased.

【0017】[0017]

【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図1は、本発明の第1実施例による半
導体レーザーの概略正面形状を示すものである。この半
導体レーザーの発光領域Aは、n−GaAs基板1上に
n−InGaPクラッド層2、活性層3、p−InGa
Pクラッド層4、波長組成が800 nmのp−InGaA
sP光ガイド層5、p−InGaPクラッド層4,7、
およびp−GaAsコンタクト層8がこの順に積層され
てなり、埋め込み領域Bである電流阻止部は、n−Ga
As基板1上にn−InGaPクラッド層2、活性層
3、p−InGaPクラッド層4、n−InGaP電流
ブロック層6、p−InGaPクラッド層7、およびp
−GaAsコンタクト層8がこの順に積層されてなる。
なお、図中の9はp電極、10はn電極である。また、導
波方向は紙面に垂直な方向である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. FIG. 1 shows a schematic front view of a semiconductor laser according to the first embodiment of the present invention. A light emitting region A of this semiconductor laser includes an n-InGaP cladding layer 2, an active layer 3, and p-InGa on an n-GaAs substrate 1.
P-clad layer 4, p-InGaA with wavelength composition of 800 nm
sP light guide layer 5, p-InGaP cladding layers 4, 7,
And the p-GaAs contact layer 8 are stacked in this order, and the current blocking portion which is the buried region B is n-Ga.
On the As substrate 1, the n-InGaP clad layer 2, the active layer 3, the p-InGaP clad layer 4, the n-InGaP current blocking layer 6, the p-InGaP clad layer 7, and the p-layer.
The -GaAs contact layer 8 is laminated in this order.
In the figure, 9 is a p-electrode and 10 is an n-electrode. Further, the waveguiding direction is a direction perpendicular to the paper surface.

【0018】ここで、上記p−InGaPクラッド層4
の屈折率は3.23、p−InGaAsP光ガイド層5の屈
折率はクラッド層4の屈折率よりも大きくてGaAsの
屈折率3.62よりも小さい3.34である。
Here, the p-InGaP clad layer 4 is formed.
Has a refractive index of 3.23, and the p-InGaAsP optical guide layer 5 has a refractive index of 3.34, which is larger than that of the cladding layer 4 and smaller than 3.62 of GaAs.

【0019】図2は、この第1実施例の半導体レーザー
におけるp−InGaAsP光ガイド層5の厚さと、発
光領域Aと埋め込み領域B内の活性層部での実効屈折率
差ΔNefとの関係を計算した結果を示すものである。こ
の場合は、上記実効屈折率差ΔNefを前述と同様に0.00
6 〜0.007 に設定しようとするならば、光ガイド層5の
厚さは43〜51nmの範囲に制御すればよい。この光ガイ
ド層厚は、現在提供されているエピタキシャル成長装置
で十分に制御可能な値である。
FIG. 2 shows the relationship between the thickness of the p-InGaAsP optical guide layer 5 and the effective refractive index difference ΔNef between the active layer portions in the light emitting region A and the buried region B in the semiconductor laser of the first embodiment. The calculation result is shown. In this case, the above-mentioned effective refractive index difference ΔNef is 0.00
If the thickness is set to 6 to 0.007, the thickness of the light guide layer 5 may be controlled to the range of 43 to 51 nm. This optical guide layer thickness is a value that can be sufficiently controlled by the epitaxial growth apparatus currently provided.

【0020】また図3には、第1実施例の半導体レーザ
ーの駆動電流対光出力特性を実測した結果を示す。図示
されている通りこの半導体レーザーは、160 mWという
高出力下でも、キンクのない単一横モード特性を示す。
FIG. 3 shows the results of actual measurement of the drive current-optical output characteristics of the semiconductor laser of the first embodiment. As shown in the figure, this semiconductor laser shows a single transverse mode characteristic without a kink even under a high output of 160 mW.

【0021】なお、この第1実施例装置におけるよう
に、InGaPクラッド層中にInGaAsP光ガイド
層を設けることにより、この光ガイド層を、InGaP
クラッド層のみを選択的にエッチングする際のエッチン
グ阻止層として活用することができる。そこで、液相に
よる選択エッチングを適用して、制御性良く半導体発光
装置を製造可能となる。
As in the device of the first embodiment, by providing an InGaAsP optical guide layer in the InGaP clad layer, the optical guide layer is formed into InGaP.
It can be utilized as an etching stop layer when selectively etching only the cladding layer. Therefore, it is possible to manufacture the semiconductor light emitting device with good controllability by applying the selective etching in the liquid phase.

【0022】次に、本発明の第2実施例について説明す
る。図4は、本発明の第2実施例による半導体レーザー
を示すものである。この半導体レーザーの発光領域A
は、n−GaAs基板1上にn−InGaAsPクラッ
ド層11、活性層3、波長組成が700 nmのp−InGa
AsPクラッド層12、波長組成が780 nmのp−InG
aAsP光ガイド層15、p−InGaAsPクラッド層
12,13、およびp−GaAsコンタクト層8がこの順に
積層されてなり、埋め込み領域Bである電流阻止部は、
n−GaAs基板1上にn−InGaAsPクラッド層
11、活性層3、p−InGaAsPクラッド層12、n−
InGaP電流ブロック層6、p−InGaAsPクラ
ッド層13、およびp−GaAsコンタクト層8がこの順
に積層されてなる。
Next, a second embodiment of the present invention will be described. FIG. 4 shows a semiconductor laser according to the second embodiment of the present invention. Light emitting area A of this semiconductor laser
Is an n-InGaAsP cladding layer 11, an active layer 3, and a p-InGa layer having a wavelength composition of 700 nm on an n-GaAs substrate 1.
AsP clad layer 12, p-InG with wavelength composition of 780 nm
aAsP optical guide layer 15, p-InGaAsP clad layer
12, 13 and the p-GaAs contact layer 8 are laminated in this order, and the current blocking portion which is the buried region B is
n-InGaAsP clad layer on n-GaAs substrate 1
11, active layer 3, p-InGaAsP clad layer 12, n-
The InGaP current blocking layer 6, the p-InGaAsP cladding layer 13, and the p-GaAs contact layer 8 are laminated in this order.

【0023】ここで、上記p−InGaAsPクラッド
層12の屈折率は3.24、p−InGaAsP光ガイド層15
の屈折率はクラッド層12の屈折率よりも大きくてGaA
sの屈折率3.62よりも小さい3.33である。
The p-InGaAsP cladding layer 12 has a refractive index of 3.24, and the p-InGaAsP optical guide layer 15 has a refractive index of 3.24.
Has a refractive index higher than that of the cladding layer 12 and has a GaA
It is 3.33, which is smaller than the refractive index of s of 3.62.

【0024】図5は、この第2実施例の半導体レーザー
におけるp−InGaAsP光ガイド層15の厚さと、実
効屈折率差ΔNefとの関係を計算した結果を示すもので
ある。この場合は、上記実効屈折率差ΔNefを前述と同
様に0.006 〜0.007 に設定しようとするならば、光ガイ
ド層15の厚さは54〜63nmの範囲に制御すればよい。こ
の光ガイド層厚も、現在提供されているエピタキシャル
成長装置で十分に制御可能な値である。
FIG. 5 shows the result of calculation of the relationship between the thickness of the p-InGaAsP optical guide layer 15 and the effective refractive index difference ΔNef in the semiconductor laser of the second embodiment. In this case, if the effective refractive index difference ΔNef is set to 0.006 to 0.007 as described above, the thickness of the optical guide layer 15 may be controlled to be 54 to 63 nm. This optical guide layer thickness is also a value that can be sufficiently controlled by the epitaxial growth apparatus currently provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例装置の概略正面図FIG. 1 is a schematic front view of an apparatus according to a first embodiment of the present invention.

【図2】第1実施例装置における光ガイド層の厚さと、
発光領域Aと埋め込み領域B内の活性層部での実効屈折
率差ΔNefとの関係を示すグラフ
FIG. 2 shows the thickness of the light guide layer in the device of the first embodiment,
A graph showing the relationship between the effective refractive index difference ΔNef in the active layer portion in the light emitting region A and the buried region B.

【図3】第1実施例装置の駆動電流対光出力特性を示す
グラフ
FIG. 3 is a graph showing drive current vs. optical output characteristics of the first embodiment device.

【図4】本発明の第2実施例装置の概略正面図FIG. 4 is a schematic front view of a second embodiment device of the present invention.

【図5】第2実施例装置における光ガイド層の厚さと、
発光領域Aと埋め込み領域B内の活性層部での実効屈折
率差ΔNefとの関係を示すグラフ
FIG. 5 shows the thickness of the light guide layer in the device of the second embodiment,
A graph showing the relationship between the effective refractive index difference ΔNef in the active layer portion in the light emitting region A and the buried region B.

【図6】従来の半導体レーザーの概略正面図FIG. 6 is a schematic front view of a conventional semiconductor laser.

【図7】従来の半導体レーザーにおける光ガイド層の厚
さと、発光領域Aと埋め込み領域B内の活性層部での実
効屈折率差ΔNefとの関係を示すグラフ
FIG. 7 is a graph showing the relationship between the thickness of the light guide layer in the conventional semiconductor laser and the effective refractive index difference ΔNef between the active layer portions in the light emitting region A and the buried region B.

【符号の説明】[Explanation of symbols]

1 n−GaAs基板 2 n−InGaPクラッド層 3 活性層 4 p−InGaPクラッド層 5 p−InGaAsP光ガイド層(波長組成800 n
m) 6 n−InGaP電流ブロック層 7 p−InGaPクラッド層 8 p−GaAsコンタクト層 9 p電極 10 n電極 11 n−InGaAsPクラッド層 12 p−InGaAsPクラッド層 13 p−InGaAsPクラッド層 15 p−InGaAsP光ガイド層(波長組成780 n
m) 20 p−GaAs光ガイド層
1 n-GaAs substrate 2 n-InGaP cladding layer 3 Active layer 4 p-InGaP cladding layer 5 p-InGaAsP optical guide layer (wavelength composition 800 n
m) 6 n-InGaP current blocking layer 7 p-InGaP clad layer 8 p-GaAs contact layer 9 p electrode 10 n electrode 11 n-InGaAsP clad layer 12 p-InGaAsP clad layer 13 p-InGaAsP clad layer 15 p-InGaAsP light Guide layer (wavelength composition 780 n
m) 20 p-GaAs optical guide layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光領域が第1クラッド層、活性層、第
2クラッド層、横モード制御用の第2光ガイド層、第2
クラッド層およびコンタクト層がこの順に積層されてな
り、 埋め込み領域である電流阻止部が第1クラッド層、活性
層、第2クラッド層、第1電流ブロック層、第2クラッ
ド層およびコンタクト層がこの順に積層されてなり(た
だし第1、第2はそれぞれ、n型とp型の一方と他方を
示す)、 前記第2クラッド層がInGaPクラッド層である埋め
込み構造型の半導体発光装置において、 前記第2光ガイド層が、屈折率が前記InGaPクラッ
ド層よりも大きくて、GaAsよりも小さいInGaA
sPから形成されていることを特徴とする半導体発光装
置。
1. A light emitting region having a first cladding layer, an active layer, a second cladding layer, a second optical guide layer for controlling a transverse mode, and a second cladding layer.
The clad layer and the contact layer are laminated in this order, and the current blocking portion, which is the buried region, includes the first clad layer, the active layer, the second clad layer, the first current block layer, the second clad layer, and the contact layer in this order. In the embedded structure type semiconductor light emitting device in which the second cladding layer is an InGaP cladding layer, the second and the second cladding layers are laminated (however, the first and second represent one and the other of n-type and p-type, respectively). The optical guide layer has a refractive index larger than that of the InGaP cladding layer but smaller than that of GaAs.
A semiconductor light-emitting device characterized by being formed from sP.
【請求項2】 発光領域が第1クラッド層、活性層、第
2クラッド層、横モード制御用の第2光ガイド層、第2
クラッド層およびコンタクト層がこの順に積層されてな
り、 埋め込み領域である電流阻止部が第1クラッド層、活性
層、第2クラッド層、第1電流ブロック層、第2クラッ
ド層およびコンタクト層がこの順に積層されてなり(た
だし第1、第2はそれぞれ、n型とp型の一方と他方を
示す)、 前記第2クラッド層がInGaAsPクラッド層である
埋め込み構造型の半導体発光装置において、 前記第2光ガイド層が、屈折率が前記InGaAsPク
ラッド層よりも大きくて、GaAsよりも小さいInG
aAsPから形成されていることを特徴とする半導体発
光装置。
2. A light emitting region having a first clad layer, an active layer, a second clad layer, a second optical guide layer for controlling a transverse mode, and a second clad layer.
The clad layer and the contact layer are laminated in this order, and the current blocking portion, which is the buried region, includes the first clad layer, the active layer, the second clad layer, the first current block layer, the second clad layer, and the contact layer in this order. In the embedded structure type semiconductor light emitting device, wherein the second clad layer is an InGaAsP clad layer, wherein the second clad layer is an InGaAsP clad layer. The optical guide layer has a refractive index larger than that of the InGaAsP clad layer and smaller than that of GaAs.
A semiconductor light-emitting device characterized by being formed from aAsP.
JP4683795A 1995-03-07 1995-03-07 Semiconductor light emitting device Expired - Fee Related JP4024319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4683795A JP4024319B2 (en) 1995-03-07 1995-03-07 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4683795A JP4024319B2 (en) 1995-03-07 1995-03-07 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08250811A true JPH08250811A (en) 1996-09-27
JP4024319B2 JP4024319B2 (en) 2007-12-19

Family

ID=12758460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4683795A Expired - Fee Related JP4024319B2 (en) 1995-03-07 1995-03-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4024319B2 (en)

Also Published As

Publication number Publication date
JP4024319B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US5656539A (en) Method of fabricating a semiconductor laser
JPH0653619A (en) Compound semiconductor device and its manufacture
US6846685B2 (en) Vertical-cavity surface-emitting semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JP2980302B2 (en) Semiconductor laser
JP2001057459A (en) Semiconductor laser
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JPH0248151B2 (en)
US5805628A (en) Semiconductor laser
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
JP4024319B2 (en) Semiconductor light emitting device
US6717186B2 (en) Semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JPH0537078A (en) Quantum well semiconductor laser element and manufacture thereof
JPH04105381A (en) Semiconductor laser
JPS63250886A (en) Manufacture of semiconductor laser element
JP2001077466A (en) Semiconductor laser
JPH0671122B2 (en) Semiconductor laser device
JPH0728093B2 (en) Semiconductor laser device
JPS6129183A (en) Semiconductor laser
JPH0728094B2 (en) Semiconductor laser device
JPH0537070A (en) Manufacture of distributed feedback type semiconductor laser element
JPH09223843A (en) Self-oscillation type semiconductor laser and manufacture thereof
JPH0563295A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050411

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050506

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees