[go: up one dir, main page]

JPH08250663A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08250663A
JPH08250663A JP7050670A JP5067095A JPH08250663A JP H08250663 A JPH08250663 A JP H08250663A JP 7050670 A JP7050670 A JP 7050670A JP 5067095 A JP5067095 A JP 5067095A JP H08250663 A JPH08250663 A JP H08250663A
Authority
JP
Japan
Prior art keywords
resistance element
polycrystalline silicon
resistance
semiconductor device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7050670A
Other languages
Japanese (ja)
Other versions
JP3291960B2 (en
Inventor
Hitoshi Sumida
仁志 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05067095A priority Critical patent/JP3291960B2/en
Publication of JPH08250663A publication Critical patent/JPH08250663A/en
Application granted granted Critical
Publication of JP3291960B2 publication Critical patent/JP3291960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】 (修正有) 【目的】低抵抗値のシート抵抗の多結晶シリコンで、渦
巻き状の形状にすることで、チップ内の抵抗値のばらつ
きを極力抑えた高抵抗素子とし、その高抵抗素子を集積
した半導体装置を提供する。 【構成】多結晶シリコン1の帯の両端の端子11は対角
線上に配置されている。この例は四角状の渦巻きをした
抵抗素子を示している。
(57) [Summary] (Modified) [Purpose] A high resistance element that suppresses the variation of resistance value in the chip as much as possible by forming a spiral shape with polycrystalline silicon of low resistance sheet resistance, A semiconductor device in which the high resistance element is integrated is provided. [Structure] Terminals 11 at both ends of a strip of polycrystalline silicon 1 are arranged diagonally. This example shows a resistance element having a square spiral.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、パワーICや集積回
路などの半導体装置において、半導体基板上に渦巻き状
の抵抗素子が形成される半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a power IC or an integrated circuit in which a spiral resistance element is formed on a semiconductor substrate.

【0002】[0002]

【従来の技術】近年、接合分離や誘電体分離などの分離
技術の進歩により、絶縁ゲート型バイポーラトランジス
タ(以下、IGBTと略す)やMOSFETなどの高耐
圧デバイスとその駆動・制御・保護回路を一つのシリコ
ン基板上に集積した高耐圧パワーICの開発が盛んにな
っている。誘電体分離技術の進歩は複数の高耐圧バイポ
ーラデバイスの集積を可能とし、パワーICの適用分野
を大幅に拡げた。例えば、IGBTを適用したトーテム
ポール回路の1チップ化や、ディスプレイ駆動用ICな
どのマルチ出力を持った集積回路へIGBTが適用され
つつある。
2. Description of the Related Art In recent years, due to advances in isolation techniques such as junction isolation and dielectric isolation, high breakdown voltage devices such as insulated gate bipolar transistors (hereinafter abbreviated as IGBTs) and MOSFETs and their drive / control / protection circuits have been developed. High-voltage power ICs integrated on two silicon substrates have been actively developed. Advances in dielectric isolation technology have enabled the integration of multiple high-voltage bipolar devices and have greatly expanded the application fields of power ICs. For example, IGBTs are being applied to integrated circuits having multiple outputs, such as a totem pole circuit to which the IGBT is applied and a display driving IC.

【0003】上記のような高耐圧部と低耐圧部を1つの
チップ上に集積したパワーICでは数kΩから数百kΩ
の高抵抗素子(ここでは半導体基板上に形成した抵抗値
の高い抵抗のことをいう)が必要になる。その一例とし
て、図7に250V定格のプラズマディスプレイ駆動用
ICの出力段回路の一つを示す。pチャネルMOSFE
T(Q1 )41とnチャネルMOSFET(Q2 )42
とはコンプリメンタリーに接続され、出力段回路の1ア
ームを構成している。nチャネルMOSFET(QL
43はレベルシフタ回路用、ツェナーダイオード44は
保護用であり、高抵抗素子(R1 )51はレベルシフタ
回路の構成要素である。また高抵抗素子(R21)521
は電流制限用の抵抗である。尚、R1 は約50kΩ、R
21は900kΩである。Q1 のソース側は高電圧電源端
子(VDH)に接続され、Q2 のドレイン側(Q1 のドレ
イン側と接続される)は出力端子(D1 、しかし出力端
子がn番目のものはDn である)62に接続される。ま
たQL のゲートは入力端子(IP )63に接続され、Q
2 のゲートは入力端子(In )64に接続される。QL
とQ2 のソース側はアース電位となる。この回路ではレ
ベルシフタ部に約100kΩの抵抗素子が採用されてい
る。このICは多段ビットの出力段を有するマルチ出力
であり、100kΩの抵抗素子がビットの数だけ1チッ
プ上に形成されている。
In the power IC in which the high breakdown voltage portion and the low breakdown voltage portion as described above are integrated on one chip, several kΩ to several hundred kΩ.
High resistance element (here, it means a resistance having a high resistance value formed on a semiconductor substrate) is required. As one example, FIG. 7 shows one of the output stage circuits of a 250 V rated plasma display driving IC. p channel MOSFE
T (Q 1 ) 41 and n-channel MOSFET (Q 2 ) 42
And are connected in a complementary manner to form one arm of the output stage circuit. n-channel MOSFET (Q L)
Reference numeral 43 is a level shifter circuit, Zener diode 44 is for protection, and high resistance element (R 1 ) 51 is a component of the level shifter circuit. In addition, a high resistance element (R 21 ) 521
Is a current limiting resistor. R 1 is about 50 kΩ, R
21 is 900 kΩ. The source side of Q 1 is connected to the high voltage power supply terminal (V DH ), and the drain side of Q 2 (connected to the drain side of Q 1 ) is the output terminal (D 1 but the nth output terminal is 62, which is D n ). The gate of Q L is connected to the input terminal (I P) 63, Q
The second gate is connected to the input terminal (I n ) 64. Q L
And the source side of Q 2 is at ground potential. In this circuit, a resistance element of about 100 kΩ is used in the level shifter section. This IC is a multi-output having multi-bit output stages, and 100 kΩ resistance elements are formed on one chip by the number of bits.

【0004】図8は高抵抗素子を採用した回路図の一例
を示す。これは50Wクラスの小型3相モータを駆動す
るインバータICの出力段回路である。回路構成を説明
する。IGBT(Q3 )45とIGBT(Q4 )46で
出力段回路を構成し、Q3 のコレクタ側は高電圧電源端
子(VDH)61に接続され、Q4 のコレクタ側(Q3
エミッタ側と接続される)は出力端子62(3相の場合
U相、V相、W相となる)に接続する。Q3 のゲートは
pチャネルMOSFET(Qp )47のドレインに接続
される。高抵抗素子(R3 )52は約16kΩの放電抵
抗である。Qpのソースとドレイン間にレベルシフタ回
路用の約15kΩの高抵抗素子(R2 )53と保護用ダ
イオード44(ツェナーダイオード)が並列に接続され
る。VHDと出力端子62間にレベルシフタ回路用直流電
源(Vc )7が接続される。レベルシフタ回路用nチャ
ネルMOSFET(QL )43はR2 と約4kΩのエミ
ッタフォロア回路用高抵抗素子(R4 )54に接続し、
4 の他端はアース電位となる。QL とQ4 のゲートは
入力端子(Iu)65と入力端子(Id)66に接続さ
れる。この回路ではレベルシフタ部にエミッタフォロア
方式が採用され、数kΩから十数kΩの抵抗素子が使わ
れている。このICでは、この出力段回路が3相分、す
なわち図8の回路が3回路だけ1チップ上に集積されて
いる。
FIG. 8 shows an example of a circuit diagram employing a high resistance element. This is an output stage circuit of an inverter IC that drives a small 3-phase motor of 50 W class. The circuit configuration will be described. An output stage circuit is configured by the IGBT (Q 3 ) 45 and the IGBT (Q 4 ) 46, the collector side of Q 3 is connected to the high voltage power supply terminal (V DH ) 61, and the collector side of Q 4 (emitter of Q 3 Connected to the side) is connected to the output terminal 62 (in the case of three phases, U phase, V phase, W phase). The gate of Q 3 is connected to the drain of p-channel MOSFET (Q p ) 47. The high resistance element (R 3 ) 52 is a discharge resistance of about 16 kΩ. A high resistance element (R 2 ) 53 of about 15 kΩ for the level shifter circuit and a protection diode 44 (zener diode) are connected in parallel between the source and drain of Q p . A DC power supply (V c ) 7 for the level shifter circuit is connected between V HD and the output terminal 62. N-channel MOSFET level shifter circuit (Q L) 43 is connected to R 2 to about 4kΩ emitter follower circuit for the high-resistance element (R 4) 54,
The other end of R 4 has a ground potential. The gate of Q L and Q 4 are connected to the input terminal (Iu) 65 and an input terminal (Id) 66. In this circuit, the emitter follower system is adopted in the level shifter section, and a resistance element of several kΩ to several tens of kΩ is used. In this IC, the output stage circuits for three phases, that is, the circuits of FIG. 8 are integrated on one chip.

【0005】上記の二例の他に、制御・駆動回路部の電
源を高耐圧の負荷電源から供給する電源自給回路などに
も数MΩの高抵抗素子が適用されている。一般に集積回
路上の抵抗体は多結晶シリコンや拡散層によって作成さ
れる。多結晶シリコンで抵抗素子を形成する場合、高濃
度インプラした30Ω/□〜50Ω/□のシート抵抗を
有する低抵抗の多結晶シリコンが用いられる。これは高
抵抗のシート抵抗を持つ多結晶シリコンの温度特性が悪
いことによる。例えば、5×1015cm-2のヒ素をイオ
ン注入して形成した、シート抵抗が約−0.3Ω/℃に
対して、8×1013cm-2のホウ素をイオン注入して形
成した、シート抵抗が約8kΩ/□の多結晶シリコンの
温度係数は約−4Ω/℃と1桁近く大きい。従って、高
抵抗素子の形成においても、低抵抗のシート抵抗を有す
る多結晶シリコンで形成される。
In addition to the above two examples, a high resistance element of several MΩ is also applied to a power supply self-supplying circuit for supplying the power supply of the control / driving circuit section from a load power supply of high withstand voltage. Generally, a resistor on an integrated circuit is made of polycrystalline silicon or a diffusion layer. When the resistance element is formed of polycrystalline silicon, high-concentration implanted low-resistance polycrystalline silicon having a sheet resistance of 30Ω / □ to 50Ω / □ is used. This is because the temperature characteristics of polycrystalline silicon having a high sheet resistance are poor. For example, it is formed by ion-implanting arsenic of 5 × 10 15 cm −2 , and is formed by ion-implanting boron of 8 × 10 13 cm −2 for a sheet resistance of about −0.3 Ω / ° C. The temperature coefficient of polycrystalline silicon having a sheet resistance of about 8 kΩ / □ is about −4Ω / ° C., which is almost an order of magnitude higher. Therefore, even in the formation of the high resistance element, it is formed of polycrystalline silicon having a low resistance sheet resistance.

【0006】しかし高抵抗素子を低抵抗のシート抵抗を
有する多結晶シリコンで形成した場合、多結晶シリコン
の長さが異常に長くなる。例えば、10kΩの抵抗素子
を50Ω/□を有する多結晶シリコンで形成した場合、
多結晶シリコンの幅を1μmとすると全長200μmの
長さが必要になる。この長さを少ない面積内で収めるた
めには実際の集積回路では、例えば図9のような形状で
空きスペースあるいはアルミ配線直下を埋めるように形
成される。
However, when the high resistance element is made of polycrystalline silicon having a low resistance sheet resistance, the length of the polycrystalline silicon becomes abnormally long. For example, when the resistance element of 10 kΩ is formed of polycrystalline silicon having 50 Ω / □,
If the width of the polycrystalline silicon is 1 μm, a total length of 200 μm is required. In order to accommodate this length within a small area, in an actual integrated circuit, for example, a shape as shown in FIG. 9 is formed so as to fill an empty space or immediately below the aluminum wiring.

【0007】図9は従来の抵抗素子のパターン図であ
る。帯状の多結晶シリコン1を往復パターンで形成し両
端に端子11を設けている。このようなパターンでは帯
の長さは縦方向または横方向のいずれかが長くなる。こ
の例では上下方向を縦方向とすると、圧倒的に縦方向の
帯の長さが長くなる。このように縦長あるいは横長のよ
うな一方向のみが長い多結晶シリコンの抵抗素子は実際
の集積回路に盛んに使われているが、このような縦と横
の比が大きな抵抗素子はチップ内での抵抗値のばらつき
が大きい。これは多結晶シリコンのドーピングをイオン
注入で行う場合に、ウェハ面をイオン注入面に対して傾
けた状態でイオン注入するために生じる。すなわち、同
一パターンの多結晶シリコンであっても、チップ内にお
ける配置場所によって縦方向にイオンが注入されやすく
なったり、また横方向にイオンが注入されやすくなった
りする。抵抗素子の値が小さいと、多結晶シリコンの全
長も短いためにあまり影響は現れないが、高抵抗素子で
は多結晶シリコンの全長が長くなるためにこの影響が顕
著に現れ、集積回路の特性ばらつき発生の原因になって
いる。
FIG. 9 is a pattern diagram of a conventional resistance element. The strip-shaped polycrystalline silicon 1 is formed in a reciprocating pattern, and terminals 11 are provided at both ends. In such a pattern, the length of the strip becomes long in either the vertical direction or the horizontal direction. In this example, when the vertical direction is the vertical direction, the length of the vertical band becomes overwhelmingly long. Polycrystalline silicon resistance elements such as portrait or landscape that are long only in one direction are widely used in actual integrated circuits. However, such resistance elements with a large vertical to horizontal ratio are available in the chip. There is a large variation in the resistance value of. This occurs because ion implantation is performed in a state where the wafer surface is inclined with respect to the ion implantation surface when the polycrystalline silicon is doped by ion implantation. That is, even in the case of polycrystalline silicon having the same pattern, the ions may be easily implanted in the vertical direction or the ions may be easily implanted in the horizontal direction depending on the arrangement location in the chip. When the value of the resistance element is small, the total length of the polycrystalline silicon is short, so the effect does not appear so much, but in the high-resistance element, the total length of the polycrystalline silicon becomes long, so this effect becomes remarkable, and the characteristics of the integrated circuit vary. It is the cause of the occurrence.

【0008】[0008]

【発明が解決しようとする課題】前記のように、高抵抗
素子を低抵抗のシート抵抗を有する多結晶シリコンで形
成した場合、多結晶シリコンの長さが異常に長くなり、
縦と横の比が大きな抵抗素子が形成されやすい。このよ
うな縦と横の比が大きな抵抗素子はチップ内でシート抵
抗値がばらつき易く、集積回路の特性ばらつき発生の原
因になっている。
As described above, when the high resistance element is made of polycrystalline silicon having a low resistance sheet resistance, the length of the polycrystalline silicon becomes abnormally long.
A resistance element having a large vertical to horizontal ratio is likely to be formed. Such a resistance element having a large vertical-to-horizontal ratio easily causes variations in sheet resistance within the chip, which causes variations in characteristics of integrated circuits.

【0009】この発明の目的は、前記の課題を解決する
ために、低抵抗値のシート抵抗の多結晶シリコンで、渦
巻き状の形状にすることで、チップ内の抵抗値のばらつ
きを極力抑えた高抵抗素子とし、その高抵抗素子を集積
した半導体装置を提供することにある。
In order to solve the above-mentioned problems, the object of the present invention is to suppress the variation of the resistance value in the chip as much as possible by forming the spiral shape of the low resistance sheet resistance polycrystalline silicon. A high resistance element is provided, and a semiconductor device in which the high resistance element is integrated is provided.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、半導体基板上に形成された抵抗素子が、渦巻き状
の形状をした多結晶シリコンによって形成され、かつ、
渦巻き状の両端に設けられた端子が最外周部に形成され
ていることである。この半導体基板上に絶縁膜を介して
抵抗素子が形成されると効果的である。また所定の抵抗
値に調整するために、所定量のヒ素、リンおよびホウ素
のいずれかの不純物が導入された多結晶シリコンで抵抗
素子が形成されることである。この多結晶シリコンの抵
抗値が10Ω/□ないし100Ω/□とすると有効であ
る。また渦巻き状の両端に設ける端子が互いに対角線上
もしくは隣接するように形成するとよい。この渦巻き状
の形状は四角もしくは円形である。
In order to achieve the above-mentioned object, a resistance element formed on a semiconductor substrate is formed of polycrystalline silicon having a spiral shape, and
That is, the terminals provided at both ends of the spiral shape are formed at the outermost peripheral portion. It is effective that a resistance element is formed on this semiconductor substrate via an insulating film. Further, in order to adjust to a predetermined resistance value, the resistance element is formed of polycrystalline silicon into which a predetermined amount of any one of impurities of arsenic, phosphorus and boron is introduced. It is effective that the resistance value of this polycrystalline silicon is 10 Ω / □ to 100 Ω / □. Further, the terminals provided at both ends of the spiral shape may be formed so as to be diagonal or adjacent to each other. This spiral shape is a square or a circle.

【0011】[0011]

【作用】半導体基板上に多結晶シリコンを積層し、ヒ素
やホウ素でイオン注入し、抵抗調整する場合、イオン注
入方向に対して垂直に半導体基板を置くのではなく、垂
直な面にたいして2度程傾けて置く。これは、イオンの
注入効率を上げる方法として一般的に知られていること
である。しかし2度の傾きによって、半導体基板の左右
方向(X方向)はほぼ均一になるが、上下方向(Y方
向)では、下面より上面の方がイオン源に微妙に近いた
め、上面のイオン注入量の方が下面より多くなり、結果
として上下方向でばらつきが生じる。つまり半導体基板
内のシート抵抗のばらつきはX方向では小さく、Y方向
で大きくなる。
[Function] When polycrystalline silicon is laminated on a semiconductor substrate and arsenic or boron is ion-implanted to adjust the resistance, the semiconductor substrate is not placed perpendicularly to the ion-implantation direction, but about twice on a vertical surface. Place it at an angle. This is generally known as a method for increasing the ion implantation efficiency. However, the inclination of 2 degrees makes the left-right direction (X direction) of the semiconductor substrate almost uniform, but in the up-down direction (Y direction), the upper surface is slightly closer to the ion source than the lower surface. Is larger than the lower surface, and as a result, variations occur in the vertical direction. That is, the variation in sheet resistance in the semiconductor substrate is small in the X direction and large in the Y direction.

【0012】半導体基板上に抵抗素子を形成する場合
は、幅が狭く、長い帯状をした多結晶シリコンで形成す
る。この帯の方向が問題であり、抵抗素子はX、Y方向
に関係なく作り込むのが一般的である。そのため、従来
のように、櫛歯状に抵抗素子を作るとXまたはYのどち
らかの方向成分を多く含むため、抵抗素子の配置の仕方
でばらつきが大きくなる。この発明のように、縦、横が
ほぼ等しくなるように渦巻き状に抵抗素子を形成する
と、抵抗素子の配置する向きに関係なく、X方向、Y方
向の成分がほぼ均等に含まれ、ばらつきの少ない抵抗素
子が得られる。特に高抵抗値の抵抗素子、つまり多結晶
シリコンの帯の長さが長い抵抗素子をばらつきの少なく
形成する場合に効果が発揮される。
When the resistance element is formed on the semiconductor substrate, it is formed of a long strip-shaped polycrystalline silicon having a narrow width. The direction of this band is a problem, and the resistance element is generally formed regardless of the X and Y directions. Therefore, when a resistance element is formed in a comb shape as in the conventional case, a large amount of component in either the X direction or the Y direction is included, and thus the variation in the arrangement of the resistance elements becomes large. When the resistance elements are formed in a spiral shape so that the length and width are substantially equal as in the present invention, the components in the X direction and the Y direction are included almost uniformly regardless of the direction in which the resistance elements are arranged, and variations in A small number of resistance elements can be obtained. Particularly, the effect is exerted when a resistance element having a high resistance value, that is, a resistance element having a long strip of polycrystalline silicon is formed with little variation.

【0013】[0013]

【実施例】図1は第1実施例の渦巻き状の抵抗素子のパ
ターン図を示す。多結晶シリコン1の帯の両端の端子1
1は対角線上に配置されている。この例は四角状の渦巻
きをした抵抗素子を示している。帯の幅はW、間隔は
d、各辺の長さはln (nは整数)で表す。抵抗素子の
全長Lは次式で表される。
FIG. 1 is a pattern diagram of a spiral resistance element according to the first embodiment. Terminals 1 at both ends of the strip of polycrystalline silicon 1
1 is arranged on a diagonal line. This example shows a resistance element having a square spiral. The width of the band is W, the interval is d, and the length of each side is l n (n is an integer). The total length L of the resistance element is expressed by the following equation.

【0014】[0014]

【数1】 0 : 初期長 k : 巻き数 図2は第2実施例の渦巻き状の抵抗素子のパターン図を
示す。多結晶シリコン1の帯の両端の端子11は隣接し
て配置されている。この例も四角状の渦巻きをした抵抗
素子を示している。帯の幅はW、間隔はd、各辺の長さ
はln (nは整数)で表す。抵抗素子の全長Lは次式で
表される。
[Equation 1] l 0 : initial length k: number of turns FIG. 2 is a pattern diagram of the spiral resistance element of the second embodiment. The terminals 11 at both ends of the strip of polycrystalline silicon 1 are arranged adjacent to each other. This example also shows a resistance element having a square spiral. The width of the band is W, the interval is d, and the length of each side is l n (n is an integer). The total length L of the resistance element is expressed by the following equation.

【0015】[0015]

【数2】 k≧2 l0 : 初期長 k : 巻き数 初期長l0 を3μm、多結晶シリコンの幅Wを2μm、
間隔dを1μmとした場合、図1および図2に示したパ
ターン(レイアウト図)の多結晶シリコンの全長は巻き
数kによって表1に示すようになる。
[Equation 2] k ≧ 2 l 0 : initial length k: number of windings initial length l 0 is 3 μm, width W of polycrystalline silicon is 2 μm,
When the distance d is 1 μm, the total length of the polycrystalline silicon of the pattern (layout diagram) shown in FIGS. 1 and 2 is as shown in Table 1 depending on the number of turns k.

【0016】[0016]

【表1】 表1 (単位:μm) k: 1 2 3 4 5 図1のパターン: 21 63 129 219 333 図2のパターン: − 42 96 174 276 例えば、リンを1.5×1016cm-2のドーズ量でイオ
ン注入し、その後900℃、10分の条件でアニール処
理(熱処理)した多結晶シリコンのシート抵抗は30Ω
/□となる。この多結晶シリコンで抵抗素子を形成する
と、表1に示した多結晶シリコンの抵抗値は表2に示す
ようになる。勿論シート抵抗は30Ω/□より小さくて
も、大きくてもよいが、実用的に有用な範囲は10Ω/
□〜100Ω/□がよい。
[Table 1] Table 1 (unit: μm) k: 1 2 3 4 5 Pattern of FIG. 1: 21 63 129 219 333 Pattern of FIG. 2: −42 96 174 276 For example, phosphorus is 1.5 × 10 16 cm The sheet resistance of polycrystalline silicon that has been ion-implanted at a dose of 2 and then annealed (heat-treated) at 900 ° C. for 10 minutes is 30Ω.
It becomes / □. When a resistance element is formed of this polycrystalline silicon, the resistance value of the polycrystalline silicon shown in Table 1 is as shown in Table 2. Of course, the sheet resistance may be smaller or larger than 30Ω / □, but the practically useful range is 10Ω / □.
□ to 100Ω / □ is good.

【0017】[0017]

【表2】 表2 (単位:kΩ) k: 1 2 3 4 5 図1のパターン: 0.63 1.89 3.87 6.57 9.99 図2のパターン: − 1.26 2.88 5.22 8.28 図3は図1のパターンで抵抗値を10kΩの抵抗素子を
製作した場合の一例を示す。多結晶シリコン1のシート
抵抗およびレイアウト条件(多結晶シリコンの帯の幅、
間隔など)は(1)式と同じである。多結晶シリコン1
の両端には電極11が配置される。初期長l0 は3μ
m、巻き数kは5とした。このパターンの抵抗値は9.
99kΩで小数点2桁を四捨五入で10kΩである。こ
の抵抗素子を形成するために要した面積は約30μm×
30μmである。
[Table 2] Table 2 (Unit: kΩ) k: 1 2 3 4 5 Pattern of FIG. 1: 0.63 1.89 3.87 6.57 9.99 Pattern of FIG. 2: − 1.26 2.88 5.22 8.28 FIG. 3 is a pattern of FIG. An example of the case where the resistance element is manufactured will be shown. Sheet resistance and layout conditions of polycrystalline silicon 1 (width of polycrystalline silicon band,
The interval, etc.) is the same as in the equation (1). Polycrystalline silicon 1
Electrodes 11 are arranged at both ends of the. Initial length l 0 is 3μ
m and the number of turns k were 5. The resistance value of this pattern is 9.
It is 10 kΩ when 99 kΩ is rounded off to two decimal places. The area required to form this resistance element is approximately 30 μm ×
It is 30 μm.

【0018】図4は図2のパターンで抵抗値を10kΩ
の抵抗素子を製作した場合の一例を示す。多結晶シリコ
ン1のシート抵抗およびレイアウト条件(多結晶シリコ
ンの帯の幅、間隔など)は(2)式と同じである。初期
長l0 は6μm、巻き数kは5とした。このパターンの
抵抗値は9.99kΩで小数点2桁を四捨五入で10k
Ωである。この抵抗素子を形成するために要した面積は
約33μm×33μmである。尚、電極11は多結晶シ
リコンで形成される場合が多い。
FIG. 4 shows the pattern of FIG. 2 with a resistance value of 10 kΩ.
An example of the case where the resistance element is manufactured will be shown. The sheet resistance and layout conditions of the polycrystalline silicon 1 (width of the polycrystalline silicon band, spacing, etc.) are the same as in the equation (2). The initial length l 0 was 6 μm, and the number of turns k was 5. The resistance value of this pattern is 9.99 kΩ and the decimal point is rounded to 2 digits to 10 k.
Ω. The area required to form this resistance element is approximately 33 μm × 33 μm. The electrode 11 is often made of polycrystalline silicon.

【0019】図3および図4の抵抗値は10kΩを目標
とした設計であるが、さらに大きな抵抗値を必要とする
場合は、図3および図4を単独で拡大する方法の他に、
これらを組み合わせる方法もある。また本発明の渦巻き
状のパターンにすることでチップ内での抵抗値のばらつ
きが、従来パターンで10%あったものがほぼゼロ%と
なった。
The resistance values in FIGS. 3 and 4 are designed with a target of 10 kΩ. However, when a larger resistance value is required, in addition to the method of expanding FIGS. 3 and 4 independently,
There is also a method of combining these. Further, by using the spiral pattern of the present invention, the variation in the resistance value in the chip was about 0% in the conventional pattern, which was 10%.

【0020】第3実施例として、抵抗素子の形状を四角
の渦巻き状ではなく、円形の渦巻き状のものもある。こ
れについては図による説明は省略するが同様の効果が期
待できる。図5はこの発明を適用したICチップのレイ
アウト図を示す。この図は図7で示した出力回路で構成
される250Vのプラズマディスプレイ駆動用ICチッ
プを例にとた。ICチップ2に制御回路部21と出力段
回路部22が配置され、出力段回路部22は多数の1ビ
ットの出力段回路部221で構成される。この1ビット
の出力段回路部221は図7で示す回路が形成される。
この構成において、チップ中央部に制御回路部21が存
在しその周囲に高耐圧デバイスおよび高抵抗素子を含ん
だ出力段回路部22が配置されている。このようにプラ
ズマディスプレイ駆動用ICチップは横長のICとなっ
ている。
As a third embodiment, there is a resistive element having a circular spiral shape instead of a square spiral shape. A similar effect can be expected, though a description thereof is omitted. FIG. 5 shows a layout diagram of an IC chip to which the present invention is applied. This drawing shows an example of a 250V plasma display driving IC chip configured with the output circuit shown in FIG. A control circuit unit 21 and an output stage circuit unit 22 are arranged on the IC chip 2, and the output stage circuit unit 22 is composed of a large number of 1-bit output stage circuit units 221. The circuit shown in FIG. 7 is formed in the 1-bit output stage circuit section 221.
In this configuration, the control circuit section 21 exists in the central portion of the chip, and the output stage circuit section 22 including the high breakdown voltage device and the high resistance element is arranged around the control circuit section 21. In this way, the plasma display driving IC chip is a horizontally long IC.

【0021】図6は図7の出力段回路の素子配置場所を
示す図である。図中の記号は図7と同一であるので説明
を省略する。上部と下部にグランド配線32(アース電
位側の配線)が配置され、高抵抗素子(R1 、R21)を
形成する中央部上には高電圧側配線31が配置される。
高抵抗素子R1 、R21を配置する位置を固定すること
で、従来のようにチップの余分なスペース(MOSFE
Tなどの能動素子や制御回路を配置したあとの残りのス
ペースでランダムにチップ内で空いているスペースのこ
と)に高抵抗素子を配置した場合に比べ、電源配線を短
くでき、その配線のための余分のスペースが不要とな
り、チップの小型化が図れる。尚、この電源配線は配線
幅が他個所の配線に比べ広いため従来は広い余分なスペ
ースを必要とした。
FIG. 6 is a diagram showing element placement locations of the output stage circuit of FIG. The symbols in the figure are the same as those in FIG. The ground wiring 32 (wiring on the ground potential side) is arranged in the upper and lower portions, and the high voltage side wiring 31 is arranged on the central portion forming the high resistance elements (R 1 , R 21 ).
By fixing the positions where the high-resistance elements R 1 and R 21 are arranged, extra space (MOSFE
Power wiring can be shortened compared to the case where high resistance elements are randomly placed in the remaining space after placing active elements such as T and control circuits) No extra space is required and the chip can be miniaturized. Since the power supply wiring has a wider wiring width than the wiring at other places, conventionally, a large extra space is required.

【0022】[0022]

【発明の効果】低抵抗のシート抵抗を有する多結晶シリ
コンで渦巻き状のパターンにし、しかも2個の端子を最
外周に配置した高抵抗素子を形成することにより、下記
の効果が期待できる。 (1)多結晶シリコンの帯の配置方向が縦方向と横方向
の長さの比がほぼ等しくなり、イオン注入にともなうチ
ップ内でのシート抵抗値のばらつきの影響を受けにくく
し、抵抗素子の抵抗値が配置場所によるばらつきを低減
する。 (2)磁束が打ち消されるため、抵抗素子である多結晶
シリコンの帯の長さによるインダクタンスを小さくでき
る。 (3)MOSFETなどの能動素子の配置の中に抵抗素
子の配置を組み込むことができ、電源配線のための余分
なスペースが不要となり、チップの小型化が図れる。 (4)渦巻き状のパターンを有した抵抗素子を1ユニッ
トとして、そのユニットを組み合わせることで任意の高
抵抗素子を容易に製作でき、設計の効率化を図ることが
できる。 (5)低抵抗のシート抵抗を有する多結晶シリコンを抵
抗素子の素材とすることで、温度特性の安定した高抵抗
素子の製作が可能となる。
The following effects can be expected by forming a spiral pattern of polycrystalline silicon having a low resistance sheet resistance and forming a high resistance element having two terminals arranged on the outermost periphery. (1) The arrangement direction of the strips of polycrystalline silicon has a substantially equal ratio of length in the vertical direction to that in the horizontal direction, making it less susceptible to variations in the sheet resistance value in the chip due to ion implantation, and Variations in resistance value due to location are reduced. (2) Since the magnetic flux is canceled out, the inductance due to the length of the strip of polycrystalline silicon which is the resistance element can be reduced. (3) The layout of the resistance elements can be incorporated into the layout of the active elements such as MOSFETs, an extra space for power supply wiring is not required, and the size of the chip can be reduced. (4) An arbitrary high resistance element can be easily manufactured by combining the resistance elements having a spiral pattern as one unit, and the efficiency of the design can be improved. (5) By using polycrystalline silicon having a low resistance sheet resistance as a material for the resistance element, it is possible to manufacture a high resistance element having stable temperature characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の渦巻き状の抵抗素子のパターン図FIG. 1 is a pattern diagram of a spiral resistance element according to a first embodiment.

【図2】第2実施例の渦巻き状の抵抗素子のパターン図FIG. 2 is a pattern diagram of a spiral resistance element according to a second embodiment.

【図3】図1のパターンで抵抗値を10kΩの抵抗素子
を製作した場合の図
FIG. 3 is a diagram of a case where a resistance element having a resistance value of 10 kΩ is manufactured with the pattern of FIG.

【図4】図2のパターンで抵抗値を10kΩの抵抗素子
を製作した場合の図
FIG. 4 is a diagram of a case where a resistance element having a resistance value of 10 kΩ is manufactured in the pattern of FIG.

【図5】この発明を適用したICチップのレイアウト図FIG. 5 is a layout diagram of an IC chip to which the present invention is applied.

【図6】図7の出力段回路の素子配置場所を示す図FIG. 6 is a diagram showing element placement locations of the output stage circuit of FIG. 7;

【図7】250V定格のプラズマディスプレイ駆動用I
Cの出力段回路図
FIG. 7: I for driving a 250 V-rated plasma display
Output stage circuit diagram of C

【図8】高抵抗素子を採用した回路図FIG. 8 is a circuit diagram using a high resistance element.

【図9】従来の抵抗素子のパターン図FIG. 9 is a pattern diagram of a conventional resistance element.

【符号の説明】[Explanation of symbols]

1 多結晶シリコン 11 電極 2 ICチップ 21 制御回路部 22 出力段回路 221 1ビットの出力段回路 31 VDH(高電圧側)配線 32 グランド(アース)配線 41 出力段pチャネルMOSFET(Q1 ) 42 出力段nチャネルMOSFET(Q2 ) 43 レベルシフタ回路用nチャネルMOSFET
(QL ) 44 保護ダイオード 45 出力段IGBT(Q3 ) 46 出力段IGBT(Q4 ) 47 pチャネルMOSFET(Qp ) 51 レベルシフタ回路用高抵抗素子(R1 ) 52 pチャネルMOSFET放電抵抗(R3 ) 521 電流制限用高抵抗素子(R21) 53 レベルシフタ回路用高抵抗素子(R2 ) 54 エミッタフォロア回路用高抵抗素子(R4 ) 61 高電圧電源端子(VDH) 62 出力端子 63 入力端子 64 入力端子 65 入力端子 66 入力端子 7 直流電源
1 Polycrystalline Silicon 11 Electrode 2 IC Chip 21 Control Circuit Section 22 Output Stage Circuit 221 1-bit Output Stage Circuit 31 V DH (High Voltage Side) Wiring 32 Ground (Earth) Wiring 41 Output Stage p-Channel MOSFET (Q 1 ) 42 Output stage n-channel MOSFET (Q 2 ) 43 n-channel MOSFET for level shifter circuit
(Q L) 44 protection diode 45 output stage IGBT (Q 3) 46 Output stage IGBT (Q 4) 47 p-channel MOSFET (Q p) 51 level shifter circuit for high-resistance element (R 1) 52 p-channel MOSFET discharge resistor (R 3 ) 521 High-resistance element for current limiting (R 21 ) 53 High-resistance element for level shifter circuit (R 2 ) 54 High-resistance element for emitter follower circuit (R 4 ) 61 High-voltage power supply terminal (V DH ) 62 Output terminal 63 Input Terminal 64 Input terminal 65 Input terminal 66 Input terminal 7 DC power supply

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された抵抗素子が、渦
巻き状の形状をした多結晶シリコンによって形成され、
かつ、渦巻き状の両端に設けられた端子が最外周部に形
成されていることを特徴とする半導体装置。
1. A resistance element formed on a semiconductor substrate is made of spiral-shaped polycrystalline silicon,
Further, the semiconductor device is characterized in that terminals provided at both ends of the spiral shape are formed in the outermost peripheral portion.
【請求項2】半導体基板上に絶縁膜を介して抵抗素子が
形成されることを特徴とする請求項1記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein the resistance element is formed on the semiconductor substrate via an insulating film.
【請求項3】所定の抵抗値に調整するために、所定量の
ヒ素、リンおよびホウ素のいずれかの不純物が導入され
た多結晶シリコンで抵抗素子が形成されることを特徴と
する請求項1記載の半導体装置。
3. A resistance element is formed of polycrystalline silicon into which a predetermined amount of an impurity of arsenic, phosphorus or boron is introduced in order to adjust it to a predetermined resistance value. The semiconductor device described.
【請求項4】シート抵抗で表した多結晶シリコンの抵抗
値が10Ω/□ないし100Ω/□とすることを特徴と
する請求項3記載の半導体装置。
4. The semiconductor device according to claim 3, wherein the resistance value of the polycrystalline silicon represented by the sheet resistance is 10 Ω / □ to 100 Ω / □.
【請求項5】渦巻き状の両端に設ける端子が互いに対角
線上もしくは隣接するように形成されることを特徴とす
る請求項1記載の半導体装置。
5. The semiconductor device according to claim 1, wherein the terminals provided at both ends of the spiral shape are formed so as to be diagonal or adjacent to each other.
【請求項6】渦巻き状の形状が四角もしくは円形である
ことを特徴とする請求項5記載の半導体装置。
6. The semiconductor device according to claim 5, wherein the spiral shape is a square or a circle.
JP05067095A 1995-03-10 1995-03-10 Semiconductor device Expired - Lifetime JP3291960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05067095A JP3291960B2 (en) 1995-03-10 1995-03-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05067095A JP3291960B2 (en) 1995-03-10 1995-03-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH08250663A true JPH08250663A (en) 1996-09-27
JP3291960B2 JP3291960B2 (en) 2002-06-17

Family

ID=12865390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05067095A Expired - Lifetime JP3291960B2 (en) 1995-03-10 1995-03-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3291960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device
US8638160B2 (en) 2007-12-14 2014-01-28 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
US9411346B2 (en) 2007-12-14 2016-08-09 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device

Also Published As

Publication number Publication date
JP3291960B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US11456596B2 (en) USB type-C load switch ESD protection
JP5019689B2 (en) Device for current ballasting ESD sensitive device
EP1879229A1 (en) Improved ESD protection circuit
TW200828569A (en) Latch-up free vertical TVS diode array structure using trench isolation
JP2003519926A5 (en)
US20220278027A1 (en) Connection arrangements for integrated lateral diffusion field effect transistors having a backside contact
CN1199276C (en) Semiconductor integrated circuit device and its producing method
WO2006013211A1 (en) A semiconductor switch arrangement and an electronic device
CN100459119C (en) Lateral LUBISTOR structure and method
JP2834485B2 (en) Bipolar transistor
US6894351B2 (en) Semiconductor device for electrostatic protection
JP3291960B2 (en) Semiconductor device
SE515836C3 (en) Process for manufacturing a high frequency silicon bipolar transistor and power transistor device
JPH06350031A (en) Integrated structure protection circuit
JPS6348192B2 (en)
JP2001185738A (en) Semiconductor device and manufacturing method thereof
CN112185955B (en) Vertical bipolar transistor device
US20230075374A1 (en) Semiconductor-on-insulator device with lightly doped extension region
CN216389366U (en) Semiconductor module and electronic circuit
JPS6348190B2 (en)
JPH0328836B2 (en)
JPH11297846A (en) Semiconductor device
TW413953B (en) Semiconductor resistor device capable of bearing high voltage
EP0774167A1 (en) A power semiconductor device
JPS6092631A (en) Dielectric isolation type semiconductor integrated circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term