JPH08250109A - Secondary battery - Google Patents
Secondary batteryInfo
- Publication number
- JPH08250109A JPH08250109A JP7052809A JP5280995A JPH08250109A JP H08250109 A JPH08250109 A JP H08250109A JP 7052809 A JP7052809 A JP 7052809A JP 5280995 A JP5280995 A JP 5280995A JP H08250109 A JPH08250109 A JP H08250109A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- negative electrode
- current collector
- electrode active
- collector foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011888 foil Substances 0.000 claims abstract description 89
- 239000011347 resin Substances 0.000 claims abstract description 50
- 229920005989 resin Polymers 0.000 claims abstract description 50
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 24
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 18
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 49
- 239000011149 active material Substances 0.000 claims description 44
- 238000010304 firing Methods 0.000 claims description 29
- 238000000465 moulding Methods 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- 239000008151 electrolyte solution Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 4
- 239000007773 negative electrode material Substances 0.000 abstract description 84
- 230000000694 effects Effects 0.000 abstract description 13
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 239000011230 binding agent Substances 0.000 description 22
- -1 lithium Chemical class 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000007774 positive electrode material Substances 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011818 carbonaceous material particle Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000007600 charging Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- OHRVKCZTBPSUIK-UHFFFAOYSA-N tridodecyl phosphate Chemical compound CCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCC)OCCCCCCCCCCCC OHRVKCZTBPSUIK-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水電解質二次電池に
関する。FIELD OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】従来、非水電解質二次電池としては、リ
チウムなどのアルカリ金属を吸蔵および放出する電極
(正極および負極)と、上記アルカリ金属の塩を含む電
解液とからなるものがある。上記電極における負極活物
質としては、例えば特開昭62−90863号公報に記
載のように、炭素材が用いられる。炭素材はデンドライ
ト発生を抑制し、安全かつサイクル寿命に優れた電池を
実現するからである。従来、炭素材から電池を作製する
方法としては、炭素粉にポリテトラフルオロエチレンな
どの樹脂結着剤を混合して成形していた。この方法は、
簡便であるという利点を有する。2. Description of the Related Art Conventionally, as a non-aqueous electrolyte secondary battery, there is a non-aqueous electrolyte secondary battery comprising an electrode (a positive electrode and a negative electrode) which absorbs and releases an alkali metal such as lithium, and an electrolytic solution containing the salt of the alkali metal. As the negative electrode active material in the electrode, for example, a carbon material is used as described in JP-A-62-90863. This is because the carbon material suppresses dendrite generation and realizes a battery that is safe and has excellent cycle life. Conventionally, as a method for producing a battery from a carbon material, carbon powder has been mixed with a resin binder such as polytetrafluoroethylene to be molded. This method
It has the advantage of being simple.
【0003】[0003]
【発明が解決しようとする課題】しかし、炭素粉に樹脂
結着剤を混合して成形する上記の方法によると、樹脂結
着剤が絶縁性であるため、電極の導電性が低下したり電
解液と電極との接触が不充分になったりするという問題
が生じる。また、樹脂結着剤自身が電解液と反応してし
まう場合があり、このため充放電に伴う炭素材の体積変
化に対して結着力を維持することが困難になる。さら
に、樹脂結着剤により炭素粉末の表面が被覆されるため
リチウムイオン(Li+ )の電極への出入りが阻害され
るので、充放電を急速に行う場合に容量が低下するとい
う問題がある。However, according to the above-mentioned method in which the carbon powder is mixed with the resin binder to be molded, since the resin binder is insulative, the conductivity of the electrode is lowered and the electrolytic property is lowered. There arises a problem that the contact between the liquid and the electrode becomes insufficient. In addition, the resin binder itself may react with the electrolytic solution, which makes it difficult to maintain the binding force against the volume change of the carbon material due to charging and discharging. Further, since the surface of the carbon powder is covered with the resin binder, the lithium ions (Li + ) are prevented from entering and leaving the electrode, so that there is a problem that the capacity is lowered when the charge and discharge are rapidly performed.
【0004】一方、特開平6−132027号公報に
は、炭素材と熱硬化性樹脂とを混合し、この熱硬化性樹
脂を完全に硬化させた後に不活性気体中で焼成すること
により得られた焼結体を負極として用いた非水電解質二
次電池が開示されている。このものによると、炭素粉末
表面が樹脂により被覆されていないので負極へのLi+
の出入りが容易になり、また焼成時に熱硬化性樹脂が炭
化して生じた樹脂炭化物により導電性が向上する。On the other hand, JP-A-6-132027 discloses that a carbon material and a thermosetting resin are mixed, and the thermosetting resin is completely cured and then baked in an inert gas. A non-aqueous electrolyte secondary battery using the sintered body as a negative electrode is disclosed. According to this, since the surface of the carbon powder is not covered with the resin, Li + to the negative electrode is
Can be easily moved in and out, and conductivity is improved by a resin carbide generated by carbonization of the thermosetting resin during firing.
【0005】しかし、上記特開平6−132027号公
報のものによると、集電体である金属箔上に熱硬化性樹
脂で炭素粉を固定した後に焼成を行って活物質を焼成体
とするため、焼成時または焼成後の取扱条件によって
は、集電体箔から活物質が剥がれたり、活物質が割れた
り、さらには集電体箔から活物質が欠け落ちたりすると
いう問題があった。集電体箔から活物質が剥がれたり欠
け落ちたりすると、集電体箔と活物質との接触面積が少
なくなるので導電率が低下する。However, according to the above-mentioned Japanese Patent Laid-Open No. 6-132027, the carbon powder is fixed on the metal foil as the current collector with the thermosetting resin and then fired to make the active material a fired body. Depending on the handling conditions during or after firing, there is a problem that the active material is peeled off from the current collector foil, the active material is broken, or the active material is chipped off from the current collector foil. When the active material peels off or falls off from the current collector foil, the contact area between the current collector foil and the active material decreases, and the conductivity decreases.
【0006】本発明の目的は、導電性に優れ、かつ安定
して高い充放電効果を長期間発揮することができる非水
電解質二次電池を提供することにある。An object of the present invention is to provide a non-aqueous electrolyte secondary battery which has excellent conductivity and can stably exhibit a high charge / discharge effect for a long period of time.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の請求項1記載の非水電解質二次電池は、
電極と電解液とからなる二次電池であって、前記電極
は、複数個の孔を有する集電体箔の表面に炭素材と樹脂
との混合物からなる活物質を設け、前記活物質を不活性
気体中で焼成して焼結体とすることにより作製されるこ
とを特徴とする。In order to solve the above-mentioned problems, the non-aqueous electrolyte secondary battery according to claim 1 of the present invention comprises:
A secondary battery comprising an electrode and an electrolytic solution, wherein the electrode is provided with an active material made of a mixture of a carbon material and a resin on the surface of a current collector foil having a plurality of holes, and the active material is not charged. It is characterized by being manufactured by firing in an active gas to obtain a sintered body.
【0008】本発明の請求項2記載の非水電解質二次電
池は、請求項1記載の非水電解質二次電池であって、前
記孔の孔径d(mm)は0.05≦d≦10であり、前
記孔の間隔L(mm)は0.05≦L≦15であり、か
つ前記孔は前記集電体箔の幅方向および長さ方向にそれ
ぞれ二個以上設けられていることを特徴とする。本発明
の請求項3記載の非水電解質二次電池は、請求項1また
は2記載の非水電解質二次電池であって、前記集電体箔
は、表面に前記活物質が設けられる集電部と前記集電部
の一端から延びるリード部とからなり、前記集電部にの
み前記孔が設けられていることを特徴とする。The non-aqueous electrolyte secondary battery according to claim 2 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1, wherein the hole diameter d (mm) of the holes is 0.05 ≦ d ≦ 10. The distance L (mm) between the holes is 0.05 ≦ L ≦ 15, and two or more holes are provided in each of the width direction and the length direction of the current collector foil. And The non-aqueous electrolyte secondary battery according to claim 3 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the current collector foil has a surface on which the active material is provided. And a lead portion extending from one end of the current collecting portion, and the hole is provided only in the current collecting portion.
【0009】本発明の請求項4記載の非水電解質二次電
池は、請求項1、2または3記載の非水電解質二次電池
であって、前記活物質は、焼成前に0.1〜10t/c
m2の成形圧力でプレスされることを特徴とする。本発
明の請求項5記載の非水電解質二次電池は、請求項1か
ら4のいずれか一項記載の非水電解質二次電池であっ
て、前記集電体箔は、銅、ニッケル、またはステンレス
スチールからなることを特徴とする。The non-aqueous electrolyte secondary battery according to claim 4 of the present invention is the non-aqueous electrolyte secondary battery according to claim 1, 2 or 3, wherein the active material is 0.1 to 0.1 before firing. 10t / c
It is characterized by being pressed at a molding pressure of m 2 . The non-aqueous electrolyte secondary battery according to claim 5 of the present invention is the non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the current collector foil is made of copper, nickel, or It is made of stainless steel.
【0010】本発明の請求項6記載の非水電解質二次電
池は、請求項1から4のいずれか一項記載の非水電解質
二次電池であって、前記集電体箔は銅からなり、前記活
物質の焼成温度は400℃〜1000℃であることを特
徴とする。本発明の請求項7記載の非水電解質二次電池
は、請求項1から4のいずれか一項記載の非水電解質二
次電池であって、前記集電体箔はニッケルまたはステン
レススチールからなり、前記活物質の焼成温度は400
℃〜1200℃であることを特徴とする。The non-aqueous electrolyte secondary battery according to claim 6 of the present invention is the non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the current collector foil is made of copper. The firing temperature of the active material is 400 ° C. to 1000 ° C. The non-aqueous electrolyte secondary battery according to claim 7 of the present invention is the non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the current collector foil is made of nickel or stainless steel. The firing temperature of the active material is 400
It is characterized in that the temperature is from ℃ to 1200 ℃.
【0011】本発明の請求項8記載の非水電解質二次電
池は、請求項1から7のいずれか一項記載の非水電解質
二次電池であって、前記樹脂は熱硬化性樹脂であること
を特徴とする。The non-aqueous electrolyte secondary battery according to claim 8 of the present invention is the non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the resin is a thermosetting resin. It is characterized by
【0012】[0012]
【作用および発明の効果】請求項1記載の非水電解質二
次電池によると、集電体箔が複数個の孔を有するので、
集電体の両側表面に活物質を設けた場合、この孔の内部
に充填された活物質により集電体箔の一方の面に塗布さ
れた活物質と他方の面に塗布された活物質とが連結され
る。これにより、集電体箔に活物質が確実に固定される
ので、活物質の割れや集電体箔からの剥がれが生じにく
い。また、活物質の割れや集電体箔からの剥がれが生じ
た場合にも集電体箔から活物質が欠け落ちしにくい。活
物質は、炭素材の各粒子が樹脂の炭化物によって結合さ
れた状態になっているため割れが生じにくい。活物質を
焼成することにより樹脂が炭化されているので、樹脂が
リチウムイオンの電極への出入りを阻害しないので優れ
た電池作用を発揮する。電極は炭素材と樹脂炭化物とか
らなるため導電性に優れ、さらに炭化物も活物質として
機能するためムダなく電極の容量が向上できる。樹脂が
炭化されているため電解液による電極の腐食が防止され
るので、長期に渡り安定して高い放電効果が得られる。
したがって、非水電解質二次電池を長期間使用すること
ができる。According to the non-aqueous electrolyte secondary battery of claim 1, since the current collector foil has a plurality of holes,
When an active material is provided on both surfaces of the current collector, the active material applied to one surface of the current collector foil and the active material applied to the other surface by the active material filled inside the holes Are connected. As a result, the active material is reliably fixed to the current collector foil, so that cracking of the active material or peeling of the active material from the current collector foil is unlikely to occur. Further, even when the active material is cracked or peeled off from the current collector foil, the active material is unlikely to fall off from the current collector foil. Since the active material is in a state in which the particles of the carbon material are bonded by the carbide of the resin, cracking is unlikely to occur. Since the resin is carbonized by firing the active material, the resin does not inhibit the lithium ions from entering and leaving the electrode, and thus exhibits an excellent battery function. Since the electrode is made of a carbon material and resin carbide, it has excellent conductivity, and since the carbide also functions as an active material, the capacity of the electrode can be improved without waste. Since the resin is carbonized, the electrode is prevented from being corroded by the electrolytic solution, so that a stable high discharge effect can be obtained for a long period of time.
Therefore, the non-aqueous electrolyte secondary battery can be used for a long period of time.
【0013】請求項2記載の非水電解質二次電池による
と、孔径dが0.05mm≦d≦10mmであるので孔
内に活物質を容易に適切に充填することができる。孔の
間隔Lが0.05mm≦L≦15mmであるので活物質
をプレス成形する場合に集電体箔に亀裂が生じにくい。
孔は集電体箔の幅方向および長さ方向にそれぞれ二個以
上設けられているので、集電体箔に活物質が確実に固定
される。According to the second aspect of the non-aqueous electrolyte secondary battery, since the pore diameter d is 0.05 mm ≦ d ≦ 10 mm, the active material can be easily and properly filled in the pores. Since the distance L between the holes is 0.05 mm ≦ L ≦ 15 mm, cracks are unlikely to occur in the current collector foil when the active material is press-molded.
Since two or more holes are provided in each of the width direction and the length direction of the current collector foil, the active material is reliably fixed to the current collector foil.
【0014】請求項3記載の非水電解質二次電池による
と、集電体箔のリード部には孔が設けられていないの
で、リード部の曲げ強度を維持してリード部に亀裂が入
ることを防止する。これにより、信頼性の高い非水電解
質二次電池を得ることができる。請求項4記載の非水電
解質二次電池によると、焼成前に0.1〜10t/cm
2 の成形圧力で活物質をプレスするので、孔内に活物質
を適切に充填して集電体箔に活物質を確実に固定するこ
とができる。また、単位体積当たりの活物質量を増加さ
せて電池容量を向上させる効果がある。According to the non-aqueous electrolyte secondary battery of claim 3,
And there are no holes in the lead of the collector foil.
Maintain the bending strength of the lead part and cause cracks in the lead part.
To prevent This enables reliable non-aqueous electrolysis
A quality secondary battery can be obtained. The non-hydroelectric battery according to claim 4.
According to the degradable secondary battery, 0.1-10 t / cm before firing
2Since the active material is pressed with the molding pressure of
To properly fix the active material on the collector foil.
You can Also, increase the amount of active material per unit volume.
This has the effect of improving the battery capacity.
【0015】請求項5記載の非水電解質二次電池による
と、集電体箔が銅、ニッケル、またはステンレススチー
ルからなるため導電性がよい。請求項6および7記載の
非水電解質二次電池によると、集電体箔が銅からなると
きは活物質を400℃〜1000℃で焼成し、集電体箔
がニッケルまたはステンレススチールからなるときは活
物質を400℃〜1200℃で焼成する。これにより、
樹脂を炭化し、かつ集電体箔の溶融または強度低下を防
止して信頼性の高い非水電解質二次電池を得ることがで
きる。According to the non-aqueous electrolyte secondary battery of the fifth aspect, the current collector foil is made of copper, nickel, or stainless steel, and thus has good conductivity. According to the non-aqueous electrolyte secondary battery of claims 6 and 7, when the current collector foil is made of copper, the active material is fired at 400 ° C to 1000 ° C, and when the current collector foil is made of nickel or stainless steel. Fires the active material at 400 ° C to 1200 ° C. This allows
It is possible to obtain a highly reliable non-aqueous electrolyte secondary battery by carbonizing the resin and preventing the current collector foil from melting or lowering in strength.
【0016】請求項8記載の非水電解質二次電池による
と、樹脂として熱硬化性樹脂を用いることにより、焼成
前に熱硬化性樹脂を硬化させた場合には焼成時に活物質
が崩れにくくなるという効果がある。According to the non-aqueous electrolyte secondary battery of the eighth aspect, by using the thermosetting resin as the resin, when the thermosetting resin is cured before firing, the active material is less likely to collapse during firing. There is an effect.
【0017】[0017]
【実施例】以下、本発明の実施例を詳細に説明する。本
発明の一実施例による非水電解質二次電池10を図1〜
図6に示す。図2〜図5に示すように、非水電解質二次
電池10は、セパレータ3を介して負極1と正極2とを
交互に積層した電極群5がケース61内に収納された構
造になっている。セパレータ3は、開口率40%、膜厚
25μmのポリエチレン製微多孔フィルムからなる。ケ
ース61内には非水電解質を非水溶媒に溶解した電解液
4が注入されており、電極群5は電解液4に浸漬されて
いる。ケース61の上部開口部に取付けられる上蓋62
には、ゴムパッキンで絶縁された正極端子7、電解液4
を注入する注入口9および電池10の爆発を防止するた
めの防爆板8が設けられている。注入口9は、電解液4
の注入を行うとき以外は封止されている。防爆板8には
ノッチ状の溝が設けられており、ケース61内の圧力が
異常に上昇したときにこの溝からケース61内の圧力を
逃がすようになっている。ケース61に上蓋62をレー
ザ溶接することにより、ケース61内が密閉されてい
る。EXAMPLES Examples of the present invention will be described in detail below. A non-aqueous electrolyte secondary battery 10 according to an embodiment of the present invention is shown in FIGS.
As shown in FIG. As shown in FIGS. 2 to 5, the non-aqueous electrolyte secondary battery 10 has a structure in which the electrode group 5 in which the negative electrodes 1 and the positive electrodes 2 are alternately stacked with the separator 3 interposed therebetween is housed in the case 61. There is. The separator 3 is made of a polyethylene microporous film having an aperture ratio of 40% and a film thickness of 25 μm. An electrolytic solution 4 in which a non-aqueous electrolyte is dissolved in a non-aqueous solvent is injected into the case 61, and the electrode group 5 is immersed in the electrolytic solution 4. An upper lid 62 attached to the upper opening of the case 61
Includes a positive electrode terminal 7 and an electrolyte 4 which are insulated by a rubber packing.
An explosion-proof plate 8 for preventing the explosion of the inlet 9 and the battery 10 for injecting is provided. Inlet 9 is for electrolyte 4
Is sealed except when the injection is performed. The explosion-proof plate 8 is provided with a notch-shaped groove so that when the pressure inside the case 61 rises abnormally, the pressure inside the case 61 escapes from this groove. The inside of the case 61 is sealed by laser welding the upper lid 62 to the case 61.
【0018】図1に示すように、負極1は、長方形状の
集電部111と集電部111の一端から延びる細幅のリ
ード部112とを有する銅製の集電体箔11と、集電部
111の両面に設けられた負極活物質12とからなる。
集電部111には複数個の孔113が等間隔に設けられ
ている。負極活物質12は、炭素質材料と樹脂の炭化物
とからなる多孔質の焼成体であり、この焼成体の空隙中
に電解液4が含浸される。負極活物質12は、集電部1
11の一方の面に形成された第一の負極活物質層121
と、他方の面に形成された第二の負極活物質層122
と、孔113の内部に形成され第一の負極活物質層12
1と第二の負極活物質層122とを結合する連結部12
3とを有する。As shown in FIG. 1, the negative electrode 1 is a copper current collector foil 11 having a rectangular current collector 111 and a narrow lead 112 extending from one end of the current collector 111, and a current collector. The negative electrode active material 12 is provided on both surfaces of the portion 111.
The current collector 111 is provided with a plurality of holes 113 at equal intervals. The negative electrode active material 12 is a porous fired body made of a carbonaceous material and a resin carbide, and the electrolytic solution 4 is impregnated into the voids of the fired body. The negative electrode active material 12 is the current collector 1
First negative electrode active material layer 121 formed on one surface 11
And the second negative electrode active material layer 122 formed on the other surface
And the first negative electrode active material layer 12 formed inside the hole 113.
1 for connecting the first negative electrode active material layer 122 and the second negative electrode active material layer 122
And 3.
【0019】正極2は、長方形状の集電部とこの集電部
の一端から延びる細幅のリード部212とを有するアル
ミニウム製の集電体箔と、前記集電部の両面に設けられ
た正極活物質とからなる。電極群5の上蓋62側端部に
おいて、負極1のリード部112が図2で右側端部に、
正極2のリード部212が図2で左側端部に位置するよ
うにして、負極1と正極2とが交互に積層されている。
負極1のリード部112は曲げて束ねられ、ケース61
に接続されている。また、正極2のリード部212は正
極端子7に接続されている。The positive electrode 2 is provided on both sides of the current collector, and a collector foil made of aluminum having a rectangular current collector and a narrow lead portion 212 extending from one end of the current collector. And a positive electrode active material. At the end portion of the electrode group 5 on the upper lid 62 side, the lead portion 112 of the negative electrode 1 is at the right end portion in FIG.
The negative electrode 1 and the positive electrode 2 are alternately laminated so that the lead portion 212 of the positive electrode 2 is located at the left end portion in FIG.
The lead portion 112 of the negative electrode 1 is bent and bundled to form the case 61.
It is connected to the. The lead portion 212 of the positive electrode 2 is connected to the positive electrode terminal 7.
【0020】電解液4は、非水溶媒に非水電解質を溶解
して調製する。本実施例では、非水溶媒としてプロピレ
ンカーボネート:ジエチルカーボネート=50vol
%:50vol%の混合溶媒を使用し、この混合溶媒に
非水電解質としてLiPF6 を1mol/リットルの濃度と
なるように溶解して電解液4を調製した。次に、正極2
の作製方法について説明する。The electrolytic solution 4 is prepared by dissolving a non-aqueous electrolyte in a non-aqueous solvent. In this example, the non-aqueous solvent was propylene carbonate: diethyl carbonate = 50 vol.
%: 50 vol% mixed solvent was used, and LiPF 6 as a non-aqueous electrolyte was dissolved in this mixed solvent to a concentration of 1 mol / liter to prepare an electrolytic solution 4. Next, the positive electrode 2
The manufacturing method of will be described.
【0021】正極2は、正極活物質としてのLiCoO
2 94wt%、導電剤としての黒鉛4wt%およびバイ
ンダ2wt%を混合し、溶媒としてのN−メチル−2−
ピロリドンを添加して正極活物質ペーストとした。この
正極活物質ペーストを集電体箔に塗布し乾燥した後に所
定の形状に加圧成形することにより、集電体箔の両面に
正極活物質が設けられた正極2を得る。The positive electrode 2 is made of LiCoO 2 as a positive electrode active material.
2 94 wt%, graphite 4 wt% and the binder 2 wt% as a conductive agent were mixed, as a solvent N- methyl-2
Pyrrolidone was added to obtain a positive electrode active material paste. The positive electrode active material paste is applied to the current collector foil, dried, and then pressure-molded into a predetermined shape to obtain the positive electrode 2 in which the positive electrode active material is provided on both surfaces of the current collector foil.
【0022】次に、負極1の作製方法について説明す
る。炭素質材料としての難黒鉛性炭素(日本カーボン
製、MC0510:平均粒径2〜30μm)90wt%
とバインダとしてのフェノール樹脂(住友デュレズ社
製、PR−50273)10wt%とを充分混合し、溶
媒としてのN−メチル−2−ピロリドンを添加して粘度
140Psの負極活物質ペーストとした。この負極活物
質ペーストに、高沸点物質としてのポリエチレングリコ
ール(分子量600)をフェノール樹脂に対して3wt
%添加する。次いで、この負極活物質ペーストを集電体
箔11の両面に塗布して乾燥し、150℃、3t/cm
2 の条件でプレス成形して所定の形状の負極活物質成形
体とする。集電体箔11および負極活物質成形体をアル
ゴン気流中で750℃×3h焼成して負極活物質焼成体
とすることにより、集電体箔11の両面に負極活物質1
2を有する負極1を作製する。Next, a method for producing the negative electrode 1 will be described. Non-graphitizable carbon as carbonaceous material (Nippon Carbon, MC0510: average particle size 2 to 30 μm) 90 wt%
And 10 wt% of a phenol resin (PR-50273 manufactured by Sumitomo Dures Co., Ltd.) as a binder were sufficiently mixed, and N-methyl-2-pyrrolidone as a solvent was added to obtain a negative electrode active material paste having a viscosity of 140 Ps. To this negative electrode active material paste, 3 wt% of polyethylene glycol (molecular weight 600) as a high boiling point material was added to the phenol resin.
%Added. Next, this negative electrode active material paste is applied to both sides of the current collector foil 11 and dried, and the temperature is 150 ° C. and 3 t / cm.
Press molding is performed under the conditions of 2 to obtain a negative electrode active material molded body having a predetermined shape. The negative electrode active material 1 is formed on both surfaces of the current collector foil 11 by firing the current collector foil 11 and the negative electrode active material molded body in an argon stream at 750 ° C. for 3 hours to obtain a negative electrode active material fired body.
A negative electrode 1 having 2 is prepared.
【0023】集電体箔11について、より詳しく説明す
る。図6に示すように、集電体箔11の集電部111に
は、複数個の孔113が等間隔に形成されている。孔1
13の形状は、円形、六角形、四角形、三角形、楕円な
ど、どのような形状でもよいが、円形が好ましい。これ
は、孔113を円形にすることにより、プレス成形時に
集電体箔11が破断しにくく、また負極活物質ペースト
の塗布およびプレス成形時に孔113内に負極活物質1
2が高密度に充填されやすく、さらに孔113の内部に
形成された負極活物質12の連結部123の強度が高く
なるためである。また、孔113は集電部111にのみ
設けられ、リード部112には設けられていない。これ
は、図11に示すように集電体箔51のリード部512
にも孔513が設けられていると、ケースに接続するた
めリード部512を曲げて束ねるときにリード部512
が破断しやすくなるためである。The current collector foil 11 will be described in more detail. As shown in FIG. 6, a plurality of holes 113 are formed in the current collector 111 of the current collector foil 11 at equal intervals. Hole 1
The shape of 13 may be any shape such as a circle, a hexagon, a quadrangle, a triangle, and an ellipse, but a circle is preferable. This is because, by making the hole 113 circular, the current collector foil 11 is less likely to break during press molding, and the negative electrode active material 1 is formed in the hole 113 during application of the negative electrode active material paste and press molding.
2 is easily filled at a high density, and the strength of the connecting portion 123 of the negative electrode active material 12 formed inside the hole 113 is increased. Further, the hole 113 is provided only in the current collector 111, and is not provided in the lead 112. This is the lead portion 512 of the current collector foil 51 as shown in FIG.
If the holes 513 are also provided in the lead portions 512 when the lead portions 512 are bent and bundled for connecting to the case.
Is easily broken.
【0024】(実験例1)孔が円形の場合について、集
電体箔に形成された孔の個数、孔径d、孔間隔Lを変え
て上記のように負極を作製し、集電体箔の形状による負
極活物質の欠け落ち防止効果の違いを比較した。集電体
箔の形状は、幅42mm×長さ32mm、厚さ12μm
である。欠け落ち防止効果の判定は、焼成後に電極を積
層してケース内に挿入したとき、目視により負極活物質
の欠け落ちが発見されない場合を○、発見された場合を
×とした。集電体箔の形状および評価結果を表1に示
す。(Experimental Example 1) When the holes were circular, the negative electrode was prepared as described above by changing the number of holes formed in the current collector foil, the hole diameter d, and the hole interval L, and The difference in the effect of preventing the chipping of the negative electrode active material depending on the shape was compared. The shape of the collector foil is 42 mm wide x 32 mm long, 12 μm thick
Is. The effect of preventing chipping off was evaluated as ◯ when no chipping of the negative electrode active material was visually observed when the electrodes were stacked after firing and inserted into the case, and as x when it was found. Table 1 shows the shape of the current collector foil and the evaluation results.
【0025】[0025]
【表1】 [Table 1]
【0026】表1から判るように、集電体箔が孔を有し
ない従来例では、電極の積層とケース内への挿入により
負極活物質焼成体の割れおよび集電体箔からの剥がれが
生じ、これにより負極活物質の欠け落ちが発生した。孔
径が0.03mmと小さい場合(比較例1)には、負極
活物質が孔内に適正に充填されないため、従来例と同様
に負極活物質の欠け落ちが発見された。また、孔径が1
1.00mmと大きい場合(比較例5)には、塗布時に
孔に入った負極ペーストが落ちて孔が開いてしまうため
孔内に負極活物質が適正に充填されず、負極活物質の欠
け落ちが発見された。孔径が大きい場合に負極活物質の
充填性をよくするため負極活物質ペーストの粘度を高く
することも考えられるが、粘度を過剰に高くすると集電
体箔への塗布が困難になる。As can be seen from Table 1, in the conventional example in which the current collector foil does not have holes, the negative electrode active material fired body is cracked and peeled from the current collector foil due to the lamination of electrodes and the insertion into the case. As a result, chipping of the negative electrode active material occurred. When the pore diameter was as small as 0.03 mm (Comparative Example 1), the negative electrode active material was not properly filled in the pores, and thus the negative electrode active material was found to be chipped off as in the conventional example. Also, the pore size is 1
When it is as large as 1.00 mm (Comparative Example 5), the negative electrode paste that has entered the holes during application is dropped and the holes are opened, so that the negative electrode active material is not properly filled in the holes and the negative electrode active material is chipped off. Was discovered. It may be possible to increase the viscosity of the negative electrode active material paste in order to improve the filling property of the negative electrode active material when the pore size is large, but if the viscosity is excessively high, application to the current collector foil becomes difficult.
【0027】一方、孔間隔が0.03mmと狭い場合
(比較例2)には、負極活物質ペースト塗布後の加圧成
形時に集電体箔に亀裂が生じる。逆に、孔間隔Lが1
6.00mmと広い場合(比較例4)には、電極の積層
とケース内への挿入により負極活物質焼成体の割れおよ
び集電体箔からの剥がれが生じ、これにより負極活物質
の欠け落ちが発生した。On the other hand, when the hole spacing is as narrow as 0.03 mm (Comparative Example 2), cracks occur in the current collector foil during pressure molding after coating the negative electrode active material paste. Conversely, the hole spacing L is 1
When it is as wide as 6.00 mm (Comparative Example 4), the negative electrode active material fired body is cracked and peeled off from the current collector foil due to the lamination of the electrodes and the insertion into the case, which causes the negative electrode active material to fall off. There has occurred.
【0028】孔の数が集電体箔の幅方向に対して一つし
かない場合(比較例3)には、集電体箔の両面間での負
極活物質焼成体の結合が弱いため、負極活物質焼成体の
割れおよび集電体箔からの剥がれが生じ、これにより負
極活物質の欠け落ちが発生した。以上の結果より、集電
体箔の形状は、集電体箔の幅方向および長さ方向にそれ
ぞれ二個以上の孔が設けられており、その孔の形状は孔
径dが0.05mm≦d≦10mm、孔間隔Lは0.0
5mm≦L≦15mmであることが望ましいことが判
る。When the number of holes is only one in the width direction of the current collector foil (Comparative Example 3), the bonding of the negative electrode active material fired body between both sides of the current collector foil is weak, The fired body of the negative electrode active material was cracked and peeled from the current collector foil, which caused chipping of the negative electrode active material. From the above results, the shape of the current collector foil is such that two or more holes are provided in the width direction and the length direction of the current collector foil, and the hole shape has a hole diameter d of 0.05 mm ≦ d. ≦ 10 mm, hole spacing L is 0.0
It can be seen that it is desirable that 5 mm ≦ L ≦ 15 mm.
【0029】なお、小型で放電容量の大きい二次電池を
得るためには、集電体箔の厚さは100μm以下である
ことが好ましい。 (実験例2)集電体箔に負極活物質ペーストを塗布し乾
燥した後のプレス成形条件が電池容量および負極活物質
の欠け落ち防止効果に与える影響について調べた。In order to obtain a small secondary battery having a large discharge capacity, the thickness of the collector foil is preferably 100 μm or less. (Experimental Example 2) The influence of press molding conditions after coating the negative electrode active material paste on the current collector foil and drying it was examined on the battery capacity and the effect of preventing the negative electrode active material from falling off.
【0030】プレス成形条件以外は実験例1と同様にし
て負極を作製した。実験例2において、集電体箔に設け
られた孔の直径dは1mmであり、孔の間隔Lは0.2
mmである。電池容量は、充電電流1.0mA/cm2
で4.2Vまで定電圧定電流充電を行い、放電電流1.
2mA/cm2 で2.75Vまで定電流放電を行ったと
きの放電容量を負極活物質の重量で割った値を初期放電
容量とし、初期放電容量が大きいほど良好として評価し
た。欠け落ち防止効果の判定は実験例1と同様に行っ
た。成形条件および評価結果を表2に示す。A negative electrode was produced in the same manner as in Experimental Example 1 except for press molding conditions. In Experimental Example 2, the diameter d of the holes provided in the current collector foil was 1 mm, and the distance L between the holes was 0.2.
mm. Battery capacity is 1.0mA / cm 2 charging current
Constant voltage constant current charging up to 4.2V and discharge current 1.
The initial discharge capacity was defined as the value obtained by dividing the discharge capacity when constant current discharge was performed at 2 mA / cm 2 up to 2.75 V by the weight of the negative electrode active material. The larger the initial discharge capacity, the better. Judgment of the chipping prevention effect was performed in the same manner as in Experimental Example 1. The molding conditions and the evaluation results are shown in Table 2.
【0031】[0031]
【表2】 [Table 2]
【0032】実施例14、15、18、19、20およ
び21の比較から判るように、0.1〜10t/cm2
の範囲では、成形圧力が高くなるほど孔内における負極
活物質の成形密度が高くなり単位体積当たりの負極活物
質量が大きくなるため初期放電容量が高くなっている。
成形圧力が0.1t/cm2 よりも小さい場合(比較例
6)には、孔内に負極活物質が適正に充填されないため
集電体箔から負極活物質が剥がれ落ちる。また、成形圧
力が10t/cm2 を超えて大きい場合には集電体箔に
亀裂が生じた。As can be seen from a comparison of Examples 14, 15, 18, 19, 20, and 21, 0.1-10 t / cm 2
In the above range, the higher the molding pressure, the higher the molding density of the negative electrode active material in the pores and the larger the amount of the negative electrode active material per unit volume, and the higher the initial discharge capacity.
When the molding pressure is less than 0.1 t / cm 2 (Comparative Example 6), the negative electrode active material is not properly filled in the holes, so that the negative electrode active material peels off from the current collector foil. Further, when the molding pressure was large over 10 t / cm 2 , the current collector foil was cracked.
【0033】以上の結果から、負極の成形圧力範囲は、
0.1〜10t/cm2 とすることが好ましいことが判
る。成形圧力が5t/cm2 〜10t/cm2 の範囲で
は成形圧力を高くしても成形圧力は変化しないため、成
形圧力は1〜5t/cm2 とすることがさらに好まし
い。実施例16のようにプレス成形を常温で行った場合
にも良好な結果が得られるが、実施例17、18のよう
に加熱成形を行った方が負極活物質の成形密度が向上し
て電池容量が向上するため好ましい。また、バインダと
してフェノール樹脂などの熱硬化性樹脂を用いた場合に
は、樹脂の硬化温度以下での加熱成形を行うことが好ま
しい。ここで、ポリエチレングリコールのような高沸点
溶媒を添加すると、熱硬化性樹脂の硬化を抑制できるの
で成形をより高温で行うことができ、成形密度をより向
上させて電池容量を向上させることができる。この場
合、280℃程度まで加熱成形温度を高くすることが可
能である。From the above results, the molding pressure range of the negative electrode is
It can be seen that it is preferably 0.1 to 10 t / cm 2 . Since molding pressure 5t / cm 2 ~10t / cm molding pressures by increasing the molding pressure in the second range does not change, the molding pressure is more preferably set to 1~5t / cm 2. Good results are obtained even when the press molding is carried out at room temperature as in Example 16, but the thermoforming as in Examples 17 and 18 improves the molding density of the negative electrode active material and improves the battery. It is preferable because the capacity is improved. When a thermosetting resin such as a phenol resin is used as the binder, it is preferable to perform heat molding at a temperature not higher than the curing temperature of the resin. Here, when a high boiling point solvent such as polyethylene glycol is added, curing of the thermosetting resin can be suppressed, so that molding can be performed at a higher temperature, the molding density can be further improved, and the battery capacity can be improved. . In this case, the heat molding temperature can be increased to about 280 ° C.
【0034】以上説明したように、本実施例によると、
集電体箔11に複数個の孔113が設けられている。こ
のため、集電体箔11の両面に負極活物質ペーストを塗
布、乾燥してプレス成形すると、孔113を通じて集電
体箔11の一方の面と他方の面との間が連結された負極
活物質成形体となる。この負極活物質成形体を不活性雰
囲気で焼成すると、第一の負極活物質層121と第二の
負極活物質層122とが複数個の連結部123により連
結された負極活物質焼成体としての負極活物質12が得
られる。これにより、集電体箔11に負極活物質12が
強固に固定されるので割れや剥がれが生じにくい。ま
た、負極活物質12に割れや剥がれが生じた場合にも、
複数個の連結部123により集電体箔11から負極活物
質12が欠け落ちしにくい。As described above, according to the present embodiment,
The current collector foil 11 is provided with a plurality of holes 113. Therefore, when the negative electrode active material paste is applied to both surfaces of the current collector foil 11, dried and press-molded, one surface of the current collector foil 11 is connected through the hole 113 to the other surface of the negative electrode active material. It becomes a material compact. When this negative electrode active material molded body is fired in an inert atmosphere, a first negative electrode active material layer 121 and a second negative electrode active material layer 122 are connected by a plurality of connecting portions 123 to obtain a negative electrode active material fired body. The negative electrode active material 12 is obtained. As a result, the negative electrode active material 12 is firmly fixed to the current collector foil 11, so cracking and peeling are less likely to occur. In addition, when the negative electrode active material 12 is cracked or peeled off,
Due to the plurality of connecting portions 123, the negative electrode active material 12 does not easily fall off from the collector foil 11.
【0035】また、負極活物質成形体は焼成時に多少収
縮する。このとき、集電体箔11に複数個の孔113が
設けられていることにより、連結部123で連結された
第一の負極活物質層121と第二の負極活物質層122
とが集電体箔11の両面から互いに接近するように負極
活物質成形体が収縮する。これにより、集電体箔11と
負極活物質12との接触が良好になり接触抵抗が減少す
るので、導電率が向上し、集電体箔11と負極活物質1
2との充放電を高速に行うことが可能になる。Further, the negative electrode active material molded body slightly contracts during firing. At this time, since the current collector foil 11 is provided with the plurality of holes 113, the first negative electrode active material layer 121 and the second negative electrode active material layer 122 connected by the connecting portion 123.
The negative electrode active material molded body shrinks so that and become closer to each other from both sides of the current collector foil 11. As a result, the contact between the current collector foil 11 and the negative electrode active material 12 is improved and the contact resistance is reduced, so that the conductivity is improved and the current collector foil 11 and the negative electrode active material 1 are improved.
2 can be charged and discharged at high speed.
【0036】負極活物質12は、炭素材の各粒子が樹脂
の炭化物によって結合された状態になっているため強固
であり割れが生じにくい。負極活物質12は焼成されて
おり、炭素材を被覆している樹脂は多孔質状に炭化され
ている。このため、多孔質状の負極活物質12の空隙内
に電解液4が容易に侵入し、またリチウムイオンの負極
1への出入りを阻害しないので優れた電池作用を発揮す
る。Since the negative electrode active material 12 is in a state in which the particles of the carbon material are bonded by the carbide of the resin, the negative electrode active material 12 is strong and hardly cracks. The negative electrode active material 12 is fired, and the resin coating the carbon material is carbonized in a porous form. Therefore, the electrolytic solution 4 easily penetrates into the voids of the porous negative electrode active material 12 and does not inhibit the lithium ions from entering and leaving the negative electrode 1, thus exhibiting an excellent battery action.
【0037】また、負極1は炭素材と樹脂炭化物とから
なるため導電性に優れ、さらに炭化物も活物質として機
能するためムダなく電極の容量が向上できる。樹脂が炭
化されているため電解液による負極の腐食が防止される
ので、長期に渡り安定して高い放電効果が得られる。し
たがって、非水電解質二次電池を長期間使用することが
できる。Further, since the negative electrode 1 is made of a carbon material and a resin carbide, it has excellent conductivity, and since the carbide also functions as an active material, the capacity of the electrode can be improved without waste. Since the resin is carbonized, the negative electrode is prevented from corroding due to the electrolytic solution, so that a stable and high discharge effect can be obtained for a long period of time. Therefore, the non-aqueous electrolyte secondary battery can be used for a long period of time.
【0038】本実施例の非水電解質二次電池は、小型で
あり長期に渡り安定して高い放電効果が得られるため、
熱転写印刷機能付きのバーコードリーダや検針器などの
ハンディターミナル、ノート型パーソナルコンピュー
タ、電動自転車および電動車椅子および電気自動車など
に好適に用いられる。さらに、携帯電話、ビデオおよび
ビデオ一体型テレビなどにも使用できる。The non-aqueous electrolyte secondary battery of this example is small in size and can stably obtain a high discharge effect for a long period of time.
It is preferably used for a handy terminal such as a bar code reader with a thermal transfer printing function and a meter reading device, a notebook personal computer, an electric bicycle, an electric wheelchair and an electric vehicle. Further, it can be used for mobile phones, video and video-integrated televisions.
【0039】なお、電解液4の調製に用いる非水溶媒と
しては、本実施例で用いたプロピレンカーボネート:ジ
エチルカーボネート混合溶媒に限らず、例えば、プロピ
レンカーボネート、エチレンカーボネート、ジメチルカ
ーボネート、ジエチルカーボネート、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、γ−ブチロラク
トン、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、1,3−ジオキソラン、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル、ギ酸メチ
ル、ギ酸エチル、酢酸メチル、酢酸エチル、リン酸トリ
メチル、リン酸トリエチル、リン酸トリエチルヘキシ
ル、リン酸トリラウリルなどのいずれか一種または二種
以上を所望の割合で混合したものが使用可能である。ま
た、リチウムイオン導電性の固体電解質を用いてもよ
い。一方、非水電解質としては、本実施例で用いたLi
PF6 に限らず、例えば、LiBF4 、LiClO4 、
LiAsF6 、CH3 SO3 Li、CF3 SO3 Li、
(CF3 SO2 )2 NLiなどのリチウム塩のいずれか
一種、または二種以上を所望の割合で混合したものが使
用可能である。The non-aqueous solvent used for the preparation of the electrolytic solution 4 is not limited to the propylene carbonate: diethyl carbonate mixed solvent used in this example, but may be, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1 , 2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate , Ethyl acetate, trimethyl phosphate, triethyl phosphate, triethylhexyl phosphate, trilauryl phosphate and the like, or a mixture of two or more thereof in a desired ratio can be used. Alternatively, a lithium ion conductive solid electrolyte may be used. On the other hand, as the non-aqueous electrolyte, Li used in this example was used.
Not limited to PF 6 , for example, LiBF 4 , LiClO 4 ,
LiAsF 6 , CH 3 SO 3 Li, CF 3 SO 3 Li,
Any one kind of lithium salt such as (CF 3 SO 2 ) 2 NLi or a mixture of two or more kinds at a desired ratio can be used.
【0040】セパレータ3としては、本実施例で用いた
ポリエチレン製微多孔フィルムに替えて、例えば、ポリ
プロピレン製微多孔フィルム、ポリプロピレン/ポリエ
チレン/ポリプロピレン3層微多孔フィルムなどが使用
可能である。また、正極活物質としては、本実施例で用
いたLiCoO2 の他に、リチウムイオンを脱ドープお
よびドープし得るものであってリチウムを参照電極(0
V)とした場合の電位が3.5V以上の物質が使用可能
である。このような物質としては、次に示すようなもの
がある。As the separator 3, it is possible to use, for example, a polypropylene microporous film or a polypropylene / polyethylene / polypropylene 3-layer microporous film in place of the polyethylene microporous film used in this embodiment. Further, as the positive electrode active material, in addition to LiCoO 2 used in this example, lithium ion can be dedoped and doped, and lithium can be used as a reference electrode (0
A substance having a potential of 3.5 V or more when V) is used can be used. Examples of such substances include the following.
【0041】 Lix CoO2 (0<x≦1)、Li
x Coy Mz O2 (MはAl、In、Snから選択され
た少なくとも一種の金属、0.5<y≦1、z≦0.
1)などのリチウムコバルト酸化物。 Lix NiO2 (0<x≦1)、Lix Coy Ni
z O2 (0<x≦1、y+z=1)などのリチウムニッ
ケル酸化物。Li x CoO 2 (0 <x ≦ 1), Li
x Co y M z O 2 (M is at least one metal selected from Al, In and Sn, 0.5 <y ≦ 1, z ≦ 0.
1) such as lithium cobalt oxide. Li x NiO 2 (0 <x ≦ 1), Li x Co y Ni
Lithium nickel oxide such as z O 2 (0 <x ≦ 1, y + z = 1).
【0042】 Lix MnO2 (0<x≦1)、Li
x Mn2 O4 (0<x≦1)、LiCox Mn2-x O4
(0<x≦0.5)などのリチウムマンガン酸化物。 正極活物質と混合する導電剤としては、本実施例で用い
た黒鉛に替えてケッチェンブラックなどを使用してもよ
い。正極活物質と混合するバインダとしては、例えば、
ポリテトラフロロエチレン、ポリフッ化ビニリデン、フ
ッ素ゴム、カルボキシメチルセルロース、ポリビニルア
ルコール、ポリアクリル酸、ポリイミド樹脂、ポリブタ
ジエン、スチレン−ブタジエンゴム、ニトリルゴム、ポ
リアクリロニトリルなどの有機重合体を用いることがで
きる。Li x MnO 2 (0 <x ≦ 1), Li
x Mn 2 O 4 (0 <x ≦ 1), LiCo x Mn 2-x O 4
Lithium manganese oxide such as (0 <x ≦ 0.5). As the conductive agent mixed with the positive electrode active material, Ketjen black or the like may be used instead of the graphite used in this example. As the binder mixed with the positive electrode active material, for example,
Organic polymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluororubber, carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, polyimide resin, polybutadiene, styrene-butadiene rubber, nitrile rubber, and polyacrylonitrile can be used.
【0043】正極活物質、導電剤およびバインダの混合
物に添加する溶剤としては、本実施例で用いたN−メチ
ル−2−ピロリドンの他に、アルコール類、アセトンな
どのケトン類など、正極活物質ペーストの粘度を調整可
能な溶媒をバインダの種類に応じて適宜選択すればよ
い。また、正極2に用いる集電体箔21としては、本実
施例で用いたアルミニウム箔に限らず、アルミニウム、
ニッケル、ステンレススチールなどからなる金属箔、網
状体、金属多孔体などが使用可能である。As the solvent to be added to the mixture of the positive electrode active material, the conductive agent and the binder, in addition to N-methyl-2-pyrrolidone used in this example, positive electrode active materials such as alcohols and ketones such as acetone are used. A solvent capable of adjusting the viscosity of the paste may be appropriately selected according to the type of binder. Further, the collector foil 21 used for the positive electrode 2 is not limited to the aluminum foil used in this embodiment, but aluminum,
A metal foil made of nickel, stainless steel or the like, a mesh body, a metal porous body, or the like can be used.
【0044】また、負極1に用いる炭素質材料として
は、本実施例で用いた難黒鉛性炭素に限らず、易黒鉛性
炭素、天然黒鉛、人造黒鉛、ピッチコークス粉、有機物
炭化粉およびこれらの混合物が使用可能である。また、
黒鉛を不定形炭素で被覆した複合炭素質を用いてもよ
い。炭素質の形状は、鱗片状、球形状、繊維状および粉
砕などで得られる不定多角形状のいずれでもよい。本実
施例では平均粒径2〜30μmの難黒鉛性炭素を用いた
が、炭素質材料の平均粒径は3〜15μmであることが
より好ましい。Further, the carbonaceous material used for the negative electrode 1 is not limited to the non-graphitizable carbon used in this example, but also the graphitizable carbon, natural graphite, artificial graphite, pitch coke powder, organic carbonized powder and these. Mixtures can be used. Also,
A composite carbonaceous material in which graphite is coated with amorphous carbon may be used. The carbonaceous shape may be any of scale-like shape, spherical shape, fibrous shape, and irregular polygonal shape obtained by pulverization. Although the non-graphitizable carbon having an average particle diameter of 2 to 30 μm is used in this embodiment, the average particle diameter of the carbonaceous material is more preferably 3 to 15 μm.
【0045】炭素質材料と混合するバインダとしては、
正極2の作製に用いたバインダも使用可能であるが、熱
硬化性樹脂を使用することがより好ましい。負極活物質
中に熱硬化性樹脂を存在させ、集電体箔に負極活物質ペ
ーストを塗布して乾燥した後に熱硬化性樹脂を硬化させ
ると、硬化した樹脂により炭素質材料の各粒子が互いに
強固に結着されるので焼成時に負極活物質成形体が崩れ
にくくなる。また、熱硬化性樹脂を焼成前に硬化させる
ことなくそのまま焼成し、焼成時の熱により硬化させて
もよい。本実施例では、負極活物質成形体を得るための
プレス成形を150℃で行うことにより焼成前に熱硬化
性樹脂を硬化させている。また、熱硬化性樹脂はアルゴ
ン、窒素などの不活性ガス雰囲気化で加熱されることに
より炭化して樹脂炭化物となり、この樹脂炭化物により
焼成後の炭素質材料の各粒子が互いに強固に結着され
る。バインダは、炭素質材料との混合物中において5〜
40重量%であることが好ましい。バインダが5重量%
未満では負極活物質焼結体中での炭素材粒子の結着性が
低下するおそれがある。一方、バインダが40重量%を
超えると負極活物質焼結体の電極容量などの特性が低下
するおそれがある。As the binder mixed with the carbonaceous material,
The binder used for producing the positive electrode 2 can be used, but it is more preferable to use a thermosetting resin. When the thermosetting resin is present in the negative electrode active material, the negative electrode active material paste is applied to the current collector foil and dried, and then the thermosetting resin is cured, the particles of the carbonaceous material are mutually separated by the cured resin. Since it is firmly bound, the negative electrode active material molded body is less likely to collapse during firing. Further, the thermosetting resin may be baked as it is without being cured before baking, and may be cured by heat during baking. In this example, the thermosetting resin is cured before firing by performing press molding to obtain a negative electrode active material molded body at 150 ° C. Further, the thermosetting resin is carbonized by being heated in an atmosphere of an inert gas such as argon or nitrogen to become a resin carbide, and the resin carbide firmly bonds the particles of the carbonaceous material after firing to each other. It The binder is 5 to 5 in the mixture with the carbonaceous material.
It is preferably 40% by weight. 5% by weight of binder
If the amount is less than the range, the binding property of the carbon material particles in the negative electrode active material sintered body may be deteriorated. On the other hand, when the binder content exceeds 40% by weight, characteristics such as the electrode capacity of the negative electrode active material sintered body may deteriorate.
【0046】炭素質材料と混合する熱硬化性樹脂として
は、本実施例で用いたフェノール樹脂の他に、例えば、
フラン樹脂、ピッチ、セルロース、レーヨン、ポリアク
リロニトリル、ポリイミドなど、不活性ガス雰囲気下で
焼成することにより炭化する有機化合物を使用すること
ができる。炭素質材料およびバインダの混合物に添加す
る溶媒としては、本実施例で用いたN−メチル−2−ピ
ロリドンの他に、アルコール類、アセトンなどのケトン
類など、負極活物質ペーストの粘度を調整可能な溶媒を
バインダの種類に応じて適宜選択すればよい。また、ポ
リテトラフルオロエチレン、ポリエチレンなどの結着剤
を1〜5%程度の少量加えることにより、炭素質材料お
よびバインダの粉末状態の混合物をそのままプレス成形
して簡便に負極活物質成形体を得ることができる。ま
た、液状のバインダを用いて負極活物質ペーストとする
こともできる。As the thermosetting resin to be mixed with the carbonaceous material, in addition to the phenol resin used in this example, for example,
It is possible to use an organic compound such as furan resin, pitch, cellulose, rayon, polyacrylonitrile, or polyimide which is carbonized by firing in an inert gas atmosphere. As the solvent added to the mixture of the carbonaceous material and the binder, in addition to N-methyl-2-pyrrolidone used in this example, alcohols, ketones such as acetone, and the like, the viscosity of the negative electrode active material paste can be adjusted. A suitable solvent may be appropriately selected according to the type of binder. In addition, a binder such as polytetrafluoroethylene or polyethylene is added in a small amount of about 1 to 5%, and the powdery mixture of the carbonaceous material and the binder is directly press-molded to easily obtain a negative electrode active material molded body. be able to. Alternatively, a negative electrode active material paste can be prepared by using a liquid binder.
【0047】本実施例では、負極活物質成形体の焼成条
件をアルゴン気流中で750℃×3hとしたが、負極活
物質成形体の焼成温度は下限を400℃とする。これ
は、図7に示すように、バインダとして用いられる樹脂
類が概ね400℃以上で炭化するためである。図7にお
いて、各樹脂の始めの重量を100%としたとき、40
0℃〜600℃の範囲で各樹脂の重量が大きく減少し、
各樹脂が炭化されたことが判る。In this example, the negative electrode active material molded body was fired in an argon stream at 750 ° C. for 3 hours, but the lower limit of the firing temperature of the negative electrode active material molded body was 400 ° C. This is because, as shown in FIG. 7, the resins used as the binder are carbonized at about 400 ° C. or higher. In FIG. 7, assuming that the initial weight of each resin is 100%, 40
The weight of each resin is greatly reduced in the range of 0 ° C to 600 ° C,
It can be seen that each resin was carbonized.
【0048】一方、焼成温度の上限は集電体箔の材質に
より異なる。集電体箔としては、銅、ニッケル、ステン
レススチールなどを使用可能であり、電極を積層、挿入
するためには、0.1MPa以上の破断強度が必要なこ
とが実験的に判っている。様々な温度で各材質を焼成し
たときの曲げ強度を図8に示す。集電体箔の材質として
ニッケルを用いた場合には、焼成温度が1200℃より
も高いとニッケルが固くなり電極が折れやすくなる。ま
た、リード部も曲げにより折れやすくなるため、ニッケ
ルを用いた場合の焼成温度は1200℃以下とする。ま
た、集電体箔の材質として銅を用いた場合には、銅の融
点が1083℃であるので焼成温度は1000℃以下と
する。また、集電体箔の材質としてステンレススチール
を用いた場合には、図9に示すように、焼成温度が10
00℃を超えると鉄中に炭素が拡散して集電体箔が脆く
なり折れやすくなるため、焼成温度は1000℃以下と
する。On the other hand, the upper limit of the firing temperature depends on the material of the collector foil. As the current collector foil, copper, nickel, stainless steel, or the like can be used, and it has been experimentally found that a breaking strength of 0.1 MPa or more is required to stack and insert the electrodes. FIG. 8 shows the bending strength when each material is fired at various temperatures. When nickel is used as the material of the current collector foil, if the firing temperature is higher than 1200 ° C., the nickel becomes hard and the electrode easily breaks. Further, since the lead portion is also easily broken by bending, the firing temperature when nickel is used is 1200 ° C. or lower. When copper is used as the material of the collector foil, the melting point of copper is 1083 ° C., so the firing temperature is 1000 ° C. or less. When stainless steel was used as the material of the collector foil, the firing temperature was 10% as shown in FIG.
If the temperature exceeds 00 ° C, carbon diffuses into the iron and the current collector foil becomes brittle and easily broken, so the firing temperature is set to 1000 ° C or lower.
【0049】なお、集電体箔11は負極活物質成形体と
ともに焼成されるため曲げに対して弱くなりやすく、特
に集電部111とリード部112との境界付近でリード
部112が破断しやすい。ここで、図10に示すよう
に、集電体箔41のリード部412の付根部にコーナ曲
部412aを設けると、リード部412の破断を防止す
る効果がある。コーナ曲部の曲率半径が0.05mm未
満の場合にはリードの破断を防止する効果が不十分であ
る。コーナ曲部の曲率半径が10mmを超えて大きい場
合には正極のリード部と短絡して内部ショートを起こし
やすくなり、またリード部412を所定の形状に曲げる
ことが困難になる。このため、コーナ曲部の曲率半径と
しては、0.05mm〜10mm、好ましくは0.1m
m〜3mmがよい。Since the collector foil 11 is fired together with the negative electrode active material molded body, it is vulnerable to bending, and the lead portion 112 is easily broken particularly near the boundary between the collector portion 111 and the lead portion 112. . Here, as shown in FIG. 10, when the corner bent portion 412a is provided at the root portion of the lead portion 412 of the current collector foil 41, there is an effect of preventing breakage of the lead portion 412. When the radius of curvature of the corner curved portion is less than 0.05 mm, the effect of preventing breakage of the lead is insufficient. When the radius of curvature of the corner curved portion exceeds 10 mm and is large, the lead portion of the positive electrode is short-circuited and an internal short circuit is likely to occur, and it becomes difficult to bend the lead portion 412 into a predetermined shape. Therefore, the radius of curvature of the corner curved portion is 0.05 mm to 10 mm, preferably 0.1 m
m to 3 mm is preferable.
【図1】本発明の一実施例による非水電解質二次電池の
負極を示すもので、(A)は斜視図、(B)はそのI−
I線断面図である。1 shows a negative electrode of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention, (A) is a perspective view, (B) is its I-.
It is an I line sectional view.
【図2】本発明の一実施例による非水電解質二次電池を
示す部分断面図である。FIG. 2 is a partial cross-sectional view showing a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
【図3】図2のIII 方向矢視図である。FIG. 3 is a view on arrow III in FIG.
【図4】図2のIV方向矢視図である。FIG. 4 is a view on arrow IV in FIG.
【図5】本発明の一実施例による非水電解質二次電池の
電極群を示す斜視図である。FIG. 5 is a perspective view showing an electrode group of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
【図6】本発明の一実施例による非水電解質二次電池の
負極に用いられる集電体箔を示す平面図である。FIG. 6 is a plan view showing a current collector foil used as a negative electrode of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
【図7】樹脂の炭化温度を示す特性図である。FIG. 7 is a characteristic diagram showing a carbonization temperature of a resin.
【図8】金属の熱処理温度と伸び率との関係を示す特性
図である。FIG. 8 is a characteristic diagram showing the relationship between heat treatment temperature and elongation of metal.
【図9】金属の焼成温度と曲げ強度との関係を示す特性
図である。FIG. 9 is a characteristic diagram showing the relationship between the firing temperature and bending strength of a metal.
【図10】リード部にコーナ曲部を設けた集電体箔を示
す平面図である。FIG. 10 is a plan view showing a collector foil in which a lead portion is provided with a corner curved portion.
【図11】リード部に孔を設けた集電体箔を示す平面図
である。FIG. 11 is a plan view showing a current collector foil having holes in lead portions.
1 負極(電極) 2 正極 3 セパレータ 4 電解液 5 電極群 10 非水電解質二次電池 11 集電体箔 12 負極活物質(活物質) 61 ケース 111 集電部 112 リード部 113 孔 121 第一の負極活物質層(活物質) 122 第二の負極活物質層(活物質) 123 連結部(活物質) 212 リード部 DESCRIPTION OF SYMBOLS 1 Negative electrode (electrode) 2 Positive electrode 3 Separator 4 Electrolyte 5 Electrode group 10 Non-aqueous electrolyte secondary battery 11 Current collector foil 12 Negative electrode active material (active material) 61 Case 111 Current collecting part 112 Lead part 113 Hole 121 First Negative electrode active material layer (active material) 122 Second negative electrode active material layer (active material) 123 Connection part (active material) 212 Lead part
Claims (8)
て、 前記電極は、複数個の孔を有する集電体箔の表面に炭素
材と樹脂との混合物からなる活物質を設け、前記活物質
を不活性気体中で焼成して焼結体とすることにより作製
されることを特徴とする非水電解質二次電池。1. A secondary battery comprising an electrode and an electrolytic solution, wherein the electrode is provided with an active material made of a mixture of a carbon material and a resin on the surface of a current collector foil having a plurality of holes, A non-aqueous electrolyte secondary battery manufactured by firing the active material in an inert gas to form a sintered body.
≦10であり、前記孔の間隔L(mm)は0.05≦L
≦15であり、かつ前記孔は前記集電体箔の幅方向およ
び長さ方向にそれぞれ二個以上設けられていることを特
徴とする請求項1記載の非水電解質二次電池。2. The hole diameter d (mm) of the hole is 0.05 ≦ d
≦ 10, and the distance L (mm) between the holes is 0.05 ≦ L
The non-aqueous electrolyte secondary battery according to claim 1, wherein ≦ 15, and two or more holes are provided in each of the width direction and the length direction of the current collector foil.
けられる集電部と前記集電部の一端から延びるリード部
とからなり、前記集電部にのみ前記孔が設けられている
ことを特徴とする請求項1または2記載の非水電解質二
次電池。3. The current collector foil comprises a current collector having a surface provided with the active material and a lead extending from one end of the current collector, and the hole is provided only in the current collector. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein
/cm2 の成形圧力でプレスされることを特徴とする請
求項1、2または3記載の非水電解質二次電池。4. The active material is 0.1-10 t before firing.
The non-aqueous electrolyte secondary battery according to claim 1, 2 or 3, which is pressed at a molding pressure of / cm 2 .
ステンレススチールからなることを特徴とする請求項1
から4のいずれか一項記載の非水電解質二次電池。5. The current collector foil is made of copper, nickel, or stainless steel.
5. The non-aqueous electrolyte secondary battery according to any one of items 1 to 4.
の焼成温度は400℃〜1000℃であることを特徴と
する請求項1から4のいずれか一項記載の非水電解質二
次電池。6. The nonaqueous electrolyte electrolyte according to claim 1, wherein the current collector foil is made of copper, and the firing temperature of the active material is 400 ° C. to 1000 ° C. Next battery.
ススチールからなり、前記活物質の焼成温度は400℃
〜1200℃であることを特徴とする請求項1から4の
いずれか一項記載の非水電解質二次電池。7. The current collector foil is made of nickel or stainless steel, and the firing temperature of the active material is 400 ° C.
It is -1200 degreeC, The non-aqueous electrolyte secondary battery as described in any one of Claim 1 to 4 characterized by the above-mentioned.
徴とする請求項1から7のいずれか一項記載の非水電解
質二次電池。8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the resin is a thermosetting resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052809A JPH08250109A (en) | 1995-03-13 | 1995-03-13 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052809A JPH08250109A (en) | 1995-03-13 | 1995-03-13 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08250109A true JPH08250109A (en) | 1996-09-27 |
Family
ID=12925181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7052809A Pending JPH08250109A (en) | 1995-03-13 | 1995-03-13 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08250109A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243401A (en) * | 1998-06-26 | 2000-09-08 | Kazunori Yamada | Current collector for battery |
JP2001338844A (en) * | 2000-05-30 | 2001-12-07 | Kyocera Corp | Electric double layer capacitor |
US6410189B1 (en) | 1998-12-25 | 2002-06-25 | Tokai Aluminum Fiol Co., Ltd. | Current collectors for battery |
KR101279174B1 (en) * | 2010-06-17 | 2013-06-26 | 닛산 지도우샤 가부시키가이샤 | Electrode structure of secondary battery and manufacturing method for electrode of secondary battery |
CN114586203A (en) * | 2020-03-27 | 2022-06-03 | 株式会社Lg新能源 | Lithium secondary battery electrode including perforated current collector, method for manufacturing the same, and lithium secondary battery including the electrode |
-
1995
- 1995-03-13 JP JP7052809A patent/JPH08250109A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243401A (en) * | 1998-06-26 | 2000-09-08 | Kazunori Yamada | Current collector for battery |
US6410189B1 (en) | 1998-12-25 | 2002-06-25 | Tokai Aluminum Fiol Co., Ltd. | Current collectors for battery |
JP2001338844A (en) * | 2000-05-30 | 2001-12-07 | Kyocera Corp | Electric double layer capacitor |
KR101279174B1 (en) * | 2010-06-17 | 2013-06-26 | 닛산 지도우샤 가부시키가이샤 | Electrode structure of secondary battery and manufacturing method for electrode of secondary battery |
CN114586203A (en) * | 2020-03-27 | 2022-06-03 | 株式会社Lg新能源 | Lithium secondary battery electrode including perforated current collector, method for manufacturing the same, and lithium secondary battery including the electrode |
JP2022550821A (en) * | 2020-03-27 | 2022-12-05 | エルジー エナジー ソリューション リミテッド | LITHIUM SECONDARY BATTERY ELECTRODE INCLUDING PERFORATED CURRENT COLLECTOR, METHOD FOR MANUFACTURING THE SAME, AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME ELECTRODE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4957680B2 (en) | Electrode with porous protective film layer for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
US20190245184A1 (en) | Separator and battery | |
KR100809853B1 (en) | Nonaqueous electrolyte secondary battery | |
EP1139460A2 (en) | Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell employing the same | |
JP3755502B2 (en) | Non-aqueous electrolyte battery | |
US7659035B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4967970B2 (en) | Method for producing positive electrode of lithium ion battery | |
JP3791797B2 (en) | battery | |
JP2007273183A (en) | Negative electrode and secondary battery | |
JP3680759B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2004103475A (en) | Battery | |
JP2012048917A (en) | Positive electrode, nonaqueous electrolyte battery, positive electrode mixture, and binder | |
JP5418626B2 (en) | Method for producing positive electrode of lithium ion battery and method for producing lithium ion battery | |
JP4792618B2 (en) | Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery | |
JP2014007088A (en) | Nonaqueous electrolytic secondary battery and method for manufacturing the same | |
JP2004031165A (en) | Nonaqueous electrolyte battery | |
JP4543618B2 (en) | Non-aqueous electrolyte battery | |
JP2002279956A (en) | Non-aqueous electrolyte battery | |
JP2006260864A (en) | Method for manufacturing lithium secondary battery | |
JP3351765B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH08250109A (en) | Secondary battery | |
JP2004363076A (en) | Battery | |
JP4085481B2 (en) | battery | |
JP2001085009A (en) | Positive electrode active material and its manufacture | |
JP3794283B2 (en) | Non-aqueous electrolyte battery |