[go: up one dir, main page]

JPH08247956A - Internal defect inspection method for crystal - Google Patents

Internal defect inspection method for crystal

Info

Publication number
JPH08247956A
JPH08247956A JP7052898A JP5289895A JPH08247956A JP H08247956 A JPH08247956 A JP H08247956A JP 7052898 A JP7052898 A JP 7052898A JP 5289895 A JP5289895 A JP 5289895A JP H08247956 A JPH08247956 A JP H08247956A
Authority
JP
Japan
Prior art keywords
light beam
inspection
semiconductor substrate
crystal
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7052898A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirakawa
義徳 白川
Koji Sueoka
浩治 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7052898A priority Critical patent/JPH08247956A/en
Publication of JPH08247956A publication Critical patent/JPH08247956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

(57)【要約】 【目的】 検査対象となる結晶体の表面を基準面として
の光ビームの焦点合わせが高精度にしかも容易に行われ
るようにし、この焦点位置を基準として行われる以降の
検査により、信頼性の高い検査結果が安定して得られる
ようにする。 【構成】 平板状の結晶体として構成され、検査対象と
なる半導体基板Wの表面の一部に、検査用の光ビームを
反射し得る反射層8を形成しておく。検査のための光ビ
ームの照射に先立ち、実線により示す如く、反射層8に
光ビームを照射し、この反射層8からの反射光の観察結
果に基づいて光ビームの焦点を反射層8の表面に合わせ
る。その後の検査は、半導体基板Wを表面内にて移動さ
せ、反射層8の表面に焦点を合わせた光ビームを前記表
面上に走査させて行う。
(57) [Summary] [Purpose] The focus of the light beam with the surface of the crystal to be inspected as the reference plane is accurately and easily adjusted, and subsequent inspections are performed with this focus position as the reference. By doing so, highly reliable inspection results can be stably obtained. [Structure] A reflective layer 8 configured as a flat crystal and capable of reflecting a light beam for inspection is formed on a part of the surface of a semiconductor substrate W to be inspected. Prior to the irradiation of the light beam for inspection, as shown by the solid line, the reflection layer 8 is irradiated with the light beam, and the focus of the light beam is focused on the surface of the reflection layer 8 based on the observation result of the reflected light from the reflection layer 8. To match. The subsequent inspection is performed by moving the semiconductor substrate W within the surface and scanning the surface with a light beam focused on the surface of the reflective layer 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板等、平板状
をなす結晶体が保有する微小な内部欠陥を、これの表面
に照射される光ビームを利用して検査する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting minute internal defects possessed by a flat crystal such as a semiconductor substrate by using a light beam irradiated on the surface thereof.

【0002】[0002]

【従来の技術】各種の半導体デバイスの製造に用いられ
る半導体基板は、Si,GaAs,InP 等の結晶体を薄肉平板
状にスライスし、回路の形成面となる一面(以下表面と
いう)を精密に研磨して得られる。このような半導体基
板は、一般的に、結晶体としての成長段階において混入
する各種の不純物を内部欠陥として含んでおり、これら
の内部欠陥の存在は、前記表面への回路形成により製造
される半導体デバイスの製造歩留りを悪化させると共
に、製品デバイスの信頼性を低下させる要因となってい
る。
2. Description of the Related Art Semiconductor substrates used in the manufacture of various semiconductor devices are made by slicing a crystal such as Si, GaAs, InP into a thin flat plate, and precisely forming one surface (hereinafter referred to as the surface) on which the circuit is formed. It is obtained by polishing. Such a semiconductor substrate generally contains various impurities that are mixed in at the growth stage as a crystal body as internal defects, and the presence of these internal defects causes the semiconductor manufactured by the circuit formation on the surface to be produced. This is a factor that deteriorates the manufacturing yield of devices and reduces the reliability of product devices.

【0003】このような事情により、従来から、半導体
基板等の平板状をなす結晶体を検査対象とし、これらに
おける内部欠陥の存否を予め知るための検査方法が提案
されている。このような検査方法の一つとして、例え
ば、特開平4-24541号公報等に開示されている方法があ
る。この検査方法は、検査対象となる結晶体に光ビーム
を照射したとき、内部への透過光が透過位置に存在する
欠陥により散乱されることを利用し、結晶体の外側での
散乱光の観察結果に基づいて内部欠陥の存否を検出する
方法である。
Under these circumstances, conventionally, there has been proposed an inspection method for inspecting a plate-shaped crystal body such as a semiconductor substrate or the like to know in advance whether or not an internal defect exists in these crystal bodies. One of such inspection methods is, for example, the method disclosed in Japanese Patent Laid-Open No. 24541/1992. This inspection method uses the fact that when a crystal to be inspected is irradiated with a light beam, the transmitted light to the inside is scattered by defects existing at the transmission position, and the scattered light is observed outside the crystal. This is a method of detecting the presence or absence of an internal defect based on the result.

【0004】なお、半導体基板の多くは可視光が透過さ
れない不透明な結晶体であるため、前記検査において
は、内部への透過が可能な光として被検結晶のバンドギ
ャップよりも長い赤外線領域下の波長を有する光ビーム
が用いられている。また、前記光ビームの照射は、照射
面での散乱光による影響を排除すべく、高精度に仕上げ
られた表面に対して行われており、内部欠陥による散乱
光の観察は、同じく表面の照射方向と異なる方向から行
われている。
Since most of the semiconductor substrates are opaque crystal bodies that do not transmit visible light, in the above-mentioned inspection, light that can be transmitted to the inside is used in the infrared region longer than the band gap of the crystal to be inspected. A light beam having a wavelength is used. Further, the irradiation of the light beam is performed on a surface finished with high precision in order to eliminate the influence of scattered light on the irradiation surface, and the observation of scattered light by internal defects is also performed on the surface. It is done from a different direction.

【0005】以上の検査方法の実施に用いる検査装置
は、「 K.Moriya, H.Wada, K.Hirai;J.Crystal Growth
128(1993) 304-309」に示されている如く、検査対象と
なる半導体基板の載置ステージを異なる方向から臨むよ
うに、赤外線レーザを発するレーザ源と散乱光の観察の
ための撮像手段とを配して構成されている。
The inspection device used for carrying out the above inspection method is "K. Moriya, H. Wada, K. Hirai; J. Crystal Growth".
128 (1993) 304-309 '', a laser source emitting an infrared laser and an imaging means for observing scattered light so that the mounting stage of the semiconductor substrate to be inspected faces from different directions. Is arranged.

【0006】前記載置ステージ上の半導体基板は、該載
置ステージの動作により、前記表面内の互いに直交する
2方向(X方向及びY方向)と、これらと直交する方向
(Z方向)とに移動させ得るようになっており、斜め方
向(Y−Z方向等)にも移動させ得るようになってい
る。また前記撮像手段は、載置ステージの動作に応じて
焦点位置を変えると共に、光ビームの照射位置の近傍を
拡大する光学系を有し、この光学系を経た拡大像を撮像
する構成となっており、この撮像結果に所定の処理(例
えば、2値化処理、縮退処理等)を施す画像処理部、処
理画像を表示する表示部等を含んでいる。
Due to the operation of the mounting stage, the semiconductor substrate on the mounting stage is divided into two directions (X direction and Y direction) orthogonal to each other in the surface and a direction (Z direction) orthogonal to these directions. It can be moved, and can also be moved in an oblique direction (YZ direction or the like). Further, the image pickup means has an optical system that changes the focal position according to the operation of the mounting stage and enlarges the vicinity of the irradiation position of the light beam, and is configured to take an enlarged image through this optical system. The image processing unit includes an image processing unit that performs a predetermined process (for example, binarization process, degeneration process, etc.) on the image pickup result, a display unit that displays the processed image, and the like.

【0007】この装置による内部欠陥の検査は、検査対
象となる半導体基板(結晶体)を載置ステージ上に載置
した後、この半導体基板の表面に前記レーザ源が発する
光ビームを照射し、このとき照射位置の近傍にて前記表
面側に放出される散乱光の光像を撮像手段により撮像し
て、この撮像結果を画像処理部による所定の画像処理の
後に表示部に表示させ、例えば、この表示内容を目視に
より観察する手順により行われ、この観察により内部欠
陥の存否を夫々の大きさ及び位置を含めて知ることがで
きる。
The inspection of internal defects by this apparatus is carried out by placing a semiconductor substrate (crystal) to be inspected on a mounting stage, and then irradiating the surface of this semiconductor substrate with a light beam emitted from the laser source, At this time, an optical image of scattered light emitted to the surface side in the vicinity of the irradiation position is imaged by the image pickup means, and the image pickup result is displayed on the display unit after predetermined image processing by the image processing unit. It is performed by a procedure of visually observing the displayed contents, and by this observation, the presence or absence of the internal defect can be known including the size and position of each internal defect.

【0008】[0008]

【発明が解決しようとする課題】さて、以上の如く行わ
れる従来の内部欠陥の検査方法において、主たる検査対
象物は半導体基板であること、主たる目的は、内部欠陥
の存在が半導体デバイスの製造に与える影響を排除する
ことである。半導体デバイスの製造において問題となる
のは、回路の形成面となる表面からの深さが数μm程度
の領域に過ぎず、大きめに見積もって表面からの深さが
10μm以下となる領域を検査領域とし、この領域中にお
ける内部欠陥の存否を、前記表面からの深さ方向の分布
を含めて正確に知ることが重要である。
In the conventional method for inspecting internal defects as described above, the main object to be inspected is a semiconductor substrate. The main purpose is to detect the presence of internal defects in the manufacture of semiconductor devices. It is to eliminate the influence. The problem in the manufacture of semiconductor devices is only the region where the depth from the surface on which the circuit is formed is about several μm, and the depth from the surface is roughly estimated.
It is important to accurately determine the presence or absence of internal defects in this region including the region of 10 μm or less, including the distribution in the depth direction from the surface.

【0009】前述した検査装置においては、レーザ源か
ら発せられる光ビームの焦点位置を載置ステージ上に装
着された被検体となる半導体基板の表面上に固定し、載
置ステージの動作により前記半導体基板をX方向及びY
−Z方向に移動させる手順により、内部欠陥の存否を深
さ方向の分布状態を含めて知ることができる。
In the above-described inspection apparatus, the focal position of the light beam emitted from the laser source is fixed on the surface of the semiconductor substrate to be inspected mounted on the mounting stage, and the semiconductor is moved by the operation of the mounting stage. Substrate in X direction and Y
By the procedure of moving in the −Z direction, the presence or absence of the internal defect can be known including the distribution state in the depth direction.

【0010】このとき、内部欠陥の深さ方向の分布状態
を知るには、前記光ビームの焦点を半導体基板の表面に
正確に合わせる必要があるが、この焦点合わせを載置ス
テージの移動用の機械系の精度に頼って行わせるには限
界がある。そこで従来においては、検査の開始に先立
ち、前記機械系の精度に頼った焦点合わせを行った後、
半導体基板の表面に光ビームを照射して該表面からの散
乱光を観察し、この観察結果に基づいて焦点位置を微調
整することにより正確な焦点合わせがなされるようにし
ていた。
At this time, in order to know the distribution state of the internal defects in the depth direction, it is necessary to accurately focus the light beam on the surface of the semiconductor substrate. This focusing is performed for moving the mounting stage. There is a limit to making it depend on the precision of the mechanical system. So, in the past, prior to the start of the inspection, after performing focusing depending on the accuracy of the mechanical system,
The surface of the semiconductor substrate is irradiated with a light beam, the scattered light from the surface is observed, and the focus position is finely adjusted based on this observation result, so that accurate focusing is performed.

【0011】ところが半導体基板の表面は、本来の目的
である回路形成のために高精度に研磨されていることか
ら、前述した零点補正に際して必要とされる前記表面か
らの散乱光はわずかであり、例えば、表面近傍に内部欠
陥が存在する場合、この欠陥による散乱光が前記表面か
らの散乱光と誤認されて表面の同定が困難となり、誤っ
た焦点合わせが行われる虞れが高く、この焦点位置を保
って行われる検査の信頼性が低下し、内部欠陥の正しい
分布が得られくなるという問題があった。
However, since the surface of the semiconductor substrate is highly accurately polished for the purpose of forming a circuit, which is the original purpose, the scattered light from the surface required for the zero point correction is small, For example, when there is an internal defect near the surface, the scattered light due to this defect is mistaken for the scattered light from the surface, which makes it difficult to identify the surface, and there is a high possibility that incorrect focusing is performed. There is a problem in that the reliability of the inspection performed while maintaining the above-mentioned deteriorates, and the correct distribution of internal defects cannot be obtained.

【0012】本発明は斯かる事情に鑑みてなされたもの
であり、検査対象となる結晶体の表面への光ビームの焦
点合わせが、高精度にしかも容易に行われ、これ以降の
検査により信頼性の高い検査結果が安定して得られる結
晶体の内部欠陥検査方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and the focusing of the light beam onto the surface of the crystal body to be inspected is performed with high precision and easily, and the reliability of the subsequent inspection is improved. It is an object of the present invention to provide a method for inspecting an internal defect of a crystal body, which can stably obtain highly reliable inspection results.

【0013】[0013]

【課題を解決するための手段】本発明に係る結晶体の内
部欠陥検査方法は、平板状をなす結晶体の表面に、該結
晶体を透過し得る波長を有する光ビームを照射し、前記
結晶体内部の欠陥による前記光ビームの散乱光を観察し
て、各焦点位置での前記観察結果に基づいて前記欠陥の
存否を検出する結晶体の内部欠陥検査方法において、前
記表面上の一部に前記光ビームの反射層を形成し、前記
検出のための光ビームの照射に先立って前記反射層への
照射を行い、該反射層からの反射光の観察結果に基づい
て前記光ビームの焦点位置を調整することを特徴とす
る。
A method for inspecting an internal defect of a crystal body according to the present invention comprises irradiating a surface of a flat crystal body with a light beam having a wavelength capable of transmitting the crystal body, By observing the scattered light of the light beam due to the defect inside the body, in the internal defect inspection method of the crystal body to detect the presence or absence of the defect based on the observation result at each focal position, in the part on the surface The reflection layer of the light beam is formed, the irradiation of the reflection layer is performed prior to the irradiation of the light beam for the detection, and the focus position of the light beam is based on the observation result of the reflected light from the reflection layer. It is characterized by adjusting.

【0014】[0014]

【作用】本発明においては、検査対象となる結晶体にお
ける光ビームが照射される面上の一部に、この光ビーム
を反射し得る材料からなる反射層を形成しておき、載置
ステージ上に前記結晶体を載置して行われる検査のため
の光ビームの照射に先立ち、まず、前記反射層の形成部
位に光ビームを照射して該反射層に反射させ、この反射
光の観察結果に基づいて前記光ビームの焦点位置を調整
し、前記反射層の表面上に正しく焦点を合わせ、その後
の検査は、反射層の厚みを考慮して焦点位置を調整し、
光ビームの焦点を表面上に正しく合わせて行う。なお、
反射層の厚みが十分に薄い(数百〜数千オングストロー
ム程度)場合には、焦点位置の調整は不要であり、反射
層の表面上に合わせた焦点位置を保ったまま検査を行う
ことができる。
In the present invention, a reflecting layer made of a material capable of reflecting the light beam is formed on a part of the surface of the crystal to be inspected, which is irradiated with the light beam, and is placed on the mounting stage. Prior to the irradiation of the light beam for the inspection performed by mounting the crystal on, the light beam is first irradiated onto the formation portion of the reflection layer and reflected on the reflection layer, and the observation result of the reflected light Adjust the focus position of the light beam based on, to properly focus on the surface of the reflective layer, the subsequent inspection adjusts the focus position in consideration of the thickness of the reflective layer,
Correctly focus the light beam on the surface. In addition,
If the thickness of the reflective layer is thin enough (several hundreds to thousands of angstroms), it is not necessary to adjust the focus position and the inspection can be performed with the focus position adjusted on the surface of the reflection layer. .

【0015】[0015]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は、本発明に係る結晶体の内部欠陥検
査方法(以下本発明方法という)の実施に用いる検査装
置の一例を示す模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a schematic view showing an example of an inspection apparatus used for carrying out the method for inspecting an internal defect of a crystal according to the present invention (hereinafter referred to as the method of the present invention).

【0016】図示の検査装置の基本的な構成は、前述し
た「 K.Moriya, H.Wada, K.Hirai;J.Crystal Growth 1
28(1993) 304-309」中に示されているものと同様であ
り、図示の如く、外部からの振動伝達を遮断した制振基
台1上に、高精度に鉛直をなして支持脚10を立設し、該
支持脚10の上端に、これに対して所定角度傾斜して平板
状をなす載置ステージ2を取り付け、この載置ステージ
2の斜め上向きの載置面に対し、水平側方から正対する
位置に赤外線レーザを発するレーザ源3を、同じく鉛直
上方から正対する位置に撮像手段4を夫々配してなる。
The basic structure of the inspection apparatus shown in the figure is based on the above-mentioned "K. Moriya, H. Wada, K. Hirai; J. Crystal Growth 1
28 (1993) 304-309 ”, and as shown in the figure, the supporting leg 10 is formed with high precision in a vertical direction on the vibration damping base 1 that blocks the vibration transmission from the outside. And a flat mounting stage 2 inclined at a predetermined angle with respect to the upper end of the support leg 10 and mounted horizontally on the mounting surface of the mounting stage 2 facing upward. A laser source 3 for emitting an infrared laser is arranged at a position facing directly from the one side, and an image pickup means 4 is arranged at a position facing the same from vertically above.

【0017】支持脚10先端の載置ステージ2は、前記載
置面内において、水平方向及びこれと直交する方向への
動作が可能であり、また、支持脚10を案内としての上下
方向への動作が可能に構成されている。検査対象となる
半導体基板(結晶体)Wは、載置ステージ2の載置面上
に、検査対象となる一面を上向きとして載置されてお
り、このように載置された半導体基板Wは、載置ステー
ジ2の前述した動作により、前記一面内の互いに直交す
る2方向(X,Y方向)に加えて、これら夫々と直交す
る方向(Z方向)に各別に移動させることができ、更
に、Y方向とZ方向との組み合わせ動作により、半導体
基板Wの表面に平行な方向(Y−Z方向)に移動させる
ことができる。
The mounting stage 2 at the tip of the supporting leg 10 can be moved in the horizontal direction and in a direction orthogonal to this in the mounting surface described above, and can be moved in the vertical direction using the supporting leg 10 as a guide. It is configured to be operable. The semiconductor substrate (crystal) W to be inspected is mounted on the mounting surface of the mounting stage 2 with one surface to be inspected facing upward, and the semiconductor substrate W thus mounted is: By the operation of the mounting stage 2 described above, in addition to the two directions (X and Y directions) orthogonal to each other in the one plane, it is possible to separately move in the directions (Z direction) orthogonal to each of them. By the combined operation of the Y direction and the Z direction, the semiconductor substrate W can be moved in a direction parallel to the surface (YZ direction).

【0018】半導体基板Wを移動せしめるための載置ス
テージ2の動作は、該載置ステージ2に付設された図示
しない駆動手段にステージ制御部6から与えられる駆動
信号に従って行われ、この駆動信号は、マイクロプロセ
ッサを用いてなる計測制御部5からの制御信号に従って
発せられるようになしてある。
The operation of the mounting stage 2 for moving the semiconductor substrate W is performed in accordance with a drive signal given from the stage controller 6 to a driving means (not shown) attached to the mounting stage 2. , And is issued according to a control signal from the measurement control unit 5 using a microprocessor.

【0019】以上の如く構成された載置ステージ2の載
置面を、水平側方から臨むレーザ源3、及び鉛直上方か
ら臨む撮像手段4は、図示しない支持手段により制振基
台1上に固定されている。図示の如くレーザ源3は、レ
ーザ発振器30が発振する赤外線レーザの光路を、反射鏡
31により転換し、対物レンズ32により集光して、載置ス
テージ2に載置された半導体基板Wの表面上に焦点を合
わせた光ビームとして照射する構成となっている。この
光ビームの焦点合わせは、ステージ制御部6からの駆動
信号に応じて載置ステージ2を動作せしめて行われる。
The laser source 3 which faces the mounting surface of the mounting stage 2 configured as described above from the horizontal side and the image pickup means 4 which faces the mounting surface from above vertically are mounted on the damping base 1 by a supporting means (not shown). It is fixed. As shown in the figure, the laser source 3 uses a reflecting mirror to change the optical path of the infrared laser oscillated by the laser oscillator 30.
It is converted by 31 and is condensed by the objective lens 32, and is irradiated as a light beam focused on the surface of the semiconductor substrate W mounted on the mounting stage 2. Focusing of the light beam is performed by operating the mounting stage 2 according to a drive signal from the stage control unit 6.

【0020】一方撮像手段4は、撮像装置としてのTV
カメラ40の入射側に、図示しないレンズを内蔵する拡大
筒41を載置ステージ2に臨ませて備え、該載置ステージ
2上に載置された半導体基板Wの表面を拡大筒41を経て
拡大し、TVカメラ40により撮像する構成となってお
り、この撮像により得られた画像に所定の処理を施す画
像処理部42と、処理後の画像を表示する表示部(CRT
ディスプレイ)43とを備えてなる。
On the other hand, the image pickup means 4 is a TV as an image pickup device.
On the incident side of the camera 40, an enlarging cylinder 41 having a lens (not shown) is provided facing the mounting stage 2, and the surface of the semiconductor substrate W mounted on the mounting stage 2 is magnified through the enlarging cylinder 41. The TV camera 40 takes an image, and an image processing unit 42 that performs a predetermined process on the image obtained by the image pickup and a display unit (CRT) that displays the processed image.
Display) 43 and.

【0021】拡大筒41には、内蔵レンズを光軸方向に移
動させることにより焦点位置を調節する焦点調節機構44
が付設されており、これは、焦点制御部7から与えられ
る駆動信号により駆動され、前記TVカメラ40による撮
像は、レーザ源3から発せられる光ビームの焦点位置に
合わせて行われるようになしてある。なお、焦点位置調
節機構44としては、種々の光学機器に採用されている公
知の機構を用いることができる。
The magnifying barrel 41 has a focus adjusting mechanism 44 for adjusting the focus position by moving the built-in lens in the optical axis direction.
Is attached, which is driven by a drive signal given from the focus control section 7, so that the image pickup by the TV camera 40 is performed in accordance with the focus position of the light beam emitted from the laser source 3. is there. As the focus position adjusting mechanism 44, a known mechanism used in various optical devices can be used.

【0022】以上の如く構成された検査装置による内部
欠陥の検査は、検査対象となる半導体基板Wを載置ステ
ージ2上に載置した後、この半導体基板Wの表面にレー
ザ源3が発する光ビームを照射し、このとき照射位置の
近傍を拡大筒41により拡大してTVカメラ40により撮像
する手順により行われる。光ビームの照射位置は、ステ
ージ制御部6からの駆動信号に従う載置ステージ2の動
作により、半導体基板Wの表面に沿って走査され、TV
カメラ40による撮像は、焦点調節機構44により前記光ビ
ームの焦点位置に合わせて行われる。
The inspection of the internal defect by the inspection apparatus configured as described above is performed by placing the semiconductor substrate W to be inspected on the mounting stage 2 and then irradiating the surface of the semiconductor substrate W with the light emitted from the laser source 3. This is performed by the procedure of irradiating the beam, and at this time, the vicinity of the irradiation position is enlarged by the enlargement cylinder 41 and imaged by the TV camera 40. The irradiation position of the light beam is scanned along the surface of the semiconductor substrate W by the operation of the mounting stage 2 according to the drive signal from the stage controller 6, and the TV is displayed.
The image pickup by the camera 40 is performed by the focus adjusting mechanism 44 in accordance with the focus position of the light beam.

【0023】TVカメラ40の撮像結果は、画像処理部42
に与えられ、前記光ビームに対応する波長を有する赤外
線画像の抽出、所定のしきい値に基づく2値化処理、及
び縮退処理等の画像処理を施された後に表示部43に与え
られ、これに表示させると共に、計測制御部5に与えら
れ、これに付設された記憶手段に記憶される。
The image pickup result of the TV camera 40 is the image processing unit 42.
Given to the display unit 43, after being subjected to image processing such as extraction of an infrared image having a wavelength corresponding to the light beam, binarization processing based on a predetermined threshold value, and degeneracy processing. And is given to the measurement control unit 5 and stored in the storage means attached thereto.

【0024】表示部43に表示される画像は、図2中に破
線により示す如く、前記光ビームが検査対象となる半導
体基板Wを透過する際、この透過経路中に存在する内部
欠陥Aにより散乱されて生じる散乱光であり、半導体基
板Wの内部欠陥Aの存否は、表示部43の表示画像の観察
により、表面内の各位置における深さ方向の分布を含め
て検出される。
As shown by the broken line in FIG. 2, when the light beam is transmitted through the semiconductor substrate W to be inspected, the image displayed on the display unit 43 is scattered by the internal defect A existing in this transmission path. The presence or absence of the internal defect A of the semiconductor substrate W is detected by observing the display image of the display unit 43, including the distribution in the depth direction at each position on the surface.

【0025】以上の如き検査装置を用いて行われる本発
明方法においては、検査対象となる半導体基板Wとし
て、図2に示す如く、前記光ビームが照射される一面の
一部に反射層8が形成された半導体基板Wが用いられ
る。反射層8は、半導体基板Wを透過する波長を有する
赤外線ビームを反射し得ると共に、半導体基板W上への
成膜が容易な材料(例えば、白金、金、アルミニウム、
銀等の金属材料)により、光を反射するために十分な厚
さを有して形成されている。
In the method of the present invention performed by using the inspection apparatus as described above, as the semiconductor substrate W to be inspected, as shown in FIG. 2, the reflection layer 8 is formed on a part of one surface irradiated with the light beam. The formed semiconductor substrate W is used. The reflective layer 8 can reflect an infrared beam having a wavelength that passes through the semiconductor substrate W and is a material that can be easily deposited on the semiconductor substrate W (for example, platinum, gold, aluminum, or the like).
It is formed of a metal material such as silver) having a sufficient thickness to reflect light.

【0026】なお図2においては、半導体デバイスの形
成に用いられない半導体基板Wの周縁近傍に反射層8が
形成されているが、反射層8の形成位置はこれに限るも
のではなく、前記表面上の適宜位置に形成することがで
きる。また、反射層8の平面的なサイズ及び形状も限定
されるものではないが、後述する光ビームの位置合わせ
に支障を来たさない範囲で可及的に小サイズとするのが
望ましく、具体的には、半導体基板Wを素材として製造
される一つの半導体デバイスの平面サイズで十分であ
る。
In FIG. 2, the reflective layer 8 is formed in the vicinity of the peripheral edge of the semiconductor substrate W which is not used for forming the semiconductor device, but the position of the reflective layer 8 is not limited to this, and the surface is not limited to this. It can be formed at an appropriate position above. Further, the planar size and shape of the reflective layer 8 are not limited, but it is desirable to make the size as small as possible within the range that does not hinder the alignment of the light beam described later. Specifically, the plane size of one semiconductor device manufactured using the semiconductor substrate W as a material is sufficient.

【0027】本発明方法は、以上の如き反射層8を備え
る半導体基板Wが載置ステージ2上に載置され、例え
ば、所定の検査開始操作がなされたことを条件として開
始される。そして本発明方法においては、正規の検査の
ための前述した動作に先立って行われる準備として、レ
ーザ源3から発せられる光ビームの焦点を前記半導体基
板Wの表面近傍に正しく一致させるために、検査時にお
ける光ビームの焦点位置を、前記反射層8からの反射光
の観察に基づいて補正する。
The method of the present invention is started on the condition that the semiconductor substrate W having the reflection layer 8 as described above is mounted on the mounting stage 2 and, for example, a predetermined inspection start operation is performed. Then, in the method of the present invention, in order to make the focal point of the light beam emitted from the laser source 3 exactly in the vicinity of the surface of the semiconductor substrate W as a preparation performed before the above-described operation for the regular inspection, the inspection is performed. The focal position of the light beam at that time is corrected based on observation of the reflected light from the reflective layer 8.

【0028】図3は、この補正手順を示すフローチャー
トである。検査開始操作が行われた後、まず、レーザ源
3から発せられる光ビームが載置ステージ2上の半導体
基板Wにおける反射層8の形成部位に照射されるよう
に、前記光ビームの照射位置を変更し、これに追随して
撮像手段4による撮像部位を変更する(ステップ1)。
この動作は、計測制御部5からの制御信号に従うステー
ジ制御部6の動作により載置ステージ2を移動させ、半
導体基板WをX及びY方向に移動せしめることにより行
われる。
FIG. 3 is a flow chart showing this correction procedure. After the inspection start operation is performed, first, the irradiation position of the light beam is irradiated so that the light beam emitted from the laser source 3 is irradiated on the portion of the semiconductor substrate W on the mounting stage 2 where the reflective layer 8 is formed. It is changed, and the imaging region by the imaging means 4 is changed following this (step 1).
This operation is performed by moving the mounting stage 2 and moving the semiconductor substrate W in the X and Y directions by the operation of the stage controller 6 according to the control signal from the measurement controller 5.

【0029】このような位置合わせを終えた後、レーザ
源3から発せられる光ビームの焦点位置を予め定めた所
定の範囲内で逐次変更し(ステップ2)、夫々の位置に
て撮像手段4による撮像を行い(ステップ3)、この撮
像結果に基づいて前記光ビームの焦点位置が反射層8の
表面上に合致したか否かを判定する(ステップ4)。
After completing such alignment, the focal position of the light beam emitted from the laser source 3 is sequentially changed within a predetermined range (step 2), and the image pickup means 4 is used at each position. Imaging is performed (step 3), and it is determined based on the imaging result whether the focal position of the light beam matches the surface of the reflective layer 8 (step 4).

【0030】ステップ2での光ビームの焦点位置の変更
は、前述した如く、計測制御部5からの制御信号に従う
ステージ制御部6の動作により、半導体基板Wが載置さ
れた載置ステージ2を動作せしめて行われる。なおこの
とき、後続するステップ3において光ビームの焦点位置
に合わせた撮像が行われるように、撮像手段4に付設さ
れた焦点調節機構44も動作せしめられる。
The change of the focal position of the light beam in step 2 is performed by moving the mounting stage 2 on which the semiconductor substrate W is mounted by the operation of the stage controller 6 according to the control signal from the measurement controller 5, as described above. It is done with all the effort. At this time, the focus adjusting mechanism 44 attached to the image pickup means 4 is also operated so that the image pickup is performed according to the focal position of the light beam in the subsequent step 3.

【0031】以上の如き動作により、レーザ源3から発
せられる光ビームは、前記図2中に実線により示す如
く、半導体基板Wの表面における反射層8の形成部位に
照射されることになる。前記反射層8は、前記光ビーム
を反射し得る材料を用いて成膜されており、前述の如く
照射される光ビームは反射層8により反射され、照射部
位に臨ませた撮像手段4には、反射層8の表面上におけ
る前記光ビームのスポットが撮像される。
By the above-described operation, the light beam emitted from the laser source 3 is irradiated to the portion where the reflective layer 8 is formed on the surface of the semiconductor substrate W, as shown by the solid line in FIG. The reflection layer 8 is formed by using a material capable of reflecting the light beam, and the light beam irradiated as described above is reflected by the reflection layer 8 and the imaging unit 4 exposed to the irradiation site has no reflection. The spot of the light beam on the surface of the reflective layer 8 is imaged.

【0032】ステップ4での判定は、例えば、焦点位置
を変更する毎に得られる撮像手段4の撮像結果に夫々現
れる前記スポット像の大きさを比較することにより行わ
れ、この判定は、各変更位置での撮像結果を画像処理部
42を経て表示部43に順次表示させ、該表示部43を目視に
より観察する検査作業者により行わせることができ、ま
た、前記撮像結果を画像処理部42を経て計測制御部5に
与え、該計測制御部5に記憶させてある所定の判定ロジ
ックに従って行わせることもできる。このとき判定基準
となるのは反射層8からの高レベルの反射光であるか
ら、前述した判定は、半導体基板W内部からの散乱光に
影響されることなく高精度に行える。
The determination in step 4 is made, for example, by comparing the size of the spot image that appears in the image pickup result of the image pickup means 4 obtained each time the focus position is changed, and this determination is made for each change. Image processing result of the imaging result at the position
It can be sequentially displayed on the display unit 43 via 42, and can be performed by an inspection operator who visually observes the display unit 43. Further, the imaging result is given to the measurement control unit 5 via the image processing unit 42, It can also be performed according to a predetermined determination logic stored in the measurement control unit 5. At this time, since the high-level reflected light from the reflective layer 8 serves as the determination reference, the above-described determination can be performed with high accuracy without being influenced by the scattered light from the inside of the semiconductor substrate W.

【0033】以上の判定の結果、前記光ビームの焦点が
反射層8の表面に合致したと判定された場合、このとき
の焦点位置を保って光ビームの走査位置を変え、半導体
基板Wの全域に対する検査動作が行われる(ステップ
5)。この検査動作に際し、反射層8の表面(半導体基
板Wの表面近傍)に正しく焦点を合わせた光ビームを用
いて行われるから、前述した如き手順による内部欠陥の
存否が、正確な深さ方向の分布を含めて検出されるよう
になる。
As a result of the above determination, when it is determined that the focal point of the light beam coincides with the surface of the reflective layer 8, the scanning position of the light beam is changed while maintaining the focal point position at this time, and the entire region of the semiconductor substrate W is changed. Is performed (step 5). At the time of this inspection operation, since the light beam which is correctly focused on the surface of the reflective layer 8 (in the vicinity of the surface of the semiconductor substrate W) is used, the presence or absence of the internal defect by the procedure as described above is determined by the accurate depth direction. It will be detected including the distribution.

【0034】なお、前述した検査動作への移行に先立
ち、前記反射層8の厚みを考慮して光ビームの焦点位置
を微調整し、該焦点位置を半導体基板Wの表面に合わせ
るようにしてもよい。但し反射層8の厚みは、前述した
如く、光を反射するために十分なものであればよく、実
際には、数百〜数千オングストローム程度に過ぎず、こ
の程度の該反射層8の表面に焦点を合わせたままでの検
査により精度的な問題が生じる虞れは殆どない。
Incidentally, prior to the transition to the above-mentioned inspection operation, the focal position of the light beam is finely adjusted in consideration of the thickness of the reflective layer 8 so that the focal position is adjusted to the surface of the semiconductor substrate W. Good. However, as described above, the thickness of the reflective layer 8 is sufficient as long as it reflects light, and in reality, it is only about several hundred to several thousand angstroms, and the surface of the reflective layer 8 at this level. There is almost no possibility that an accuracy problem will occur due to the inspection with the focus on.

【0035】図4は、As-Grownのシリコン結晶からなる
半導体基板を供試体として従来の検査方法と本発明方法
とを実施し、これら夫々により得られた結果を比較した
ものであり、図の横軸は、供試体の表面からの深さを示
し、また縦軸は、各深さ位置での内部欠陥の検出密度を
示している。図中に白抜きして示す従来の検査方法によ
る結果と、同じくハッチングを施して示す本発明方法に
よる結果とを比較した場合、特に、供試体の表面近くの
検査領域(表面からの深さが0〜 11.25μmである領
域)において本発明方法により得られた密度は、従来の
方法によるそれよりも十分に高く、表面からの深さが大
きい他の領域における密度との差が少ないことがわか
る。
FIG. 4 is a comparison of the results obtained by carrying out the conventional inspection method and the method of the present invention using a semiconductor substrate made of As-Grown silicon crystal as a sample, and comparing them with each other. The horizontal axis represents the depth from the surface of the specimen, and the vertical axis represents the detection density of internal defects at each depth position. When comparing the result by the conventional inspection method shown in white in the figure with the result by the method of the present invention which is also shown by hatching, particularly, the inspection region near the surface of the specimen (the depth from the surface is It can be seen that the density obtained by the method of the present invention in the range of 0 to 11.25 μm) is sufficiently higher than that by the conventional method, and the difference from the density in other areas having a large depth from the surface is small. .

【0036】供試体として用いたAs-Grownのシリコン結
晶は、一般的に、酸素析出物としての内部欠陥を深さ方
向に略一定の分布を有して含むものであり、図4に示す
本発明方法による結果が実際の分布に近いことは明らか
である。これに対し、従来の検査方法によった場合、表
面近傍の検査領域において実際と異なる欠陥の分布状態
が得られていることが明らかである。これは、検査開始
前の供試体の表面への光ビームの焦点合わせが精密に研
磨された前記表面からのわずかな反射光に基づいて行わ
れる結果、検査体の表面と光ビームの焦点位置との誤っ
た対応関係に基づいて検査が実行されるためである。
The As-Grown silicon crystal used as the test specimen generally contains internal defects as oxygen precipitates with a substantially constant distribution in the depth direction. It is clear that the results according to the inventive method are close to the actual distribution. On the other hand, according to the conventional inspection method, it is apparent that the defect distribution state different from the actual state is obtained in the inspection region near the surface. This is because the focusing of the light beam on the surface of the specimen before the start of the inspection is performed based on the slight reflected light from the precisely polished surface, and as a result, the surface of the specimen and the focal position of the light beam are This is because the inspection is executed based on the incorrect correspondence relationship of

【0037】半導体基板を検査対象とする場合、前述し
た如く、内部欠陥の存在が半導体デバイスの製造に与え
る影響を排除するために、特に、回路形成面となる表面
近傍の内部欠陥の分布を正確に知ることが重要である
が、このために本発明方法の実施が有効であることは、
図4の結果から明らかである。
When a semiconductor substrate is to be inspected, as described above, in order to eliminate the influence of the presence of internal defects on the manufacturing of semiconductor devices, in particular, the distribution of internal defects near the surface on which the circuit is formed is accurate. It is important to know that the effective implementation of the method of the present invention is
It is clear from the result of FIG.

【0038】なお本実施例においては、半導体基板Wを
検査対象とした場合について述べたが、本発明方法は、
平板状をなす結晶体全般に検査に適用でき、同様の効果
が得られることは言うまでもない。
In this embodiment, the case where the semiconductor substrate W is the inspection object is described, but the method of the present invention is
It is needless to say that the same effect can be obtained by being applicable to the inspection of all flat crystal bodies.

【0039】[0039]

【発明の効果】以上詳述した如く本発明方法において
は、平板状をなす結晶体の検査面の一部に反射層を形成
しておき、この結晶体を載置ステージ上に載置して行わ
れる検査のための光ビームの照射に先立ち、反射層の形
成部位に光ビームを照射し、該反射層からの反射光の観
察結果に基づいて前記光ビームの焦点を調整するから、
この調整が高精度にしかも容易になされ、調整後の焦点
を基準として信頼性の高い検査結果が安定して得られる
ようになり、例えば、半導体基板の検査への適用によ
り、これを素材とする半導体デバイスの製造歩留りの向
上、及び製品デバイスの信頼性の向上に寄与し得る等、
本発明は優れた効果を奏する。
As described in detail above, in the method of the present invention, a reflective layer is formed on a part of the inspection surface of a flat crystal, and the crystal is placed on a mounting stage. Prior to the irradiation of the light beam for the inspection to be performed, the formation of the reflective layer is irradiated with the light beam, and the focus of the light beam is adjusted based on the observation result of the reflected light from the reflective layer.
This adjustment can be performed with high accuracy and easily, and reliable inspection results can be stably obtained with the adjusted focus as a reference. For example, by applying it to the inspection of a semiconductor substrate, this is used as a material. It can contribute to the improvement of manufacturing yield of semiconductor devices and the reliability of product devices.
The present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる検査装置の一例を示
す模式図である。
FIG. 1 is a schematic diagram showing an example of an inspection apparatus used for carrying out the method of the present invention.

【図2】本発明方法の実施に用いられる検査対象となる
半導体基板の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a semiconductor substrate to be inspected used for carrying out the method of the present invention.

【図3】本発明方法の実施手順を示すフローチャートで
ある。
FIG. 3 is a flowchart showing a procedure for carrying out the method of the present invention.

【図4】本発明方法による検査結果を従来の検査方法に
おけるそれと比較して示すグラフである。
FIG. 4 is a graph showing an inspection result by the method of the present invention in comparison with that by a conventional inspection method.

【符号の説明】[Explanation of symbols]

1 制振基台 2 載置ステージ 3 レーザ源 4 撮像手段 5 計測制御部 6 ステージ制御部 7 焦点制御部 30 レーザ発振器 32 対物レンズ 40 TVカメラ 41 拡大筒 42 画像処理部 43 表示部 44 焦点調節機構 A 内部欠陥 W 半導体基板 1 Vibration suppression base 2 Mounting stage 3 Laser source 4 Imaging means 5 Measurement control unit 6 Stage control unit 7 Focus control unit 30 Laser oscillator 32 Objective lens 40 TV camera 41 Enlarging tube 42 Image processing unit 43 Display unit 44 Focus adjustment mechanism A Internal defect W Semiconductor substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平板状をなす結晶体の表面に、該結晶体
を透過し得る波長を有する光ビームを照射し、前記結晶
体内部の欠陥による前記光ビームの散乱光を観察して、
各焦点位置での前記観察結果に基づいて前記欠陥の存否
を検出する結晶体の内部欠陥検査方法において、前記表
面上の一部に前記光ビームの反射層を形成し、前記検出
のための光ビームの照射に先立って前記反射層への照射
を行い、該反射層からの反射光の観察結果に基づいて前
記光ビームの焦点位置を調整することを特徴とする結晶
体の内部欠陥検査方法。
1. A surface of a flat crystal body is irradiated with a light beam having a wavelength capable of passing through the crystal body, and scattered light of the light beam due to defects inside the crystal body is observed,
In the internal defect inspection method of the crystal for detecting the presence or absence of the defect based on the observation result at each focal position, a reflective layer of the light beam is formed on a part of the surface, and light for the detection is formed. An internal defect inspection method for a crystal body, comprising: irradiating the reflective layer before irradiating the beam, and adjusting a focal position of the light beam based on an observation result of reflected light from the reflective layer.
JP7052898A 1995-03-13 1995-03-13 Internal defect inspection method for crystal Pending JPH08247956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7052898A JPH08247956A (en) 1995-03-13 1995-03-13 Internal defect inspection method for crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7052898A JPH08247956A (en) 1995-03-13 1995-03-13 Internal defect inspection method for crystal

Publications (1)

Publication Number Publication Date
JPH08247956A true JPH08247956A (en) 1996-09-27

Family

ID=12927684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7052898A Pending JPH08247956A (en) 1995-03-13 1995-03-13 Internal defect inspection method for crystal

Country Status (1)

Country Link
JP (1) JPH08247956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083624A1 (en) * 2010-01-07 2011-07-14 株式会社ニッカトー Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
JP2012181135A (en) * 2011-03-02 2012-09-20 Kobelco Kaken:Kk Internal defect inspection device and internal defect inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083624A1 (en) * 2010-01-07 2011-07-14 株式会社ニッカトー Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
US9316599B2 (en) 2010-01-07 2016-04-19 Nikkato Corporation Device for inspecting ceramic sphere
US9719942B2 (en) 2010-01-07 2017-08-01 Nikkato Corporation Sintered ceramic and ceramic sphere
JP2012181135A (en) * 2011-03-02 2012-09-20 Kobelco Kaken:Kk Internal defect inspection device and internal defect inspection method

Similar Documents

Publication Publication Date Title
JP5110977B2 (en) Defect observation apparatus and method
US9773641B2 (en) Method and apparatus for observing defects
KR100302245B1 (en) System and method for inspecting pattern defect
US9208553B2 (en) Image synchronization of scanning wafer inspection system
US20030053676A1 (en) Image detection method and its apparatus and defect detection method and its apparatus
US20110194101A1 (en) Supersensitization of defect inspection method
JPH08152430A (en) Microscope with aligning function
JP2001082926A (en) Mechanism and method for controlling focal position and apparatus and method for inspecting semiconductor wafer
JP2009283633A (en) Surface inspection device, and surface inspection method
JPH05264468A (en) Method and apparatus for detecting internal
JP5042503B2 (en) Defect detection method
US20090316981A1 (en) Method and device for inspecting a disk-shaped object
US10769769B2 (en) Dual mode inspector
JPH08247956A (en) Internal defect inspection method for crystal
TWI846338B (en) Method and system for detecting the depth of a damaged layer on a silicon wafer surface
JP3586970B2 (en) Inspection method and inspection device for fine pattern
JP3190157B2 (en) Crystal defect inspection method
WO2006082932A1 (en) Defective particle measuring apparatus and defective particle measuring method
KR101360251B1 (en) Reviewing apparatus of wafer defect and Method thereof
JPH07167793A (en) Phase difference semiconductor inspection device and method of manufacturing semiconductor device
JP2000193434A (en) Foreign substance inspecting device
CN221007330U (en) Terahertz silicon wafer detection device
JP2000046767A (en) Analyzer for inclusions in metal materials
JPH0221553A (en) Electron ray length-measuring device
JP2007225311A (en) Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A711 Notification of change in applicant

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A02