JPH08244085A - Method for injection molding - Google Patents
Method for injection moldingInfo
- Publication number
- JPH08244085A JPH08244085A JP4852395A JP4852395A JPH08244085A JP H08244085 A JPH08244085 A JP H08244085A JP 4852395 A JP4852395 A JP 4852395A JP 4852395 A JP4852395 A JP 4852395A JP H08244085 A JPH08244085 A JP H08244085A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resin
- mold
- birefringence
- injection molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001746 injection moulding Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title description 11
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- 230000009477 glass transition Effects 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 abstract description 22
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、短いサイクルタイムで
高精度かつ内部歪み(複屈折量)の少ない光学部品を得
ることができる射出成形法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding method capable of obtaining an optical component having a high accuracy and a small internal strain (amount of birefringence) with a short cycle time.
【0002】[0002]
【従来の技術】従来、高精度な転写性を有する成形品の
成形方法として、例えば、特開昭64−36421号公
報に開示される方法がある。この方法は、ガラス転移点
を越えた温度に加熱された金型に樹脂を充填した後、金
型を成形機の外部において一定の冷却速度(上記公報の
例では1.3℃/分)で冷やし、ある一定温度以下にな
った時点で成形品を取り出すこととしている。2. Description of the Related Art Conventionally, as a method for molding a molded article having a highly accurate transfer property, there is a method disclosed in Japanese Patent Laid-Open No. 64-36421. In this method, a mold heated to a temperature exceeding the glass transition point is filled with resin, and then the mold is kept outside the molding machine at a constant cooling rate (1.3 ° C./min in the example of the above publication). After cooling, the molded product is taken out when the temperature falls below a certain temperature.
【0003】すなわち、上記従来の方法では、図1
(a)において破線Bで示すように、時間の経過に対し
て樹脂温度が直線的に低下するように冷却している。こ
のために、図1(b)に破線Dで示すように、複屈折量
は時間の経過に対して緩やかな曲線を描くように変化
し、かなり長時間をかけて一定の値に達することとな
る。That is, according to the above conventional method, as shown in FIG.
As shown by the broken line B in (a), the cooling is performed so that the resin temperature linearly decreases with the passage of time. For this reason, as indicated by a broken line D in FIG. 1B, the birefringence amount changes so as to draw a gentle curve with the passage of time, and reaches a constant value over a considerably long time. Become.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記従来の成
形方法では、以下のような問題があった。一般に、プラ
スチック樹脂を冷却する場合、急速に冷却すると内部応
力が残ってしまうために、上記従来例のように徐冷し、
内部応力を残さないようにする方法が採られている。と
ころが、すべての冷却過程(樹脂温度)において一様に
内部応力が残りやすいわけではない。例えば、樹脂がガ
ラス転移点の近傍で冷却される場合は内部応力が残りや
すいが、ある程度温度が下がり、樹脂が完全に固化して
しまえば、ある程度急速に冷却しても内部応力が残りに
くいという傾向がある。However, the above-mentioned conventional molding method has the following problems. In general, when cooling a plastic resin, internal stress remains when it is cooled rapidly.
A method is adopted in which no internal stress is left. However, internal stress is not likely to remain uniformly in all cooling processes (resin temperature). For example, if the resin is cooled near the glass transition point, internal stress tends to remain, but if the temperature drops to a certain extent and the resin is completely solidified, internal stress is unlikely to remain even if it is cooled to some extent. Tend.
【0005】すなわち、上記従来の方法のように、冷却
過程全体で単に一定の冷却速度で冷却すると、内部応力
の発生を抑制するために、必要以上に冷却速度を遅くし
なければならず、その結果、サイクルタイムを延ばさな
ければならないという問題があった。That is, when the cooling process is simply performed at a constant cooling rate as in the conventional method, the cooling rate must be slowed down more than necessary in order to suppress the generation of internal stress. As a result, there was a problem that the cycle time had to be extended.
【0006】本発明は、かかる従来の問題点に鑑みてな
されたもので、請求項1に係る発明は、短いサイクルタ
イムで高精度かつ複屈折量の少ない光学部品を得ること
ができる射出成形法を提供することを目的とする。請求
項2に係る発明は、上記目的に加え、射出成形機の構成
を複雑にする必要がない射出成形法を提供することを目
的とする。請求項3に係る発明は、上記目的に加え、金
型温度をより高精度に制御することができる射出成形法
を提供することを目的とする。The present invention has been made in view of the above conventional problems. The invention according to claim 1 is an injection molding method capable of obtaining an optical component with high accuracy and a small amount of birefringence in a short cycle time. The purpose is to provide. In addition to the above object, an object of the invention according to claim 2 is to provide an injection molding method that does not require a complicated structure of the injection molding machine. In addition to the above object, an object of the invention according to claim 3 is to provide an injection molding method capable of controlling the mold temperature with higher accuracy.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、射出成形法において、金型
のキャビティ部へ溶融樹脂を射出充填した後、少なくと
も樹脂温度がガラス転移点以上でかつ均一になるまで保
冷維持し、その後、該樹脂の複屈折量の増分が一定とな
るように金型温度を低下させることとした。請求項2に
係る発明は、請求項1に係る発明において、成形開始前
に、予め樹脂の温度に対する複屈折量の変化率を計算
し、そのデータに基づいて金型温度を制御することを特
徴とする。請求項3に係る発明は、請求項1に係る発明
において、成形中に、樹脂の複屈折量を実測しながら金
型温度を制御することを特徴とする。In order to solve the above-mentioned problems, the invention according to claim 1 is, in an injection molding method, at least a resin temperature is glass transition after injection filling a cavity of a mold with a molten resin. Cooling was maintained until the temperature was above the point and became uniform, and then the mold temperature was lowered so that the increment of the birefringence amount of the resin became constant. The invention according to claim 2 is characterized in that, in the invention according to claim 1, before the molding is started, a rate of change of the birefringence amount with respect to the temperature of the resin is calculated in advance, and the mold temperature is controlled based on the data. And The invention according to claim 3 is characterized in that, in the invention according to claim 1, the mold temperature is controlled while actually measuring the birefringence amount of the resin during molding.
【0008】[0008]
【作用】金型のキャビティ部へ溶融樹脂を射出充填した
後、少なくとも樹脂温度がガラス転移点以上でかつ均一
になるまで保冷維持すると、樹脂内部には応力が無い状
態となる。ここで、保冷維持する時間は、成形品の肉厚
によって異なり、肉厚の厚いものは均一温度になるまで
の時間が長くかかるため、保冷維持時間を長くする必要
があり、一方、肉厚の薄いものはその逆で保冷維持時間
は短くてよい。After the molten resin is injected and filled into the cavity of the mold, if the resin is kept cold at least until the resin temperature is equal to or higher than the glass transition point and becomes uniform, the resin has no stress inside. Here, the time to keep cool depends on the wall thickness of the molded product, and if the wall thickness is thick, it takes a long time to reach a uniform temperature, so it is necessary to lengthen the cool keeping time. On the other hand, thin ones can be kept cool for a short time.
【0009】保冷維持により内部応力が無い状態(複屈
折が無い状態)となった後、図1(b)において実線C
で示すように、複屈折量の増分(時間の経過に対する複
屈折量の変化率)が一定となるように金型温度を低下さ
せる。すなわち、図1(a)において実線Aで示すよう
に、複屈折が増えやすい樹脂温度領域ではゆっくりと金
型温度を下げ、また複屈折が増えにくい樹脂温度領域で
は金型の冷却速度を速めるようにする。このように、内
部応力増加(複屈折量増加)への影響の度合いに応じて
金型温度の低下スピードを最適にコントロールするた
め、最短の時間で製品を冷却することができる。図1
(a)および(b)から判るように、本発明によれば、
従来の技術による場合と同一の少ない複屈折量および同
一の樹脂温度に到達する時間は、大幅に短縮される。A solid line C in FIG. 1B shows a state where there is no internal stress (state where there is no birefringence) due to keeping cold.
As shown by, the mold temperature is lowered so that the increment of the birefringence amount (the rate of change of the birefringence amount with the passage of time) becomes constant. That is, as indicated by the solid line A in FIG. 1A, the mold temperature is slowly decreased in the resin temperature region where the birefringence is likely to increase, and the mold cooling rate is increased in the resin temperature region where the birefringence is unlikely to increase. To In this way, the rate of decrease in mold temperature is optimally controlled according to the degree of influence on the increase in internal stress (increase in birefringence), so that the product can be cooled in the shortest time. FIG.
As can be seen from (a) and (b), according to the present invention,
The amount of time required to reach the same small amount of birefringence and the same resin temperature as in the conventional technique is greatly shortened.
【0010】[0010]
[実施例1]図2は本実施例で成形するレンズの形状を
示しており、このレンズ30は、外径80mm、中心肉
厚3mm、縁肉厚10mmの形状である。また、レンズ
30の材質は、ポリオレフィン樹脂(日本ゼオン(株)
製のZEONEX280S)を用いた。このポリオレフ
ィン樹脂の大気圧下でのガラス転移点は、140℃であ
る。[Embodiment 1] FIG. 2 shows the shape of a lens molded in this embodiment. The lens 30 has an outer diameter of 80 mm, a center thickness of 3 mm, and an edge thickness of 10 mm. The material of the lens 30 is a polyolefin resin (Nippon Zeon Co., Ltd.).
Manufactured by ZEONEX 280S). The glass transition point of this polyolefin resin at atmospheric pressure is 140 ° C.
【0011】図3は、本実施例で用いた金型を示すもの
で、固定側金型1の内部には、固定側入子3が固定され
ている。また、可動側金型2の内部には、可動側入子4
が嵌入されている。さらに、各入子3、4の内部には、
温調経路5、6が形成されており、両温調経路5、6は
外部のヒートサイクル用温調機7に連通接続されてい
る。固定側入子3と可動側入子4との間には、図2に示
すレンズ30に対応した形状のキャビティ部8が形成さ
れている。また、固定側入子3の内部には、金型温度を
測定する熱電対9が固設されている。FIG. 3 shows a mold used in this embodiment, and a fixed insert 3 is fixed inside the fixed mold 1. In addition, inside the movable-side mold 2, the movable-side insert 4
Has been inserted. Furthermore, inside each nest 3, 4,
Temperature control paths 5 and 6 are formed, and both temperature control paths 5 and 6 are connected to an external heat cycle temperature controller 7 for communication. A cavity 8 having a shape corresponding to the lens 30 shown in FIG. 2 is formed between the fixed side insert 3 and the movable side insert 4. Further, inside the fixed side insert 3, a thermocouple 9 for measuring the mold temperature is fixed.
【0012】このような構成の射出成形金型によりレン
ズ30を成形した。以下、その成形方法について説明す
る。まず、固定側金型1と可動側入子2を予め155℃
に加熱しておいた。その状態の金型のキャビティ部8に
250℃程度の溶融樹脂を射出充填した。充填後、5分
間保冷維持した。その保冷維持の間に、樹脂の温度は入
子1、2と同じ155℃の均一温度になった。その後、
ヒートサイクル温調機7を作動させ、成形品の複屈折量
の増分が一定となるように、金型温度を120℃まで冷
却した後、成形品を取り出し、空気中で常温まで自然冷
却させた。The lens 30 is molded by the injection molding die having the above structure. The molding method will be described below. First, the fixed side mold 1 and the movable side insert 2 are preheated to 155 ° C.
It was heated to. Molten resin at about 250 ° C. was injection-filled into the cavity 8 of the mold in that state. After filling, it was kept cold for 5 minutes. During the cold keeping, the temperature of the resin reached the uniform temperature of 155 ° C. which was the same as that of the inserts 1 and 2. afterwards,
The heat cycle temperature controller 7 was operated and the mold temperature was cooled to 120 ° C. so that the increment of the birefringence amount of the molded product was constant, and then the molded product was taken out and naturally cooled in air to normal temperature. .
【0013】具体的には、金型温度が155℃から14
6℃になるまでは約5℃/分の割合で冷却した。また、
金型温度が146℃から142℃になるまでは約2℃/
分の割合、142℃から138℃になるまでは約0.6
℃/分の割合、138℃から135℃になるまでは約
1.5℃/分の割合、135℃から130℃になるまで
は約4℃/分の割合、130℃から120℃になるまで
は10℃/分の割合で冷却した。全部で約20分の冷却
時間にて成形した。Specifically, the mold temperature is from 155 ° C. to 14
It cooled at a rate of about 5 ° C./minute until it reached 6 ° C. Also,
About 2 ℃ / when the mold temperature goes from 146 ℃ to 142 ℃
Minute ratio, about 0.6 from 142 ℃ to 138 ℃
° C / min rate, from 138 ° C to 135 ° C about 1.5 ° C / min, from 135 ° C to 130 ° C about 4 ° C / min, from 130 ° C to 120 ° C Was cooled at a rate of 10 ° C./min. Molding was carried out for a total cooling time of about 20 minutes.
【0014】この結果、従来、155℃から120℃ま
での間を1.0℃/分の一定の割合で冷却していた場合
(冷却時間約40分)と同等のレベルの複屈折量をもっ
たレンズが成形できた。図4に、本実施例の金型温度の
変化パターンおよび複屈折量の変化パターンを示す。図
4から判るように、複屈折量は冷却時間に対してほぼ直
線的に増加している。As a result, the amount of birefringence is equivalent to that in the case where the conventional cooling is performed at a constant rate of 1.0 ° C./min from 155 ° C. to 120 ° C. (cooling time of about 40 minutes). The lens was molded. FIG. 4 shows a change pattern of the mold temperature and a change pattern of the birefringence amount in this example. As can be seen from FIG. 4, the amount of birefringence increases almost linearly with the cooling time.
【0015】本実施例にて用いた複屈折量変化が一定と
なるような金型温度変化パターンは、次のようにして求
めた。まず、実際の成形品を完全に内部応力が緩和され
る温度まで加熱する(155℃)。次に、0.2℃/分
の割合で冷却する。その冷却途中、いくつかの温度ポイ
ントで成形品を取り出し、水等につけて急冷する。それ
ぞれの温度ポイントでの複屈折量を測り、各温度ポイン
ト間での複屈折量の差から複屈折量変化の温度依存性
(複屈折量の差/温度差)を計算する。そして、温度依
存性の大きさに反比例するように各温度での冷却勾配を
決める。The mold temperature change pattern used in this example so that the change in birefringence amount was constant was obtained as follows. First, the actual molded product is heated to a temperature at which the internal stress is completely relaxed (155 ° C.). Then, it is cooled at a rate of 0.2 ° C./minute. During the cooling process, the molded product is taken out at several temperature points, soaked in water or the like, and rapidly cooled. The birefringence amount at each temperature point is measured, and the temperature dependence of the birefringence amount change (difference in birefringence amount / temperature difference) is calculated from the difference in birefringence amount between the temperature points. Then, the cooling gradient at each temperature is determined so as to be inversely proportional to the degree of temperature dependence.
【0016】なお、本実施例では、射出成形材料として
ポリオレフィン系の樹脂を用いた例を示したが、固有複
屈折量の大きいポリカーボネイト樹脂等を用いても本実
施例と同様の効果を得ることができる。また、成形品形
状も凹レンズに限らず、凸レンズ、プリズム、F−θレ
ンズ等でも同様の方法にて成形することができる。さら
に、本実施例では、ガラス転移点以上(155℃)に加
熱された金型内部に溶融樹脂を射出充填することになっ
ているが、例えば、ガラス転移点以下(例えば120
℃)の金型に射出充填した後、複屈折が無くなる温度
(ガラス転移点以上)まで急速再加熱し、その後、成形
品の複屈折量の増分が一定となるように金型温度を低下
させるようにしてもよい。In this embodiment, an example in which a polyolefin resin is used as the injection molding material is shown, but the same effect as in this embodiment can be obtained by using a polycarbonate resin having a large amount of intrinsic birefringence. You can Further, the shape of the molded product is not limited to the concave lens, and a convex lens, a prism, an F-θ lens or the like can be used for molding by the same method. Further, in this embodiment, the molten resin is injected and filled into the mold heated above the glass transition point (155 ° C.).
(° C) injection-filled into the mold, then rapidly reheat to a temperature (above the glass transition point) at which birefringence disappears, and then lower the mold temperature so that the increment of birefringence of the molded product becomes constant. You may do it.
【0017】本実施例によれば、複屈折量増加への影響
の度合いに応じて金型温度の低下スピードを最適にコン
トロールするため、最短の時間で製品を冷却することが
できる。つまり、一定温度の冷却勾配にて成形する場合
に比べて約半分の冷却時間で同等レベルの複屈折量をも
ったレンズが成形できた。According to this embodiment, the rate of decrease of the mold temperature is optimally controlled according to the degree of influence on the increase in birefringence, so that the product can be cooled in the shortest time. That is, a lens having an equivalent level of birefringence could be molded in about half the cooling time compared to molding with a constant temperature cooling gradient.
【0018】[実施例2]図5は、本実施例で用いた金
型を示すもので、以下、実施例1と異なる点のみについ
て説明する。本実施例においては、金型キャビティ部の
複屈折の変化を直接測定する複屈折測定器を金型に内蔵
させている。この複屈折測定器は、キャビティ部12を
形成する固定側入子13と可動側入子14内に構成され
ている。固定側入子13の内部には、キャビティ部12
側から順に無歪みガラス15、鋭敏色板16、偏光板1
7が固設されている。また、固定側入子13の内部に
は、白色光源18が固設されており、キャビティ部12
方向へ光を発生させることができるようになっている。
一方、可動側入子14内部には、キャビティ部12側か
ら順に無歪みガラス19、偏光板20が固設されてい
る。また、可動側入子14の内部には、CCDカメラ2
1が設けられており、キャビティ部12方向の映像を金
型外部のモニター22に映し出すことができるようにな
っている。また、固定板11および可動板10には、そ
れぞれ独立して、固定側入子13および可動側入子14
の近傍に温調管23が配置されている。[Embodiment 2] FIG. 5 shows a mold used in this embodiment, and only points different from Embodiment 1 will be described below. In this embodiment, a birefringence measuring device for directly measuring the change in birefringence of the die cavity is incorporated in the die. This birefringence measuring device is configured inside a fixed-side insert 13 and a movable-side insert 14 that form a cavity 12. The cavity 12 is provided inside the stationary insert 13.
Strain-free glass 15, sensitive color plate 16, polarizing plate 1 in this order from the side
7 is fixed. In addition, a white light source 18 is fixedly provided inside the stationary insert 13, and the white light source 18 is fixed in the cavity 12.
It is possible to generate light in any direction.
On the other hand, inside the movable-side insert 14, an unstrained glass 19 and a polarizing plate 20 are fixedly installed in order from the cavity portion 12 side. In addition, inside the movable side insert 14, the CCD camera 2
1 is provided so that an image in the direction of the cavity 12 can be displayed on the monitor 22 outside the mold. In addition, the fixed plate 11 and the movable plate 10 are independently provided to the fixed side insert 13 and the movable side insert 14, respectively.
A temperature control pipe 23 is arranged in the vicinity of.
【0019】このような構成の射出成形金型を用いて、
ガラス転移点以上に加熱された金型内部のキャビティ部
12に溶融樹脂を射出充填した後、樹脂が均一温度にな
るまで保冷維持した。その後、実施例1と同様にヒート
サイクル用温調機7を作動させ、温調管23により金型
温度を調整することにより、成形品の複屈折量の増分が
一定となるように金型温度を低下させた。Using the injection molding die having such a structure,
After the molten resin was injected and filled into the cavity 12 inside the mold heated above the glass transition point, the resin was kept cold until the resin reached a uniform temperature. After that, the heat cycle temperature controller 7 is operated in the same manner as in Example 1, and the mold temperature is adjusted by the temperature control tube 23 so that the increment of the birefringence amount of the molded product becomes constant. Lowered.
【0020】このとき、モニター22に出力されるキャ
ビティ部12内部の樹脂の複屈折量を実測しながら、金
型温度の低下速度をコントロールした。つまり、固定側
入子13内部に固定された白色光源18から発光させ、
鋭敏色板16および偏光板17を通過させることにより
発生した直線偏光はキャビティ部12内(樹脂内)を通
過し、更に可動側入子14内の偏光板20を通過して、
CCDカメラ21にてその光を見ながら、温度制御し
た。キャビティ部12内に樹脂が入っていないときは鋭
敏色(赤紫色)に見えているが、複屈折を生じた樹脂が
キャビティ部12内にあると、光に光路差を生じ、56
5nm毎に干渉縞模様(赤紫色→赤褐色→シアン色→空
色→淡緑色→淡黄緑色→白色の順に色がつく)が見え
る。これを利用して、同一部分の色の変化速度を測るこ
とにより、複屈折量の変化量(増分)を測定することが
できる。なお、無歪みガラス15、19は、キャビティ
部12を構成するために付けており、無歪みであるから
複屈折量の測定には影響しない。At this time, the rate of decrease of the mold temperature was controlled while actually measuring the birefringence amount of the resin inside the cavity 12 output to the monitor 22. That is, the white light source 18 fixed inside the fixed-side insert 13 is caused to emit light,
The linearly polarized light generated by passing through the sensitive color plate 16 and the polarizing plate 17 passes through the inside of the cavity portion 12 (inside the resin), and further passes through the polarizing plate 20 inside the movable side insert 14,
The temperature was controlled while observing the light with the CCD camera 21. When the resin is not contained in the cavity 12, it looks as a sensitive color (red-purple), but when the resin that has birefringence is in the cavity 12, an optical path difference occurs in the light, and
An interference fringe pattern (colors are formed in the order of red purple → reddish brown → cyan → sky blue → light green → light yellow green → white) is seen every 5 nm. By utilizing this, the change amount (increment) of the birefringence amount can be measured by measuring the change speed of the color of the same portion. The strain-free glasses 15 and 19 are attached to form the cavity portion 12, and since they are strain-free, they do not affect the measurement of the birefringence amount.
【0021】本実施例によれば、複屈折量をリアルタイ
ムに実測できるため、複屈折量の増分が一定となるよう
な金型温度の低下速度を高精度にコントロールすること
ができる。その結果、より最適な冷却時間、すなわち最
短時間で成形品を得ることができる。According to this embodiment, since the birefringence amount can be measured in real time, it is possible to control with high accuracy the rate of decrease of the mold temperature at which the increment of the birefringence amount becomes constant. As a result, a molded product can be obtained in a more optimal cooling time, that is, in the shortest time.
【0022】[0022]
【発明の効果】以上のように、請求項1に係る発明によ
れば、複屈折量増加への影響の度合いに応じて金型温度
の低下スピードを最適にコントロールすることができる
ので、最短の時間で高精度かつ複屈折量を少なくして製
品を冷却することができる。請求項2に係る発明によれ
ば、上記効果に加え、成形にあたり、射出成形機の構成
を複雑にする必要がない。請求項3に係る発明によれ
ば、上記効果に加え、より高精度に金型温度を制御する
ことができる。As described above, according to the first aspect of the present invention, the mold temperature lowering speed can be optimally controlled according to the degree of influence on the increase in birefringence amount. The product can be cooled with high accuracy in a short time and with a reduced amount of birefringence. According to the invention of claim 2, in addition to the above effects, it is not necessary to complicate the configuration of the injection molding machine in molding. According to the invention of claim 3, in addition to the above effect, the mold temperature can be controlled with higher accuracy.
【図1】(a)冷却時間と樹脂温度との関係を示すグラ
フ、(b)冷却時間と複屈折量との関係を示すグラフで
ある。1A is a graph showing a relationship between a cooling time and a resin temperature, and FIG. 1B is a graph showing a relationship between a cooling time and a birefringence amount.
【図2】実施例1で成形したレンズを示す側面図であ
る。2 is a side view showing the lens molded in Example 1. FIG.
【図3】実施例1で用いた射出成形金型を示す断面図で
ある。FIG. 3 is a cross-sectional view showing an injection mold used in Example 1.
【図4】実施例1における成形時間と金型温度および複
屈折量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between molding time, mold temperature and birefringence amount in Example 1.
【図5】実施例2で用いた射出成形金型を示す断面図で
ある。5 is a cross-sectional view showing an injection molding die used in Example 2. FIG.
1 固定側金型 2 可動側金型 3,13 固定側入子 4,14 可動側入子 5,6 温調経路 7 ヒートサイクル用温調機 8,12 キャビティ部 9 熱電対 16 鋭敏色板 17,20 偏光板 21 CCDカメラ 22 モニター 1 Fixed Side Mold 2 Movable Side Mold 3,13 Fixed Side Insert 4,14 Movable Side Insert 5,6 Temperature Control Path 7 Heat Cycle Temperature Controller 8,12 Cavity 9 Thermocouple 16 Sensitive Color Plate 17 , 20 Polarizer 21 CCD camera 22 Monitor
Claims (3)
填した後、少なくとも樹脂温度がガラス転移点以上でか
つ均一になるまで保冷維持し、その後、該樹脂の複屈折
量の増分が一定となるように金型温度を低下させること
を特徴とする射出成形法。1. After injection-filling the molten resin into the cavity of the mold, the temperature is kept cold until at least the resin temperature is equal to or higher than the glass transition point and becomes uniform, and then the increment of the birefringence amount of the resin is kept constant. Injection molding method characterized by lowering the mold temperature so that
複屈折量の変化率を計算し、そのデータに基づいて金型
温度を制御することを特徴とする請求項1記載の射出成
形法。2. The injection molding method according to claim 1, wherein the rate of change of the birefringence amount with respect to the temperature of the resin is calculated in advance before the molding is started, and the mold temperature is controlled based on the data.
ら金型温度を制御することを特徴とする請求項1記載の
射出成形法。3. The injection molding method according to claim 1, wherein the mold temperature is controlled while actually measuring the birefringence amount of the resin during molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4852395A JP3530613B2 (en) | 1995-03-08 | 1995-03-08 | Injection molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4852395A JP3530613B2 (en) | 1995-03-08 | 1995-03-08 | Injection molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08244085A true JPH08244085A (en) | 1996-09-24 |
JP3530613B2 JP3530613B2 (en) | 2004-05-24 |
Family
ID=12805730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4852395A Expired - Fee Related JP3530613B2 (en) | 1995-03-08 | 1995-03-08 | Injection molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3530613B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794643B2 (en) | 2006-03-24 | 2010-09-14 | Ricoh Company, Ltd. | Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same |
-
1995
- 1995-03-08 JP JP4852395A patent/JP3530613B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794643B2 (en) | 2006-03-24 | 2010-09-14 | Ricoh Company, Ltd. | Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same |
Also Published As
Publication number | Publication date |
---|---|
JP3530613B2 (en) | 2004-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100883456B1 (en) | How to produce plastic glass material | |
US7597827B2 (en) | Method for automatically balancing the volumetric filling of cavities | |
JP3530613B2 (en) | Injection molding method | |
JP2005511364A (en) | Half block of an injection mold of an optical component made of thermoplastic material and a mold including such a half block | |
JP4467980B2 (en) | Injection molding method for optical parts made of thermoplastic synthetic materials | |
KR20080037540A (en) | High Pressure Injection Molding Method for the Preparation of Optical Components | |
JP2001047524A (en) | Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element | |
JP2004529005A (en) | Method of manufacturing a molded member in a molding die | |
JP2000329908A (en) | Plastic molded goods | |
JP2002283352A (en) | Method for manufacturing plastic optical element | |
JP4767192B2 (en) | Injection molding apparatus and injection molding method | |
JP3296910B2 (en) | Manufacturing method of uneven thickness molded products | |
JP2002096361A (en) | Method for manufacturing plastic molded article, mold for injection molding, and plastic molded article | |
CN103648745B (en) | The manufacture method of mechanograph and mould | |
JP2002240110A (en) | Method for injection molding plastic optical element | |
JP2006007617A (en) | Injection molding device and method | |
JP2003112348A (en) | Method for injection molding | |
JP2002103405A (en) | Method and mold for molding optical element | |
TWI703306B (en) | Correction method of optical lens mold | |
TWI684745B (en) | Calibration system for optical lens mold | |
JP2002355858A (en) | Plastic molding device and method | |
JP2002248667A (en) | Method of manufacturing resin molding | |
JPH0740404A (en) | Injection molding of plastic optical element | |
JPS61290024A (en) | Mold for molding plastic lens | |
JPH11138610A (en) | Method and apparatus for forecasting shape of finished molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040301 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090305 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090305 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100305 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |