JPH0824198B2 - Heterojunction diode manufacturing method - Google Patents
Heterojunction diode manufacturing methodInfo
- Publication number
- JPH0824198B2 JPH0824198B2 JP1043706A JP4370689A JPH0824198B2 JP H0824198 B2 JPH0824198 B2 JP H0824198B2 JP 1043706 A JP1043706 A JP 1043706A JP 4370689 A JP4370689 A JP 4370689A JP H0824198 B2 JPH0824198 B2 JP H0824198B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- film
- heterojunction diode
- manufacturing
- heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 description 23
- 230000008021 deposition Effects 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、光、放射線等の検出に用いるヘテロ接合ダ
イオードの製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a heterojunction diode used for detecting light, radiation and the like.
従来の技術 従来、半導体を用いた接合素子は可視光、赤外光や放
射線等を電気信号に変換する装置として幅広く用いられ
ているが、それらは主にシリコン単結晶基板に熱拡散法
やイオン注入法によって作製したpn(pin)接合ダイオ
ードに逆バイアス電圧を印加した時に発生する空乏層を
有感層として使用するものである。しかしながらこれら
の製造プロセスでは、900℃以上の高温処理が必要であ
りこれに起因する熱誘起欠陥生じたり、イオン注入法の
場合には注入時に於いて生じた打ち込みによる基板ダメ
ージがアニール処理によっても取り除ききれない場合が
多いため、再結合による暗電流が増大しS/N比が取れに
くかった。また製造プロセスが複雑なため、製造時間が
長くかかっていた。2. Description of the Related Art Conventionally, a junction element using a semiconductor has been widely used as a device for converting visible light, infrared light, radiation, etc. into an electric signal. A depletion layer generated when a reverse bias voltage is applied to a pn (pin) junction diode manufactured by the injection method is used as a sensitive layer. However, these manufacturing processes require high-temperature treatment of 900 ° C or higher, which causes thermally-induced defects, and in the case of the ion implantation method, substrate damage due to implantation that occurred during implantation is also removed by annealing treatment. In many cases, the dark current due to recombination increases and it is difficult to obtain the S / N ratio. Moreover, since the manufacturing process is complicated, the manufacturing time is long.
そこで最近ではシリコン単結晶基板上に高周波または
直流プラズマCVD法によって非晶質半導体膜、例えば非
晶質シリコンカーバイト膜を200℃〜300℃の比較的低温
で形成し結晶中の欠陥の誘起を低減し、また終始一定の
比較的大きなRFパワーで形成し膜堆積の所要時間を短縮
する試みがなされている。Therefore, recently, an amorphous semiconductor film, for example, an amorphous silicon carbide film, is formed on a silicon single crystal substrate by a high frequency or direct current plasma CVD method at a relatively low temperature of 200 ° C to 300 ° C to induce defects in the crystal. Attempts have been made to reduce the time required for film deposition by forming a relatively large RF power which is constant all the time.
発明が解決しようとする課題 しかし、上記の方法によるヘテロ接合ダイオードで
は、逆バイアス電圧印加時の暗電流が、シリコン単結晶
基板表面のプラズマダメージによって生じる界面の欠陥
準位を通しての再結合電流のために大きくなるという課
題があった。また、プラズマダメージを低減するために
RFパワーを小さくして膜堆積を行った場合、膜堆積速度
が低下し膜堆積時間が増加するという課題があった。However, in the heterojunction diode by the above method, the dark current at the time of applying the reverse bias voltage is due to the recombination current through the defect level of the interface caused by the plasma damage on the surface of the silicon single crystal substrate. There was a problem of becoming big. Also, to reduce plasma damage
When a film is deposited with a low RF power, there is a problem that the film deposition rate decreases and the film deposition time increases.
例えば、第4図及び第5図は、それぞれ以下の条件で
膜形成を行った場合の逆バイアス電圧印加時の暗電流の
RFパワー依存性及び膜堆積速度のRFパワー依存性であ
る。For example, FIGS. 4 and 5 show the dark current when a reverse bias voltage is applied when a film is formed under the following conditions.
RF power dependence and film deposition rate RF power dependence.
単結晶基板 P型シリコン(10kΩcm) 基板温度 200℃ 使用ガス モノシラン(100%),メタン(100%) ガス流量 モノシラン 70SCCM メタン 30SCCM ガス圧力 0.6Torr 膜厚 150nm RFパワーが11mW/cm2以下の低パワーの場合は、ヘテロ
接合ダイオードの暗電流は小さく安定して作製できる
が、膜堆積速度は40mW/cm2の高パワーの場合に比べて1/
4〜1/3と遅い。Single crystal substrate P-type silicon (10kΩcm) Substrate temperature 200 ℃ Gas used Monosilane (100%), Methane (100%) Gas flow rate Monosilane 70SCCM Methane 30SCCM Gas pressure 0.6Torr Film thickness 150nm RF power 11mW / cm 2 or less Low power In the case of, the dark current of the heterojunction diode is small and can be stably manufactured, but the film deposition rate is 1 / m compared with the case of high power of 40 mW / cm 2.
4 to 1/3 slow.
本発明は上記課題を解決し得るヘテロ接合ダイオード
の製造方法を提供することを目的とする。An object of the present invention is to provide a method for manufacturing a heterojunction diode which can solve the above problems.
課題を解決するための手段 上記課題を解決するための、本発明のヘテロ接合ダイ
オードの製造方法は、プラズマCVD法によるシリコン単
結晶基板上への非晶質半導体膜堆積において低パワーか
ら高パワーへn段階(n≧2)にRFパワーの切換えを行
う方法である。Means for Solving the Problems In order to solve the above problems, a method for manufacturing a heterojunction diode of the present invention is a low power to a high power in depositing an amorphous semiconductor film on a silicon single crystal substrate by a plasma CVD method. This is a method of switching the RF power in n steps (n ≧ 2).
作用 本発明の製造方法によれば、初めに、シリコン単結晶
基板表面のプラズマダメージを低減するためにプラズマ
の影響を受けない膜厚まで低パワーで非晶質半導体膜の
堆積を行うことによってヘテロ接合ダイオードの暗電流
を低減でき、その後、高速堆積を行うために高パワーで
非晶質半導体膜の堆積を行うことによって膜堆積時間を
短縮することができる。Effect According to the manufacturing method of the present invention, first, in order to reduce the plasma damage on the surface of the silicon single crystal substrate, the amorphous semiconductor film is deposited with low power to a film thickness not affected by plasma. The dark current of the junction diode can be reduced, and the film deposition time can be shortened by subsequently depositing the amorphous semiconductor film with high power for high-speed deposition.
実施例1 以下、本発明の一実施例を第1図及び第2図を用いて
説明する。Example 1 An example of the present invention will be described below with reference to FIGS. 1 and 2.
第1図は、本発明の製造方法によって製造されたヘテ
ロ接合ダイオードの製造工程を示している。FIG. 1 shows a manufacturing process of a heterojunction diode manufactured by the manufacturing method of the present invention.
まず、シリコン単結晶基板(P型、10kΩcm)1の上
部全面に基板1とのヘテロ接合を形成する非晶質半導体
膜2として非晶質シリコンカーバイト膜を平行平板型プ
ラズマCVD装置を用いて以下の条件で形成する(第1図
(a))。First, an amorphous silicon carbide film is used as an amorphous semiconductor film 2 which forms a heterojunction with the substrate 1 on the entire upper surface of a silicon single crystal substrate (P type, 10 kΩcm) 1 using a parallel plate plasma CVD apparatus. It is formed under the following conditions (FIG. 1 (a)).
基板温度 200℃ 使用ガス モノシラン(100%),メタン(100%) ガス流量 モノシラン 70SCCM メタン 30SCCM ガス圧力 0.6Torr RFパワー 5W(7mW/cm2) 膜堆積速度 3nm/min 膜厚 5nm 次に、非晶質半導体膜2上全面に他の条件は変えずに
RFパワーのみを大きくして放電を接続しつつ連続して非
晶質半導体膜3として非晶質シリコンカーバイト膜を以
下の条件で形成する(第1図(b))。Substrate temperature 200 ℃ Gas used Monosilane (100%), Methane (100%) Gas flow rate Monosilane 70SCCM Methane 30SCCM Gas pressure 0.6Torr RF power 5W (7mW / cm 2 ) Film deposition rate 3nm / min Film thickness 5nm Next, amorphous On the entire surface of the high-quality semiconductor film 2 without changing other conditions
An amorphous silicon carbide film is continuously formed as the amorphous semiconductor film 3 under the following conditions while increasing only RF power and connecting discharge (FIG. 1 (b)).
基板温度 200℃ 使用ガス モノシラン(100%),メタン(100%) ガス流量 モノシラン 70SCCM メタン 30SCCM ガス圧力 0.6Torr RFパワー 30W(42mW/cm2) 膜堆積速度 11.5nm/min 膜厚 150nm 最後に、両面にアルミニウム電極4を抵抗加熱蒸着装
置を用いて約300nm形成する(第1図(c))。Substrate temperature 200 ℃ Gas used Monosilane (100%), Methane (100%) Gas flow rate Monosilane 70SCCM Methane 30SCCM Gas pressure 0.6Torr RF power 30W (42mW / cm 2 ) Film deposition rate 11.5nm / min Film thickness 150nm Finally, both sides Then, an aluminum electrode 4 is formed to a thickness of about 300 nm using a resistance heating vapor deposition device (FIG. 1 (c)).
第2図は、上記方法で作製したヘテロ接合ダイオード
のI−V特性を示すもので、終始30Wで膜堆積を行う場
合に比べ、暗電流が1〜2桁減少する。また、終始5Wで
膜堆積を行う場合に比べ、膜堆積時間が約1/4に短縮さ
れる。FIG. 2 shows the IV characteristics of the heterojunction diode manufactured by the above method, in which the dark current is reduced by one to two digits as compared with the case where film deposition is continuously performed at 30 W. Further, the film deposition time is shortened to about 1/4 as compared with the case where the film deposition is always performed at 5W.
非晶質シリコンカーバイト膜の膜質分析をX線光電子
分光法(ESCA)の測定で行なったところ、膜中の炭素
(C)とシリコン(Si)の比(C/Si)は5Wの場合で約15
%、30Wの場合で約25%と明らかにRFパワーの大きさに
よって異なっていた。When the film quality of the amorphous silicon carbide film was analyzed by X-ray photoelectron spectroscopy (ESCA), the carbon (C) and silicon (Si) ratio (C / Si) in the film was 5 W. About 15
%, About 25% in the case of 30 W, which obviously depends on the magnitude of the RF power.
実施例2 以下、本発明の他の実施例を第1図及び第3図を用い
て説明する。Second Embodiment Another embodiment of the present invention will be described below with reference to FIGS. 1 and 3.
まず、シリコン単結晶基板(P型、10kΩcm)1の上
部全面に基板1とのヘテロ接合を形成する非晶質半導体
膜2として非晶質シリコン膜を平行平板型プラズマCVD
装置を用いて以下の条件で形成する(第1図(a))。First, an amorphous silicon film is used as an amorphous semiconductor film 2 forming a heterojunction with the substrate 1 on the entire upper surface of a silicon single crystal substrate (P type, 10 kΩcm) 1 and a parallel plate plasma CVD method is used.
It is formed using the apparatus under the following conditions (FIG. 1 (a)).
基板温度 200℃ 使用ガス モノシラン(100%) ガス流量 モノシラン 100SCCM ガス圧力 0.6Torr RFパワー 5W(7mW/cm2) 膜堆積速度 3.5nm/min 膜厚 5nm 次に、非晶質半導体膜2上全面に他の条件は変えずに
RFパワーのみを大きくして放電を持続しつつ連続して非
晶質半導体膜3として非晶質シリコン膜を以下の条件で
形成する(第1図(b))。Substrate temperature 200 ℃ Gas used Monosilane (100%) Gas flow rate Monosilane 100SCCM Gas pressure 0.6Torr RF power 5W (7mW / cm 2 ) Film deposition rate 3.5nm / min Film thickness 5nm Next, on the entire surface of the amorphous semiconductor film 2. Without changing other conditions
An amorphous silicon film is continuously formed as the amorphous semiconductor film 3 under the following conditions while increasing the RF power only and sustaining the discharge (FIG. 1 (b)).
基板温度 200℃ 使用ガス モノシラン(100%) ガス流量 モノシラン 100SCCM ガス圧力 0.6Torr RFパワー 30W(42mW/cm2) 膜堆積速度 13nm/min 膜厚 150nm 最後に、両面にアルミニウム電極4を抵抗加熱蒸着装
置を用いて約300nm形成する(第1図(c))。Substrate temperature 200 ° C Gas used Monosilane (100%) Gas flow rate Monosilane 100SCCM Gas pressure 0.6Torr RF power 30W (42mW / cm 2 ) Film deposition rate 13nm / min Film thickness 150nm Finally, aluminum electrodes 4 on both sides are heated by resistance heating. To form about 300 nm (FIG. 1 (c)).
第3図は、上記方法で作製したヘテロ接合ダイオード
のI−V特性を示すもので、終始30Wで膜堆積を行う場
合に比べ、暗電流が1〜2桁減少する。また、終始5Wで
膜堆積を行う場合に比べ、膜堆積時間が約1/4に短縮さ
れる。FIG. 3 shows the IV characteristics of the heterojunction diode manufactured by the above method, in which the dark current is reduced by 1 to 2 digits as compared with the case where film deposition is continuously performed at 30 W. Further, the film deposition time is shortened to about 1/4 as compared with the case where the film deposition is always performed at 5W.
なお、RFパワー(P)の切り換えは、低パワーとして
は15mW/cm2より小さく、高パワーは15mw/cm2以上、50mW
/cm2以下(第5図に示す範囲)が望ましい。In addition, switching of RF power (P) is less than 15 mW / cm 2 for low power, and 15 mw / cm 2 or more for high power, 50 mW
/ cm 2 or less (range shown in FIG. 5) is desirable.
発明の効果 上記本発明の製造方法によれば、初めに結晶基板がプ
ラズマの影響を受けない膜厚まで低パワーで非晶質半導
体膜の堆積を行うことによって逆バイアス電圧印加時の
暗電流を低減でき、その後高パワーで非晶質半導体膜の
堆積を行うことによって膜堆積時間を短縮することがで
き、高性能なヘテロ接合ダイオードの実現に実用上極め
て有効である。EFFECTS OF THE INVENTION According to the above-described manufacturing method of the present invention, by first depositing an amorphous semiconductor film with low power to a film thickness at which the crystal substrate is not affected by plasma, dark current during reverse bias voltage application can be reduced. It is possible to reduce the film thickness, and then the film deposition time can be shortened by depositing the amorphous semiconductor film with high power, which is extremely effective in practice for realizing a high-performance heterojunction diode.
第1図は本発明の実施例の工程を示す説明図、第2図は
実施例1の非晶質シリコンカーバイト膜を用いたヘテロ
接合ダイオードのI−V特性を示す図、第3図は実施例
2の非晶質シリコン膜を用いたヘテロ接合ダイオードの
I−V特性を示す図、第4図は逆バイアス電圧印加時の
暗電流のRFパワー依存性を示す図、第5図は膜堆積速度
のRFパワー依存性を示す図である。 1……シリコン単結晶基板、2,3……非晶質半導体膜、
4……アルミニウム電極、5,7……RFパワー切換え有、
6,8……RFパワー30W(一定)。FIG. 1 is an explanatory view showing a process of an embodiment of the present invention, FIG. 2 is a view showing IV characteristics of a heterojunction diode using the amorphous silicon carbide film of Embodiment 1, and FIG. The figure which shows the IV characteristic of the heterojunction diode using the amorphous silicon film of Example 2, FIG. 4 is a figure which shows RF power dependence of the dark current at the time of reverse bias voltage application, and FIG. It is a figure which shows RF power dependence of a deposition rate. 1 ... Silicon single crystal substrate, 2, 3 ... Amorphous semiconductor film,
4 ... Aluminum electrode, 5,7 ... with RF power switching,
6,8 …… RF power 30W (constant).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 Japanese Journal o f Applied Physics,P art1,V.23,No.5,P.515− 524(1984) 電子情報通信学会技術研究報告CPM93 −61(1993) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Bibliography Japanes of Applied Physics, Part 1, V. 23, No. 5, P.I. 515-524 (1984) IEICE Technical Report CPM93-61 (1993)
Claims (3)
上への非晶質シリコン膜、または非晶質シリコンカーバ
イト膜形成において高周波電力(RFパワー)を低パワー
からより成膜速度が大きい高パワーへn段階(n≧2)
に切換えることを特徴とするヘテロ接合ダイオードの製
造方法。1. In forming an amorphous silicon film or an amorphous silicon carbide film on a silicon single crystal substrate by a plasma CVD method, the high frequency power (RF power) is increased from low power to high power. N stages (n ≧ 2)
A method for manufacturing a heterojunction diode, characterized in that
する特許請求の範囲第1項記載のヘテロ接合ダイオード
の製造方法。2. The method for manufacturing a heterojunction diode according to claim 1, wherein the RF power is continuously switched.
テロ接合ダイオードの製造方法。3. RF power (P) is low power: P <15 mW / cm 2 "High power: 50 mW / cm 2 ≥ P ≥ 15 mW / cm 2 " A method for manufacturing the heterojunction diode described.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1043706A JPH0824198B2 (en) | 1989-02-23 | 1989-02-23 | Heterojunction diode manufacturing method |
US07/483,872 US5070027A (en) | 1989-02-23 | 1990-02-23 | Method of forming a heterostructure diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1043706A JPH0824198B2 (en) | 1989-02-23 | 1989-02-23 | Heterojunction diode manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02222178A JPH02222178A (en) | 1990-09-04 |
JPH0824198B2 true JPH0824198B2 (en) | 1996-03-06 |
Family
ID=12671261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1043706A Expired - Fee Related JPH0824198B2 (en) | 1989-02-23 | 1989-02-23 | Heterojunction diode manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0824198B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332749A (en) * | 2000-05-23 | 2001-11-30 | Canon Inc | Method of forming semiconductor thin film and amorphous silicon solar cell element |
JP2011166106A (en) | 2010-01-13 | 2011-08-25 | Renesas Electronics Corp | Semiconductor device manufacturing method and semiconductor device |
-
1989
- 1989-02-23 JP JP1043706A patent/JPH0824198B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
JapaneseJournalofAppliedPhysics,Part1,V.23,No.5,P.515−524(1984) |
電子情報通信学会技術研究報告CPM93−61(1993) |
Also Published As
Publication number | Publication date |
---|---|
JPH02222178A (en) | 1990-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8021910B2 (en) | Method for producing single crystal silicon solar cell and single crystal silicon solar cell | |
US4196438A (en) | Article and device having an amorphous silicon containing a halogen and method of fabrication | |
US4166918A (en) | Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell | |
JPH04346419A (en) | Method of forming deposited film | |
JPH0230176B2 (en) | ||
JPS6091626A (en) | Method of producing amorphous silicon pin semiconductor device | |
CN101116188A (en) | Method of forming metal/semiconductor contacts through dielectric | |
US6777714B2 (en) | Crystalline silicon semiconductor device and method for fabricating same | |
JPH09246577A (en) | Formation method for metal electrode of solar cell | |
JP2002208715A (en) | Photovoltaic element and method for manufacturing the same | |
JPH07326784A (en) | Method for manufacturing solar cell element | |
JPH0824198B2 (en) | Heterojunction diode manufacturing method | |
JPH0529638A (en) | Manufacture of photoelectric transducer | |
JPH0323677A (en) | Repairing method of semiconductor device | |
JPH07109904B2 (en) | Heterojunction diode manufacturing method | |
JPH0282655A (en) | Manufacture of photovolatic device | |
JPH0442835B2 (en) | ||
JP3059297B2 (en) | Method for forming amorphous silicon-based semiconductor thin film | |
JP2644764B2 (en) | Method for manufacturing heterojunction device | |
JP2911291B2 (en) | Method for manufacturing semiconductor device | |
JPH04229664A (en) | Photoelectromotive force device and its manufacture | |
JPS63143875A (en) | solar cells | |
JP2735889B2 (en) | Method for forming hydrogenated amorphous silicon film and method for forming photovoltaic device | |
JPH03280476A (en) | Manufacture of photoelectric conversion device | |
JPS6175568A (en) | Method for manufacturing semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |