JPH08239532A - Transparent rubber-modified styrene resin composition and method for producing the same - Google Patents
Transparent rubber-modified styrene resin composition and method for producing the sameInfo
- Publication number
- JPH08239532A JPH08239532A JP7042722A JP4272295A JPH08239532A JP H08239532 A JPH08239532 A JP H08239532A JP 7042722 A JP7042722 A JP 7042722A JP 4272295 A JP4272295 A JP 4272295A JP H08239532 A JPH08239532 A JP H08239532A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- styrene
- polymerization
- rubber
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
(57)【要約】
【構成】 スチレン5〜50重量%とブタジエン50〜
95重量%から成り、特定のスチレン−ブタジエン共重
合体(A)を含有するゴム状重合体4〜30重量部と、
該ゴム状重合体と実質的に同等の屈折率を有するスチレ
ン−(メタ)アクリル酸アルキルエステル共重合体70
〜96重量部とから構成され、該ゴム状重合体が該スチ
レン−(メタ)アクリル酸アルキルエステル共重合体中
に分散した平均粒子径0.1〜2.0μm、粒子径分布
指数2.0〜5.0の粒子である透明なゴム変性スチレ
ン系樹脂組成物。
【効果】 本発明の樹脂組成物は、その優れた透明性、
耐衝撃性、特に熱履歴後の耐衝撃性から様々な用途を有
し、産業上の利用価値は極めて大きなものがある。(57) [Summary] [Structure] Styrene 5-50% by weight and butadiene 50-
4 to 30 parts by weight of a rubber-like polymer containing 95% by weight of the specific styrene-butadiene copolymer (A),
Styrene- (meth) acrylic acid alkyl ester copolymer 70 having a refractive index substantially equal to that of the rubber-like polymer
To 96 parts by weight, the rubber-like polymer dispersed in the styrene- (meth) acrylic acid alkyl ester copolymer has an average particle diameter of 0.1 to 2.0 μm and a particle diameter distribution index of 2.0. A transparent rubber-modified styrene resin composition having particles of ˜5.0. [Effect] The resin composition of the present invention has excellent transparency,
It has various uses from impact resistance, especially impact resistance after heat history, and has an extremely great industrial utility value.
Description
【0001】[0001]
【産業上の利用分野】本発明は透明性、耐衝撃性に優
れ、特に成形加工時の透明性の保持および熱履歴後の色
相、耐衝撃性の保持に優れたゴム変性スチレン系樹脂組
成物およびその製造方法に関する。FIELD OF THE INVENTION The present invention relates to a rubber-modified styrene resin composition which is excellent in transparency and impact resistance, and particularly in retaining transparency during molding and hue after heat history and impact resistance. And a manufacturing method thereof.
【0002】[0002]
【従来の技術】スチレン系樹脂は、透明性、剛性、成形
性に優れているという特徴を有するため家電製品、OA
機器、包装材料を始めとする様々な用途に用いられてい
る。ところがスチレン系樹脂単独では耐衝撃性が不足し
ているため、スチレン系樹脂をゴム状重合体で変性させ
て使用するというのが一般的である。このゴム変性スチ
レン系樹脂は、耐衝撃性については未変性の樹脂と較べ
て大きく改良されているものの、スチレン系樹脂が本来
持っていた透明性という特徴を失っている。これはスチ
レン系樹脂とゴム状重合体との屈折率が異なるためであ
る。2. Description of the Related Art Styrenic resins are excellent in transparency, rigidity, and moldability, so that they can be used in home appliances, OA, etc.
It is used in various applications such as equipment and packaging materials. However, since the styrene resin alone has insufficient impact resistance, it is general to modify the styrene resin with a rubber-like polymer before use. Although this rubber-modified styrenic resin is greatly improved in impact resistance as compared with the unmodified resin, it loses the transparency characteristic originally possessed by the styrene-based resin. This is because the styrene resin and the rubber-like polymer have different refractive indexes.
【0003】ポリマーハンドブック(Third Edition,〓
/451〜461)によるとポリスチレンの屈折率は1.59〜
1.592、ポリブタジエンの屈折率は1.516〜
1.520であり、一般にスチレン系樹脂の方がゴム状
重合体よりも屈折率が高い。しかし市場にはスチレン系
樹脂の透明性に対する要求が強く、透明なゴム変性スチ
レン系樹脂の開発すなわちスチレン系樹脂に耐衝撃性を
付与しながらも透明性を維持することが産業上極めて大
きな課題になっている。特に包装材料分野への透明なゴ
ム変性スチレン系樹脂の使用においては、樹脂をシート
状に一次加工した後、真空成形あるいは圧空成形により
所望の形状に二次加工するという方法が採られるが、こ
の二次加工の際に樹脂の透明性が低下するという問題が
生じるので、樹脂自身の透明性だけでなく成形加工時の
透明性の保持に対しても市場の要求は大きい。Polymer Handbook (Third Edition, 〓
/ 451-461), the refractive index of polystyrene is 1.59-
1.592, the refractive index of polybutadiene is 1.516 to
It is 1.520, and generally, the styrene resin has a higher refractive index than the rubber-like polymer. However, there is a strong demand in the market for the transparency of styrene-based resins, and the development of transparent rubber-modified styrene-based resins, that is, maintaining transparency while imparting impact resistance to styrene-based resins, is an extremely important issue in industry. Has become. Especially in the use of transparent rubber-modified styrene-based resin in the field of packaging materials, a method is used in which the resin is primarily processed into a sheet shape, and then vacuum-formed or pressure-formed into a desired shape. Since the problem that the transparency of the resin decreases during the secondary processing occurs, there is a great demand on the market not only for the transparency of the resin itself but also for maintaining the transparency during molding.
【0004】また近年においては、環境問題への意識の
高まりから再資源化(マテリアルリサイクル)の容易な
樹脂が望まれるようになってきている。生産性の面から
見ても、例えば樹脂シートをブリスターケース等に二次
加工する場合、加工品を打ち抜いた残りの樹脂を再び成
形材料として活用した方が生産性が高いように、再資源
化の容易な樹脂の開発は重要である。樹脂の再資源化
は、一度加工した樹脂を粉砕し、押出機等により加熱し
て溶融、混練した後に再び材料として用いるのである
が、従来の透明なゴム変性スチレン系樹脂に何度も熱を
加えると、樹脂の色相が変化し、耐衝撃性が低下してし
まうという問題がある。従って熱履歴に伴う樹脂の物
性、特に色相と耐衝撃性の低下を如何にして防止するか
ということは、透明なゴム変性スチレン系樹脂の開発に
おいて重要な課題である。Further, in recent years, a resin which can be easily recycled (material recycling) has been demanded due to the heightened awareness of environmental problems. In terms of productivity, for example, when secondary processing a resin sheet into a blister case, it is better to reuse the remaining resin after punching the processed product as the molding material for higher productivity It is important to develop an easy resin. To recycle the resin, the processed resin is crushed, heated by an extruder or the like, melted, kneaded, and then used again as a material, but the conventional transparent rubber-modified styrene resin is repeatedly heated. When added, there is a problem that the hue of the resin changes and the impact resistance decreases. Therefore, how to prevent the deterioration of the physical properties of the resin, especially the hue and impact resistance due to heat history, is an important issue in the development of transparent rubber-modified styrene resin.
【0005】従来の透明なゴム変性スチレン系樹脂とし
ては、例えば特開昭57−195139に開示されてい
るようにスチレン系樹脂であるポリスチレンとゴム状重
合体であるスチレン−ブタジエンブロック共重合体との
ブレンドによって製造されている。しかし、このブレン
ドによる製品は、ポリスチレンとスチレン−ブタジエン
ブロック共重合体とのブレンド方法を変更する(例えば
同一の材料を用いてもブレンドを行う押出機の型を1軸
式から2軸式に変更する、また同じ材料、同じ押出機を
使用しても押出温度、滞留時間、回転数等を変化させ
る)と2つの材料の混練状態や熱劣化、変色の度合いが
変わり透明性、耐衝撃性ともに変化し再現性に問題があ
る点、また押出条件によってはゴム状重合体がゲル化し
てフィッシュアイの発生など成形加工上大きな問題にな
る点、さらに両者の屈折率が本来異なるため、その製品
の透明性には自ずと限界がある点から見て市場の要求に
対し十分に応えられるものではない。樹脂の再資源化の
点から見ると、熱履歴を重ねるにつれて樹脂の劣化が著
しく進行して耐衝撃性が低下するので好ましくない。ま
た、透明性を向上させるためスチレン−ブタジエンブロ
ック共重合体中のスチレン含量を多くしてポリスチレン
との屈折率差を小さくする方法があるが、共重合体がポ
リスチレンに似た性質を帯びるようになり、製品の物
性、特に耐衝撃性が著しく低下するので好ましくない。Examples of conventional transparent rubber-modified styrene resin include polystyrene which is a styrene resin and styrene-butadiene block copolymer which is a rubber-like polymer as disclosed in JP-A-57-195139. Manufactured by blending. However, in the product by this blend, the method of blending polystyrene and styrene-butadiene block copolymer is changed (for example, even if the same material is used, the extruder type for blending is changed from a single-screw type to a twin-screw type). If the same material or the same extruder is used, the extrusion temperature, residence time, rotation speed, etc. will be changed) and the kneading state of the two materials, heat deterioration, and the degree of discoloration will change, and both transparency and impact resistance will increase. Change and there is a problem in reproducibility, depending on the extrusion conditions, the rubber-like polymer gels and becomes a big problem in molding processing such as generation of fish eyes. Furthermore, since the refractive indexes of both are originally different, the product Since transparency is naturally limited, it cannot fully meet the market demand. From the viewpoint of recycling of the resin, it is not preferable because deterioration of the resin progresses remarkably as the heat history increases and the impact resistance decreases. In order to improve transparency, there is a method of increasing the styrene content in the styrene-butadiene block copolymer to reduce the difference in the refractive index with polystyrene, but the copolymer has properties similar to polystyrene. And the physical properties of the product, especially the impact resistance, are significantly deteriorated, which is not preferable.
【0006】上記問題点を解決するため、例えば特開平
4−351649では、1種または2種以上のアクリル
酸アルキルエステルあるいはメタクリル酸アルキルエス
テルとスチレン系単量体とを共重合して得られる、ゴム
状重合体と同等の屈折率を有するスチレン系共重合体を
ゴム状重合体とブレンドする方法が開示されている。こ
の方法によれば、スチレン系共重合体とゴム状重合体と
の屈折率が実質的に同じなので透明性についてはある程
度改善されるものの、耐衝撃性、さらには熱履歴後の耐
衝撃性についてみるとブレンド法であるがゆえの問題点
については全く改善されていない。すなわち耐衝撃性が
低く、さらに混練の度合いによって耐衝撃性が大きく変
化してしまう上に、熱履歴を重ねるにつれて耐衝撃性が
低下してゆくので好ましくない。In order to solve the above-mentioned problems, for example, in JP-A-4-351649, it is obtained by copolymerizing one or more kinds of acrylic acid alkyl ester or methacrylic acid alkyl ester with a styrene monomer. A method of blending a styrenic copolymer having a refractive index similar to that of the rubber-like polymer with the rubber-like polymer is disclosed. According to this method, the styrene-based copolymer and the rubber-like polymer have substantially the same refractive index, so the transparency is improved to some extent, but the impact resistance, and further the impact resistance after thermal history, is improved. As a result, the problem due to the blending method has not been improved at all. That is, the impact resistance is low, and further, the impact resistance greatly changes depending on the degree of kneading, and the impact resistance decreases as the heat history increases, which is not preferable.
【0007】そこで例えば特公昭62−434507に
示されるように、ゴム状重合体ラテックスの存在下、特
定の比率のスチレン系単量体と(メタ)アクリル酸アル
キルエステルを乳化重合して透明なゴム変性スチレン系
樹脂を製造する方法がある。また特開平4−22484
8に示されるように、乳化重合法によってゴム状重合体
にスチレン系単量体と(メタ)アクリル酸アルキルエス
テルとを重合したグラフト重合体と、塊状あるいは溶液
重合によって製造したスチレン系単量体−(メタ)アク
リル酸アルキルエステル共重合体とを押出機などにより
ブレンドして透明なゴム変性スチレン系樹脂を製造する
方法がある。しかしこれらの方法に従って製造された樹
脂には乳化剤、凝固剤等の不純物が含まれており、この
不純物のため樹脂の透明性は低く、熱履歴後の色相の変
化も大きい。この樹脂を成形加工すると金型に不純物が
残留、変色し、やがて樹脂に転写されて成形不良を引き
起こす。また不純物が金型のベント部に詰まると金型か
らガスが抜けず、樹脂が金型内に均一に充填されなくな
って成形不良を起こすという問題があった。Therefore, as disclosed in, for example, Japanese Patent Publication No. 62-434507, a transparent rubber is obtained by emulsion-polymerizing a styrene monomer and a (meth) acrylic acid alkyl ester in a specific ratio in the presence of a rubber-like polymer latex. There is a method for producing a modified styrene resin. In addition, JP-A-4-22484
8, a graft polymer obtained by polymerizing a styrene monomer and a (meth) acrylic acid alkyl ester on a rubbery polymer by an emulsion polymerization method, and a styrene monomer produced by bulk or solution polymerization There is a method of producing a transparent rubber-modified styrene-based resin by blending a (meth) acrylic acid alkyl ester copolymer with an extruder or the like. However, the resins produced according to these methods contain impurities such as emulsifiers and coagulants, and due to these impurities, the transparency of the resin is low and the hue changes after heat history are large. When this resin is molded and processed, impurities remain in the mold and discolor, and eventually it is transferred to the resin, causing defective molding. Further, if the vent portion of the mold is clogged with impurities, the gas cannot escape from the mold, and the resin cannot be uniformly filled in the mold, resulting in a molding defect.
【0008】特公昭55−25215ではスチレン、メ
タクリル酸メチルからなる単量体にゴム状重合体を溶解
せしめた後、回分式塊状重合により透明なゴム変性スチ
レン系樹脂を製造する方法が開示されている。ゴム状重
合体としてはラジカルと反応する能力を持ち、室温にお
いてゴム状を呈している物質で、ポリブタジエン、ブタ
ジエン−スチレンランダム共重合体、ブタジエン−スチ
レンブロック共重合体などが用いられる。この方法では
乳化重合あるいは塊状−懸濁重合による樹脂の製造にお
いて問題となる乳化剤等を含まないため、前記した不純
物による問題は起こらないが、同特許公報によれば生成
するゴム状重合体粒子径は4〜7μmと大きく、成形品
表面が粗いために光の散乱が起こり透明性が低い。また
成形加工による透明性の低下も起こってしまう。樹脂の
熱履歴後の耐衝撃性は熱履歴前と比較して大幅に低下、
また色相も大きく変化してしまうという問題があった。Japanese Patent Publication No. 55-25215 discloses a method for producing a transparent rubber-modified styrenic resin by dissolving a rubber-like polymer in a monomer consisting of styrene and methyl methacrylate, and then batchwise bulk polymerization. There is. The rubber-like polymer is a substance which has the ability to react with radicals and exhibits a rubber-like shape at room temperature, and polybutadiene, a butadiene-styrene random copolymer, a butadiene-styrene block copolymer and the like are used. Since this method does not contain an emulsifying agent or the like which is a problem in the production of a resin by emulsion polymerization or bulk-suspension polymerization, the above-mentioned problems due to impurities do not occur, but according to the patent publication, the diameter of the rubber-like polymer particles produced Is as large as 4 to 7 μm, and since the surface of the molded product is rough, light is scattered and the transparency is low. In addition, the molding process also causes a decrease in transparency. The impact resistance of the resin after heat history is significantly lower than before heat history,
There is also a problem that the hue changes greatly.
【0009】上記問題点を改善するため、例えば特公昭
63−31488では連続流通式塊状重合による透明な
ゴム変性スチレン系樹脂を製造する方法が開示されてい
る。すなわち、メタクリル酸メチルを主成分とする単量
体にゴム状重合体を溶解した重合原料を単一の反応槽に
連続的に供給し、溶液を連続的に撹拌しながら、温度を
161℃〜195℃に、圧力を100〜175psig
に、平均滞留時間を90分未満に制御して重合を行い透
明なゴム変性スチレン系樹脂を製造する方法である。ゴ
ム状重合体としてはポリブタジエン、ブタジエン−スチ
レン共重合体、ブタジエン−アクリロニトリル共重合
体、エチレン−プロピレン−ジエン共重合体、イソプレ
ン重合体および共重合体などが用いられる。ところがこ
の方法に基づいて樹脂を製造するためには重合温度、反
応圧力、平均滞留時間等の重合条件を極めて厳密に制御
する必要が生じるのに対し、重合温度が161℃〜19
5℃と高いため重合反応が暴走しやすく、重合条件を一
定に長期間維持するのが困難である。従って実際のプラ
ントとして稼働させるには、プラントの操業安定性、ひ
いては高度の透明性、耐衝撃性を有する樹脂を安定に生
産する能力に大きな問題がある。また重合条件の制御に
多大な労力を要するので生産コストも高い。さらに重合
温度が高いため低分子量の共重合体が多く生成し、これ
が上記した乳化あるいは懸濁重合で製造した樹脂に含ま
れる不純物と同様に、成形加工時の樹脂の透明性の低
下、変色、成形不良を引き起こしてしまう。In order to improve the above problems, for example, Japanese Patent Publication No. 63-31488 discloses a method for producing a transparent rubber-modified styrene resin by continuous flow bulk polymerization. That is, a polymerization raw material in which a rubbery polymer is dissolved in a monomer containing methyl methacrylate as a main component is continuously supplied to a single reaction tank, and the temperature is 161 ° C. while continuously stirring the solution. 195 ° C, pressure 100-175 psig
In addition, it is a method for producing a transparent rubber-modified styrenic resin by performing polymerization while controlling the average residence time to be less than 90 minutes. As the rubber-like polymer, polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, ethylene-propylene-diene copolymer, isoprene polymer and copolymer are used. However, in order to produce a resin based on this method, it is necessary to control polymerization conditions such as polymerization temperature, reaction pressure, and average residence time extremely strictly, while the polymerization temperature is 161 ° C to 19 ° C.
Since the temperature is as high as 5 ° C, the polymerization reaction tends to run away easily, and it is difficult to maintain the polymerization conditions constant for a long period of time. Therefore, in order to operate as an actual plant, there is a big problem in the operational stability of the plant, and further in the ability to stably produce a resin having a high degree of transparency and impact resistance. In addition, the production cost is high because a great deal of labor is required to control the polymerization conditions. Further, since the polymerization temperature is high, many low-molecular weight copolymers are produced, and like the impurities contained in the resin produced by the emulsion or suspension polymerization described above, the transparency of the resin is reduced during the molding process, and the discoloration, It causes defective molding.
【0010】他の連続流通式塊状重合による透明なゴム
変性スチレン系樹脂製造方法としては、例えば特公平5
−54484では、ゴム状重合体、スチレン系単量体、
(メタ)アクリル酸アルキルエステル、溶剤とから成る
溶液を重合し、該ゴム状重合体が粒子化する重合転化率
を越えない範囲までに止めた第1の流れと、スチレン系
単量体、(メタ)アクリル酸アルキルエステル、溶剤と
から成る溶液の重合途中の第2の流れとを混合し、その
後の重合により該ゴム状重合体を粒子化させることを特
徴とする透明なゴム変性スチレン系樹脂を製造する方法
が開示されている。該ゴム状重合体としてはポリブタジ
エン、ブタジエン−スチレン共重合体から選ばれた1種
または2種以上の混合物が用いられる。この方法では複
数の反応器ごとに相当量の重合を行うが、反応器ごとに
未反応のスチレン系単量体と(メタ)アクリル酸アルキ
ルエステルとの混合比が異なるため、生成するスチレン
系単量体−(メタ)アクリル酸アルキルエステル共重合
体の組成分布が広くなる傾向にあり、透明性の確保のた
めに重合条件の厳密な制御が必要となる点に問題があ
る。また熱履歴後の色相、耐衝撃性の保持については考
慮されていない。Another method for producing a transparent rubber-modified styrenic resin by continuous flow bulk polymerization is, for example, Japanese Patent Publication No.
-54484, a rubbery polymer, a styrene-based monomer,
A first stream in which a solution containing an alkyl (meth) acrylate and a solvent is polymerized and stopped until the polymerization conversion rate at which the rubber-like polymer becomes particles is not exceeded, a styrene-based monomer, ( A transparent rubber-modified styrenic resin, characterized in that a solution comprising a (meth) acrylic acid alkyl ester and a solvent is mixed with a second stream in the course of polymerization, and the rubber-like polymer is made into particles by the subsequent polymerization. A method of manufacturing is disclosed. As the rubber-like polymer, one kind or a mixture of two or more kinds selected from polybutadiene and butadiene-styrene copolymer is used. In this method, a considerable amount of polymerization is performed in each of the multiple reactors, but since the mixing ratio of the unreacted styrene-based monomer and the (meth) acrylic acid alkyl ester is different in each reactor, the styrene-based monomer produced is different. There is a problem in that the composition distribution of the monomer- (meth) acrylic acid alkyl ester copolymer tends to be wide, and strict control of polymerization conditions is required to ensure transparency. Further, no consideration is given to the retention of hue and impact resistance after thermal history.
【0011】特開平6−145443では、ゴム変性ス
チレン系重合体とスチレン−ブタジエンブロック共重合
体とテルペン系樹脂とを混合した成形加工、特に二次加
工における透明性の低下が少ないスチレン系樹脂組成物
が開示されている。この方法ではスチレン−ブタジエン
ブロック共重合体、テルペン系樹脂を添加するため樹脂
組成物の生産コストが高く、熱履歴後の色相の変化につ
いては改善されていない。また熱履歴を重ねるにつれて
耐衝撃性が低下するので好ましくない。In Japanese Patent Laid-Open No. 6-145443, a styrene-based resin composition in which a decrease in transparency is small in a molding process in which a rubber-modified styrene-based polymer, a styrene-butadiene block copolymer and a terpene-based resin are mixed, particularly in a secondary process The thing is disclosed. In this method, since the styrene-butadiene block copolymer and the terpene resin are added, the production cost of the resin composition is high, and the change in hue after thermal history has not been improved. In addition, impact resistance decreases as heat history increases, which is not preferable.
【0012】特開平4−180907では、ブタジエン
に基づく不飽和結合のうちの1,2−ビニル結合の割合
が14〜25%であるスチレン−ブタジエン共重合ゴム
の存在下に、可動部分のない複数のミキシングエレメン
トが内部に固定されている管状反応器を組み込んでなる
連続塊状重合装置で、重合液を静的に混合しながらスチ
レン系単量体と(メタ)アクリル酸アルキルエステルと
を共重合させる製造方法が示されている。この方法では
複数の複雑な反応器ごとの重合転化率を反応器数に応じ
て制御する必要があり、重合の制御性およびそのときの
生産性に問題がある。さらには熱履歴後の耐衝撃性の保
持についてみると、熱履歴を重ねるにつれて耐衝撃性が
低下するので好ましくない。In Japanese Patent Laid-Open No. 4-180907, in the presence of a styrene-butadiene copolymer rubber in which the proportion of 1,2-vinyl bonds among the unsaturated bonds based on butadiene is 14 to 25%, a plurality of rubbers having no moving parts are disclosed. In a continuous bulk polymerization device incorporating a tubular reactor in which the mixing element is fixed, the styrene monomer and the (meth) acrylic acid alkyl ester are copolymerized while the polymerization liquid is statically mixed. The manufacturing method is shown. In this method, it is necessary to control the polymerization conversion rate for each of a plurality of complicated reactors according to the number of reactors, and there is a problem in controllability of polymerization and productivity at that time. Further, regarding the retention of impact resistance after thermal history, the impact resistance decreases as the thermal history increases, which is not preferable.
【0013】このように耐衝撃性の高い透明なゴム変性
スチレン系樹脂を得るために、従来の技術において乳化
重合、塊状−懸濁重合から回分式塊状あるいは溶液重
合、連続流通式塊状あるいは溶液重合への製造方法の変
遷、添加剤の検討が認められるものの、樹脂の透明性、
耐衝撃性の発現と、成形加工時の透明性の低下、並びに
熱履歴による色相の変化、耐衝撃性の低下の防止とを同
時に達成したゴム変性スチレン系樹脂組成物およびその
製造方法は未だ開発されていない。In order to obtain a transparent rubber-modified styrenic resin having high impact resistance as described above, emulsion polymerization, bulk-suspension polymerization to batch-type bulk or solution polymerization, continuous flow-type bulk or solution polymerization are used in the prior art. Although the transition of the manufacturing method to
A rubber-modified styrene-based resin composition and a method for producing the same that have simultaneously achieved the development of impact resistance, the deterioration of transparency during molding processing, the change of hue due to heat history, and the prevention of reduction in impact resistance have been developed. It has not been.
【0014】[0014]
【発明が解決しようとする課題】本発明の目的は、連続
流通式塊状あるいは溶液重合による透明なゴム変性スチ
レン系樹脂組成物およびその製造方法、すなわち透明
性、耐衝撃性に優れ、特に成形加工時の透明性の保持お
よび熱履歴後の色相、耐衝撃性の保持を実現したゴム変
性スチレン系樹脂組成物およびその製造方法を提供する
ことである。The object of the present invention is to provide a transparent rubber-modified styrenic resin composition by continuous flow type bulk or solution polymerization, and a method for producing the same, that is, excellent transparency and impact resistance, and particularly molding process. A rubber-modified styrenic resin composition that realizes retention of transparency at the time and retention of hue and impact resistance after heat history, and a method for producing the same.
【0015】[0015]
【課題を解決するための手段】本発明者等は上記の課題
を解決するため鋭意研究を重ねた結果、連続流通式塊状
あるいは溶液重合法によるゴム変性スチレン系樹脂の製
造方法において、特定の構造を持つゴム状重合体を用
い、特定の条件でスチレン系単量体と(メタ)アクリル
酸アルキルエステルを重合することにより、ゴム状重合
体と実質的に同等の屈折率を有するスチレン−(メタ)
アクリル酸アルキルエステル共重合体を生成させなが
ら、ゴム状重合体を該共重合体で構成される連続相の中
に分散する粒子に転移させた後、特定の条件で未反応単
量体を除去したところ、生成したゴム変性スチレン系樹
脂組成物は高度の透明性、耐衝撃性を持ちながら、成形
加工時の透明性の低下が少なく、熱履歴を重ねても色相
の変化および耐衝撃性の低下が起こりにくいという驚く
べき事実を見出して本発明を完成させた。Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, in a method for producing a rubber-modified styrene resin by a continuous flow type bulk or solution polymerization method, a specific structure Of a styrene- (meth) acrylate having a refractive index substantially equal to that of the rubber-like polymer by polymerizing a styrene-based monomer and an alkyl (meth) acrylate under a specific condition. )
After forming the acrylic acid alkyl ester copolymer, the rubbery polymer is transferred to particles dispersed in the continuous phase composed of the copolymer, and then unreacted monomers are removed under specific conditions. As a result, the rubber-modified styrenic resin composition produced had a high degree of transparency and impact resistance, but there was little decrease in transparency during molding, and even if heat history was repeated, the hue change and impact resistance The present invention has been completed based on the surprising fact that the deterioration is unlikely to occur.
【0016】すなわち本発明は、スチレン5〜50重量
%とブタジエン50〜95重量%から成り、ブタジエン
に基づく不飽和結合のうちの1,2−ビニル結合の割合
が1.0〜13.8重量%、25℃における5重量%ス
チレン溶液の粘度が3〜60センチポイズの範囲内にあ
るスチレン−ブタジエン共重合体(A)を70重量%以
上含有するゴム状重合体4〜30重量部と、該ゴム状重
合体と実質的に同等の屈折率を有し、スチレン系単量体
20〜70重量%と(メタ)アクリル酸アルキルエステ
ル30〜80重量%から成るスチレン−(メタ)アクリ
ル酸アルキルエステル共重合体70〜96重量部とから
構成され、該ゴム状重合体が該スチレン−(メタ)アク
リル酸アルキルエステル共重合体中に分散した平均粒子
径0.1〜2.0μm、粒子径分布指数2.0〜5.0
の粒子である透明なゴム変性スチレン系樹脂組成物およ
びその製造方法を提供するものである。That is, the present invention comprises 5 to 50% by weight of styrene and 50 to 95% by weight of butadiene, and the ratio of 1,2-vinyl bonds among unsaturated bonds based on butadiene is 1.0 to 13.8% by weight. %, A rubber-like polymer containing 4 to 30 parts by weight of a styrene-butadiene copolymer (A) having a viscosity of a 5% by weight styrene solution in the range of 3 to 60 centipoise at 25 ° C. of 70% by weight or more, Styrene- (meth) acrylic acid alkyl ester having a refractive index substantially equal to that of a rubber-like polymer and comprising 20 to 70% by weight of styrene monomer and 30 to 80% by weight of (meth) acrylic acid alkyl ester. Copolymer 70 to 96 parts by weight, and the rubbery polymer is dispersed in the styrene- (meth) acrylic acid alkyl ester copolymer to give an average particle diameter of 0.1 to 2.0. m, the particle diameter distribution index of 2.0 to 5.0
The present invention provides a transparent rubber-modified styrene-based resin composition which is a particle of the above, and a method for producing the same.
【0017】以下に、本発明の製造方法について詳細に
説明する。The manufacturing method of the present invention will be described in detail below.
【0018】本発明の特徴は特定の分子構造を持つゴム
状重合体を用いることにある。本発明では、スチレン系
単量体、(メタ)アクリル酸アルキルエステルに溶解す
るゴム状重合体のうち70重量%以上、好ましくは85
重量%以上が、スチレン5〜50重量%とブタジエン5
0〜95重量%から成り、ブタジエンに基づく不飽和結
合のうちの1,2−ビニル結合の割合が1.0〜13.
8重量%、25℃における5重量%スチレン溶液の粘度
が3〜60センチポイズの範囲内にあるスチレン−ブタ
ジエン共重合体(A)で占められる。ゴム状重合体に含
まれる該共重合体(A)以外のゴム状重合体(B)は特
に限定されたものではなく、例えば市販のポリブタジエ
ン、スチレン−ブタジエン共重合体、エチレン−プロピ
レン系共重合体、あるいはこれらを水添したものなどを
単独であるいは2種以上を混合して用いることができ
る。ゴム状重合体(B)としてポリブタジエンを用いた
樹脂は耐衝撃性に優れ、スチレン−ブタジエン共重合体
を用いた樹脂は成形加工性に優れ、エチレン−プロピレ
ン系共重合体、水添ゴム状重合体を用いた樹脂は耐候性
に優れる。ゴム状重合体に占める該共重合体(A)の割
合が70重量%未満では、重合条件に関わらず粒子径が
2μmより大きなゴム状重合体粒子が多数生成して樹脂
の透明性が損なわれるので好ましくない。ゴム状重合体
に占める該共重合体(A)の割合が85重量%以上にな
ると特に樹脂の透明性が高く、成形加工時の透明性の低
下が起こりにくい。The feature of the present invention is to use a rubber-like polymer having a specific molecular structure. In the present invention, 70% by weight or more, preferably 85% by weight of the rubber-like polymer dissolved in the styrenic monomer and the (meth) acrylic acid alkyl ester.
5% to 50% by weight of styrene and 5% of butadiene
0 to 95% by weight, and the ratio of 1,2-vinyl bonds among the unsaturated bonds based on butadiene is 1.0 to 13.
The styrene-butadiene copolymer (A) has a viscosity of a 8% by weight, 5% by weight styrene solution at 25 ° C. within the range of 3 to 60 centipoise. The rubber-like polymer (B) other than the copolymer (A) contained in the rubber-like polymer is not particularly limited, and examples thereof include commercially available polybutadiene, styrene-butadiene copolymer, and ethylene-propylene copolymer. A united product or a product obtained by hydrogenating these may be used alone or in combination of two or more. The resin using polybutadiene as the rubber-like polymer (B) has excellent impact resistance, the resin using styrene-butadiene copolymer has excellent moldability, ethylene-propylene copolymer, hydrogenated rubber-like polymer The resin using the coalescence has excellent weather resistance. When the proportion of the copolymer (A) in the rubber-like polymer is less than 70% by weight, a large number of rubber-like polymer particles having a particle size of more than 2 μm are produced regardless of the polymerization conditions, and the transparency of the resin is impaired. It is not preferable. When the proportion of the copolymer (A) in the rubber-like polymer is 85% by weight or more, the transparency of the resin is particularly high, and the transparency is less likely to decrease during molding.
【0019】本発明で用いるスチレン−ブタジエン共重
合体(A)はスチレン5〜50重量%とブタジエン50
〜95重量%から構成される。スチレンの割合が5〜3
0重量%のゴム状重合体を用いた樹脂は耐衝撃性に優
れ、スチレンの割合が30〜50重量%のゴム状重合体
を用いた樹脂は透明性に優れる。スチレンの割合が15
〜35重量%のゴム状重合体を用いると透明性、耐衝撃
性が高次にバランスした樹脂が得られる。スチレンの割
合が20〜40重量%のゴム状重合体を用いた樹脂は熱
履歴による色相の変化が少ない。スチレンの割合が5重
量%未満では生成するゴム粒子径が著しく大きく、樹脂
の透明性が低いので好ましくない。スチレンの割合が5
0重量%を越えると樹脂の耐衝撃性が低くなるので好ま
しくない。本発明で用いるスチレン−ブタジエン共重合
体(A)はスチレンとブタジエンがランダムに共重合し
たものでも、ポリスチレンとポリブタジエンから構成さ
れるブロック共重合体でも良いが、粒子径の制御性の点
から特にブロック共重合体が好ましい。ブロック共重合
体の場合にはポリスチレン部とポリブタジエン部とがス
チレン−ブタジエンランダム共重合体で結合されていて
も構わない。The styrene-butadiene copolymer (A) used in the present invention comprises 5 to 50% by weight of styrene and 50% of butadiene.
˜95% by weight. The ratio of styrene is 5 to 3
The resin using 0% by weight of the rubbery polymer has excellent impact resistance, and the resin using the rubbery polymer having a styrene content of 30 to 50% by weight has excellent transparency. The ratio of styrene is 15
When the rubbery polymer is used in an amount of up to 35% by weight, a resin having a high balance of transparency and impact resistance can be obtained. The resin using the rubber-like polymer in which the proportion of styrene is 20 to 40% by weight has little change in hue due to heat history. When the proportion of styrene is less than 5% by weight, the diameter of rubber particles produced is remarkably large and the transparency of the resin is low, which is not preferable. The ratio of styrene is 5
If it exceeds 0% by weight, the impact resistance of the resin becomes low, which is not preferable. The styrene-butadiene copolymer (A) used in the present invention may be a random copolymer of styrene and butadiene, or a block copolymer composed of polystyrene and polybutadiene, but particularly from the viewpoint of controllability of particle diameter. Block copolymers are preferred. In the case of the block copolymer, the polystyrene part and the polybutadiene part may be bonded by a styrene-butadiene random copolymer.
【0020】本発明において、スチレン−ブタジエン共
重合体(A)に含まれるブタジエンに基づく不飽和結合
のうちの1,2−ビニル結合の割合は1.0〜13.8
重量%の範囲内である。従来の技術では、例えば特開平
4−180907で示されているように、1,2−ビニ
ル結合の割合が14重量%未満のスチレン−ブタジエン
共重合体を用いた場合にはゴム変性スチレン系樹脂の耐
衝撃性に優れるものが得られないと考えられていた。し
かしながら本発明者等の研究によると、1,2−ビニル
結合の割合が14重量%未満のスチレン−ブタジエン共
重合体を用いたスチレン系樹脂は、1,2−ビニル結合
の割合が14重量%以上のスチレン−ブタジエン共重合
体を用いたスチレン系樹脂(C)と同等の耐衝撃性を持
ち、しかも成形加工時の透明性の低下、樹脂に熱履歴を
重ねたときの色相の変化および耐衝撃性の低下が該樹脂
(C)よりも起こりにくいという従来の樹脂にはない驚
くべき特性を獲得していた。特に1,2−ビニル結合の
割合が4〜12重量%のゴム状重合体を用いた樹脂は透
明性が高く、9〜13.8重量%のゴム状重合体を用い
た樹脂は耐衝撃性に優れ、1〜10%のゴム状重合体を
用いた樹脂は熱履歴による色相の変化が小さく、6〜1
1%のゴム状重合体を用いた樹脂は熱履歴による耐衝撃
性が低下が起こりにくく、7〜12重量%のゴム状重合
体を用いた樹脂は成形加工時の透明性の低下が少ないた
め好ましい。ゴム状重合体のミクロ構造はゴム状重合体
を製造する際の触媒系の種類や、触媒の組成、添加物、
反応温度などの因子によって変化する。従ってゴム状重
合体に含まれるブタジエンに基づく不飽和結合のうちの
1,2−ビニル結合の割合は上記因子を適宜制御するこ
とにより所望の割合を達成することができる。ブタジエ
ンに基づく不飽和結合のうちの1,2−ビニル結合の割
合が特定の範囲にある該共重合体(A)を用いると樹脂
の物性が向上する理由は明らかではないが、ゴム状重合
体の1,2−ビニル結合部位同士あるいはゴム状重合体
の1,2−ビニル結合部位とスチレン−(メタ)アクリ
ル酸アルキルエステル共重合体との相互作用が何らかの
影響を及ぼしていると推察される。In the present invention, the ratio of 1,2-vinyl bonds among the unsaturated bonds based on butadiene contained in the styrene-butadiene copolymer (A) is 1.0 to 13.8.
It is within the range of weight%. In the prior art, for example, as shown in JP-A-4-180907, when a styrene-butadiene copolymer having a 1,2-vinyl bond ratio of less than 14% by weight is used, a rubber-modified styrene resin is used. It was thought that it would not be possible to obtain those with excellent impact resistance. However, according to a study by the present inventors, a styrene-based resin using a styrene-butadiene copolymer having a 1,2-vinyl bond ratio of less than 14% by weight has a 1,2-vinyl bond ratio of 14% by weight. It has the same impact resistance as the styrene-based resin (C) using the styrene-butadiene copolymer described above, and also has a decrease in transparency during molding, a change in hue when heat history is accumulated on the resin, and resistance to heat. It has acquired a surprising characteristic that impact resistance is less likely to occur than the resin (C), which is not present in conventional resins. Particularly, a resin using a rubbery polymer having a 1,2-vinyl bond ratio of 4 to 12% by weight has high transparency, and a resin using a rubbery polymer of 9 to 13.8% by weight has impact resistance. The resin containing 1 to 10% of rubber-like polymer has a small change in hue due to heat history,
The resin using 1% of the rubber-like polymer is less likely to deteriorate the impact resistance due to the heat history, and the resin containing 7 to 12% by weight of the rubber-like polymer does not lower the transparency at the time of molding. preferable. The microstructure of the rubber-like polymer depends on the type of catalyst system used for producing the rubber-like polymer, the composition of the catalyst, additives,
It depends on factors such as reaction temperature. Therefore, the ratio of 1,2-vinyl bonds among the unsaturated bonds based on butadiene contained in the rubber-like polymer can be achieved at a desired ratio by appropriately controlling the above factors. The reason why the physical properties of the resin are improved by using the copolymer (A) in which the ratio of 1,2-vinyl bonds among unsaturated bonds based on butadiene is within a specific range is not clear, but it is a rubber-like polymer. It is surmised that the interaction between the 1,2-vinyl bond sites of the above or the 1,2-vinyl bond sites of the rubber-like polymer and the styrene- (meth) acrylic acid alkyl ester copolymer exerts some influence. .
【0021】本発明で用いるスチレン−ブタジエン共重
合体(A)の25℃における5重量%スチレン溶液の粘
度は3〜60センチポイズである。溶液粘度が3センチ
ポイズより低い場合には樹脂の耐衝撃性が低くなるので
好ましくない。溶液粘度が60センチポイズよりも高い
場合には生成するゴム状重合体粒子径が著しく大きくな
り樹脂の透明性が低下するので好ましくない。特に溶液
粘度が3〜30センチポイズのゴム状重合体を使用した
樹脂は透明性に優れ、溶液粘度が10〜60センチポイ
ズのゴム状重合体はゴム状重合体粒子の衝撃吸収能力に
優れている。溶液粘度が3〜40センチポイズ、好まし
くは7〜30センチポイズ、特に好ましくは7〜20セ
ンチポイズのゴム状重合体を使用した樹脂は透明性と耐
衝撃性のバランスに優れている。また溶液粘度が3〜2
5センチポイズのゴム状重合体を使用した樹脂は熱履歴
による色相の変化が少なく、溶液粘度が10〜40セン
チポイズのゴム状重合体を使用した樹脂は熱履歴による
耐衝撃性の低下が少ないので好ましい。The viscosity of a 5% by weight styrene solution of the styrene-butadiene copolymer (A) used in the present invention at 25 ° C. is 3 to 60 centipoise. When the solution viscosity is lower than 3 centipoise, the impact resistance of the resin becomes low, which is not preferable. When the viscosity of the solution is higher than 60 centipoise, the diameter of the rubber-like polymer particles formed is significantly increased and the transparency of the resin is lowered, which is not preferable. In particular, a resin using a rubber-like polymer having a solution viscosity of 3 to 30 centipoise is excellent in transparency, and a rubber-like polymer having a solution viscosity of 10 to 60 centipoise is excellent in impact absorbing ability of the rubber-like polymer particles. A resin using a rubber-like polymer having a solution viscosity of 3 to 40 centipoise, preferably 7 to 30 centipoise, and particularly preferably 7 to 20 centipoise has an excellent balance between transparency and impact resistance. The solution viscosity is 3 to 2
A resin using a rubbery polymer of 5 centipoise is less likely to change in hue due to heat history, and a resin using a rubbery polymer having a solution viscosity of 10 to 40 centipoise is less likely to reduce impact resistance due to heat history, which is preferable. .
【0022】本発明においてスチレン−ブタジエン共重
合体(A)の25℃における5重量%スチレン溶液の粘
度が3〜40センチポイズ、特に3〜30センチポイズ
あるいは3〜20センチポイズである場合は、該共重合
体(A)の重量平均分子量(Mw)の数平均分子量(M
n)に対する割合(Mw/Mn)が1〜1.5以下、特
に1〜1.3以下であることが樹脂の透明性、成形加工
時の透明性の保持の点から好ましい。一般に、スチレン
−ブタジエンブロック共重合体は通常リビング重合法で
製造されているため分子量分布は狭い。しかし25℃に
おける5重量%スチレン溶液の粘度を3〜40、特に3
〜30センチポイズあるいは3〜20センチポイズ程度
にまで低くすると、製造されたゴム状重合体の塊は常温
での保管や輸送中にコールドフローと呼ばれる大変形を
起こしてしまうため、その取扱いが難しく工業的には適
さないと考えられている。そこで溶液粘度の低いゴム状
重合体がコールドフローを起こさないように触媒系の改
良や重合速度の調整、重合工程の分割、すず、亜鉛等の
カップリング剤の添加などによって分子量分布を広げて
コールドフローに対応したものが多い。Mw/Mnが
1.5より大きいと、ゴム状重合体を粒子化する時の重
合転化率が高い場合には生成する粒子径が大きく、さら
に重合転化率のわずかなゆらぎにより粒子径が大きく変
動し、同一の粒子径を安定して生成させることが難しい
ので好ましくない。本発明でいう重量平均分子量(M
w)、数平均分子量(Mn)はゲルパーミエーションク
ロマトグラフを用いて測定されたものであり、分子量が
すでに知られているポリスチレン標準試料を対比として
換算された値である。In the present invention, when the viscosity of a 5% by weight styrene solution of the styrene-butadiene copolymer (A) at 25 ° C. is 3 to 40 centipoise, particularly 3 to 30 centipoise or 3 to 20 centipoise, the copolymerization The number average molecular weight (M) of the weight average molecular weight (Mw) of the combination (A)
The ratio (Mw / Mn) with respect to n) is preferably 1 to 1.5 or less, and particularly preferably 1 to 1.3 or less from the viewpoint of maintaining the transparency of the resin and the transparency during molding. Generally, a styrene-butadiene block copolymer is usually produced by a living polymerization method and therefore has a narrow molecular weight distribution. However, the viscosity of a 5% by weight styrene solution at 25 ° C is 3-40, especially 3
If it is lowered to about 30 to 30 centipoise or about 3 to 20 centipoise, the produced rubber-like polymer mass undergoes large deformation called cold flow during storage and transportation at room temperature, which makes it difficult to handle industrially. It is considered not suitable for. Therefore, to prevent cold flow of rubbery polymers with low solution viscosity, improve the catalyst system, adjust the polymerization rate, divide the polymerization process, and add a coupling agent such as tin or zinc to broaden the molecular weight distribution and to make it cold. Many correspond to the flow. When Mw / Mn is more than 1.5, the particle size generated is large when the polymerization conversion rate when the rubbery polymer is made into particles is high, and the particle size fluctuates greatly due to a slight fluctuation in the polymerization conversion rate. However, it is not preferable because it is difficult to stably generate the same particle size. The weight average molecular weight (M
w) and the number average molecular weight (Mn) are measured by using a gel permeation chromatograph, and are values converted by comparison with a polystyrene standard sample whose molecular weight is already known.
【0023】ゴム状重合体は重合原料100重量部に対
し2〜12重量部、好ましくは3〜10重量部の範囲で
用いられる。ゴム状重合体が12重量部を越えると、反
応器におけるゴム状重合体粒子の形成が困難である。ま
たゴム状重合体が2重量部未満では樹脂の耐衝撃性が低
いので好ましくない。製造された樹脂100重量部に含
まれるゴム状重合体の量は4〜30重量部が好ましい。
ゴム状重合体量が4〜15重量部の場合には樹脂の透明
性に優れ、ゴム状重合体量が10〜30重量部の場合に
は樹脂の耐衝撃性に優れる。ゴム状重合体量が6〜20
重量部の場合には樹脂の耐衝撃性、透明性のバランスが
優れる。ゴム状重合体量が30重量部を越えると樹脂の
透明性が著しく低下するため好ましくない。またゴム状
重合体が4重量部未満では樹脂の耐衝撃性が低いので好
ましくない。The rubber-like polymer is used in an amount of 2 to 12 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the polymerization raw material. When the rubber-like polymer exceeds 12 parts by weight, it is difficult to form the rubber-like polymer particles in the reactor. If the amount of the rubber-like polymer is less than 2 parts by weight, the impact resistance of the resin is low, which is not preferable. The amount of the rubber-like polymer contained in 100 parts by weight of the produced resin is preferably 4 to 30 parts by weight.
When the amount of the rubbery polymer is 4 to 15 parts by weight, the transparency of the resin is excellent, and when the amount of the rubbery polymer is 10 to 30 parts by weight, the impact resistance of the resin is excellent. The amount of rubbery polymer is 6 to 20
In the case of parts by weight, the balance of impact resistance and transparency of the resin is excellent. If the amount of the rubber-like polymer exceeds 30 parts by weight, the transparency of the resin will be significantly reduced, which is not preferable. If the amount of the rubber-like polymer is less than 4 parts by weight, the impact resistance of the resin is low, which is not preferable.
【0024】本発明の透明なゴム変性スチレン系樹脂組
成物の製造方法としては個々に製造した該ゴム状重合体
とスチレン−(メタ)アクリル酸アルキルエステル共重
合体とをブレンドする方法、該ゴム状重合体の存在下、
スチレン系単量体と(メタ)アクリル酸アルキルエステ
ルとを連続的にあるいは回分的に乳化重合、塊状重合あ
るいは溶液重合する方法があるが、不純物の少なさ、透
明性の高さから連続流通式塊状あるいは溶液重合法が好
ましい。The transparent rubber-modified styrenic resin composition of the present invention can be produced by blending the individually prepared rubber-like polymer and a styrene- (meth) acrylic acid alkyl ester copolymer, and the rubber. In the presence of a polymer
There is a method of emulsion polymerization, bulk polymerization or solution polymerization of styrene monomer and (meth) acrylic acid alkyl ester continuously or batchwise, but the continuous flow method is used because of low impurities and high transparency. Bulk or solution polymerization methods are preferred.
【0025】本発明におけるスチレン系単量体として
は、一般式(I)(化1)The styrenic monomer in the present invention has the general formula (I)
【0026】[0026]
【化1】 (上記式においてR1 は水素、炭素数1から5のアルキ
ル基、ハロゲンを、R2は水素、炭素数1から5のアル
キル基、ハロゲン、炭素数1から5の不飽和炭化水素を
示し、R2 は同一であっても異なっても良い)で示され
る不飽和芳香族化合物、特にスチレンおよびその誘導体
が使用され、例えばスチレン、α−メチルスチレン、o
−メチルスチレン、m−メチルスチレン、p−メチルス
チレン、α−メチル−p−メチルスチレン、ハロゲン化
スチレン、エチルスチレン、p−イソプロピルスチレ
ン、p−t−ブチルスチレン、2,4−ジメチルスチレ
ン、ジビニルベンゼン等の1種あるいは2種以上が用い
られ、好ましくはスチレン、α−メチルスチレン、p−
メチルスチレンが用いられる。これらは単独でも2種以
上混合して使用しても良い。スチレンは最も汎用性が高
くかつ安価であり、α−メチルスチレン、p−メチルス
チレンを用いると樹脂の耐熱性が向上する。スチレン系
単量体は重合原料中の各種単量体の総量100重量部に
対し通常20〜70重量部の範囲、好ましくは25〜5
5重量部の範囲で用いられる。Embedded image (In the above formula, R 1 represents hydrogen, an alkyl group having 1 to 5 carbon atoms, halogen, R 2 represents hydrogen, an alkyl group having 1 to 5 carbon atoms, halogen, an unsaturated hydrocarbon having 1 to 5 carbon atoms, R 2 may be the same or different), and an unsaturated aromatic compound represented by the formula ( 2 ) may be used, particularly styrene and derivatives thereof, such as styrene, α-methylstyrene, o
-Methylstyrene, m-methylstyrene, p-methylstyrene, α-methyl-p-methylstyrene, halogenated styrene, ethylstyrene, p-isopropylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, divinyl. One or more of benzene and the like are used, and preferably styrene, α-methylstyrene, p-
Methylstyrene is used. You may use these individually or in mixture of 2 or more types. Styrene is the most versatile and inexpensive, and the use of α-methylstyrene or p-methylstyrene improves the heat resistance of the resin. The styrene-based monomer is usually in the range of 20 to 70 parts by weight, preferably 25 to 5 parts by weight, based on 100 parts by weight of the total amount of various monomers in the polymerization raw material.
Used in the range of 5 parts by weight.
【0027】本発明における(メタ)アクリル酸アルキ
ルエステルとしては、一般式(II) (化2)The (meth) acrylic acid alkyl ester in the present invention has the general formula (II)
【0028】[0028]
【化2】 (上記式においてR3 は水素あるいは炭素数1から5の
アルキル基を、R4 は炭素数1から5のアルキル基を示
す)で示される不飽和炭化水素化合物であり、かつ後述
するゴム状重合体よりも屈折率の低い化合物が使用さ
れ、好ましくはメチルメタクリレート、メチルアクリレ
ート、エチルアクリレート、ブチルアクリレートが用い
られ、特に好ましくはメチルメタクリレート、エチルア
クリレートが用いられる。これらは単独でも2種以上混
合して使用しても良い。メチルメタクリレートを用いた
樹脂は剛性、耐候性が向上し、ブチルアクリレートを用
いた樹脂は柔軟性が向上する。エチルアクリレートを用
いると樹脂の柔軟性が向上すると同時に、ゴム粒子径を
制御し易いため樹脂の耐衝撃性が高い。(メタ)アクリ
ル酸アルキルエステルは重合原料中の各種単量体の総量
100重量部に対し通常30〜80重量部の範囲、好ま
しくは45〜75重量部の範囲で用いられる。Embedded image (In the above formula, R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, and R 4 represents an alkyl group having 1 to 5 carbon atoms), and a rubber-like compound described below. A compound having a lower refractive index than that of the compound is used, preferably methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate is used, and particularly preferably methyl methacrylate or ethyl acrylate is used. You may use these individually or in mixture of 2 or more types. The resin using methyl methacrylate has improved rigidity and weather resistance, and the resin using butyl acrylate has improved flexibility. When ethyl acrylate is used, the flexibility of the resin is improved, and at the same time, the impact resistance of the resin is high because it is easy to control the rubber particle size. The (meth) acrylic acid alkyl ester is used in the range of usually 30 to 80 parts by weight, preferably 45 to 75 parts by weight, based on 100 parts by weight of the total amount of various monomers in the polymerization raw material.
【0029】本発明においては、重合開始剤としてベン
ゾイルパーオキサイド、ラウロイルパーオキサイド、t
−ブチルパーオキシピバレート、t−ブチルパーオキシ
ベンゾエート、t−ブチルパーオキシイソブチレート、
t−ブチルパーオキシ(2−エチルヘキサノエート)、
t−ブチルパーオキシオクトエート、クミルパーオキシ
オクトエート、1,1−ビス(t−ブチルパーオキシ)
3,3,5−トリメチルシクロヘキサンなどの有機過酸
化物、2,2−アゾビスイソブチロニトリル、2,2−
アゾビス(2−メチルブチロニトリル)、2,2−アゾ
ビス(2,4−ジメチルバレロニトリル)などのアゾ化
合物を使用する。グラフト効率が高いことから有機過酸
化物の使用が好ましい。用いる重合開始剤の種類は重合
温度、重合液の平均滞留時間、目標とする重合転化率、
重合開始剤の半減期に基づいて選択することができる。
例えば重合を80〜100℃で行う場合には90℃にお
ける半減期が1分〜2時間の重合開始剤を、100〜1
40℃で行う場合には90℃における半減期が10分〜
20時間の重合開始剤を、140〜160℃で行う場合
には90℃における半減期が2時間以上の重合開始剤を
使用するのが好ましい。t−ブチルパーオキシピバレー
ト、t−ブチルパーオキシ(2−エチルヘキサノエー
ト)、1,1−ビス(t−ブチルパーオキシ)3,3,
5−トリメチルシクロヘキサンの使用が好ましく、特に
t−ブチルパーオキシ(2−エチルヘキサノエート)、
1,1−ビス(t−ブチルパーオキシ)3,3,5−ト
リメチルシクロヘキサンの使用が好ましい。重合開始剤
は重合原料中の単量体の総量100重量部に対し通常
0.001〜5.0重量部、好ましくは0.001〜
3.5重量部、さらに好ましくは0.001〜2.0重
量部の範囲で用いられる。重合開始剤の量が5.0重量
部を越えると未反応重合開始剤の分解物が重合系内に蓄
積し重合を阻害するので好ましくない。重合開始剤の量
が0.001重量部未満では重合温度が高くなり、重合
反応が暴走し易いので好ましくない。In the present invention, benzoyl peroxide, lauroyl peroxide, t
-Butyl peroxypivalate, t-butyl peroxybenzoate, t-butyl peroxyisobutyrate,
t-butylperoxy (2-ethylhexanoate),
t-butyl peroxy octoate, cumyl peroxy octoate, 1,1-bis (t-butyl peroxy)
Organic peroxides such as 3,3,5-trimethylcyclohexane, 2,2-azobisisobutyronitrile, 2,2-
Azo compounds such as azobis (2-methylbutyronitrile) and 2,2-azobis (2,4-dimethylvaleronitrile) are used. The use of organic peroxide is preferred because of its high grafting efficiency. The type of polymerization initiator used is the polymerization temperature, the average residence time of the polymerization liquid, the target polymerization conversion rate,
It can be selected based on the half-life of the polymerization initiator.
For example, when the polymerization is performed at 80 to 100 ° C., a polymerization initiator having a half-life at 90 ° C. of 1 minute to 2 hours is added to 100 to 1
When performed at 40 ° C, the half-life at 90 ° C is 10 minutes to
When carrying out the polymerization initiator for 20 hours at 140 to 160 ° C., it is preferable to use the polymerization initiator having a half-life at 90 ° C. of 2 hours or more. t-butylperoxypivalate, t-butylperoxy (2-ethylhexanoate), 1,1-bis (t-butylperoxy) 3,3
The use of 5-trimethylcyclohexane is preferred, especially t-butylperoxy (2-ethylhexanoate),
The use of 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane is preferred. The polymerization initiator is usually 0.001 to 5.0 parts by weight, preferably 0.001 to 100 parts by weight based on 100 parts by weight of the total amount of monomers in the polymerization raw material.
It is used in an amount of 3.5 parts by weight, preferably 0.001 to 2.0 parts by weight. If the amount of the polymerization initiator exceeds 5.0 parts by weight, the decomposition product of the unreacted polymerization initiator accumulates in the polymerization system and inhibits the polymerization, which is not preferable. When the amount of the polymerization initiator is less than 0.001 part by weight, the polymerization temperature becomes high, and the polymerization reaction tends to run away, which is not preferable.
【0030】本発明においては必要に応じて重合原料に
有機溶剤を加えることができる。有機溶剤としてはベン
ゼン、トルエン、キシレン、エチルベンゼン、アセト
ン、イソプロピルベンゼン、メチルエチルケトン、ジメ
チルホルムアミドなどが挙げられ、特にエチルベンゼ
ン、トルエンの使用が好ましい。有機溶剤濃度は重合液
の総量100重量部に対し通常5〜50重量部、好まし
くは5〜30重量部の範囲で用いられる。In the present invention, an organic solvent may be added to the polymerization raw material, if necessary. Examples of the organic solvent include benzene, toluene, xylene, ethylbenzene, acetone, isopropylbenzene, methylethylketone, and dimethylformamide, and the use of ethylbenzene and toluene is particularly preferable. The organic solvent concentration is usually 5 to 50 parts by weight, preferably 5 to 30 parts by weight, based on 100 parts by weight of the total polymerization liquid.
【0031】本発明においては、スチレン−(メタ)ア
クリル酸アルキルエステル共重合体の分子量を調節する
ために様々な公知の連鎖移動剤を用いることができる。
例えばt−ドデシルメルカプタン、n−ドデシルメルカ
プタン、n−オクチルメルカプタン、α−メチルスチレ
ンダイマーなどの公知の化学物質が用いられる。連鎖移
動剤の使用量はその連鎖移動能力、目標とする該共重合
体の分子量に依存するが、重合原料中の各種単量体の総
量100重量部に対して通常0〜10重量部の範囲で用
いられる。In the present invention, various known chain transfer agents can be used to control the molecular weight of the styrene- (meth) acrylic acid alkyl ester copolymer.
For example, known chemical substances such as t-dodecyl mercaptan, n-dodecyl mercaptan, n-octyl mercaptan and α-methylstyrene dimer are used. The amount of the chain transfer agent used depends on its chain transfer ability and the target molecular weight of the copolymer, but is usually in the range of 0 to 10 parts by weight based on 100 parts by weight of the total amount of various monomers in the polymerization raw material. Used in.
【0032】本発明における重合装置は特に限定された
ものではなく、槽型反応器、管型反応器、塔型反応器な
ど任意の形式の反応器を用いることができる。重合装置
を構成する反応器の数は1基以上、特にスチレン−(メ
タ)アクリル酸アルキルエステル共重合体組成の均一性
および制御性の点から1基であることが好ましい。反応
器には重合熱の除去システムとして、ジャケットあるい
はドラフトチューブに熱媒体を流して除熱するシステム
や、重合液から単量体や有機溶剤等の低沸点成分を蒸発
させ蒸発潜熱で重合液を冷却するシステムが組み込まれ
ているものが好ましい。反応器にはパドル翼、タービン
翼、格子翼、ゲ−ト翼、プロペラ翼、スクリュー翼、フ
ァウドラー翼、ヘリカルリボン翼等の公知の撹拌翼が取
り付けられ、これらの翼は1種または2種以上を組み合
わせて用いることもできる。また翼の構成は一段翼でも
多段翼でもよい。ゴム状重合体を粒子に転移させる反応
器としては、生成するゴム状重合体粒子径の制御のしや
すさ、重合液を均一に混合する能力の高さから完全混合
型反応槽が特に好ましい。撹拌翼の回転数は反応器の容
積、重合液の粘度、必要とする剪断力等によって変化す
るが、通常は3rpm〜600rpmである。The polymerization apparatus in the present invention is not particularly limited, and any type of reactor such as a tank reactor, a tubular reactor, a tower reactor can be used. The number of reactors constituting the polymerization apparatus is preferably 1 or more, and particularly preferably 1 from the viewpoint of uniformity and controllability of the styrene- (meth) acrylic acid alkyl ester copolymer composition. As a system for removing the heat of polymerization in the reactor, a system in which a heating medium is passed through a jacket or draft tube to remove heat is used, and low boiling point components such as monomers and organic solvents are evaporated from the polymerization liquid to produce the polymerization liquid by latent heat of vaporization. Those that incorporate a cooling system are preferred. The reactor is equipped with well-known stirring blades such as paddle blades, turbine blades, lattice blades, gate blades, propeller blades, screw blades, Fowler blades, and helical ribbon blades, and these blades may be used alone or in combination of two or more. Can also be used in combination. Further, the configuration of the blade may be a single-stage blade or a multistage blade. As a reactor for transferring the rubber-like polymer into particles, a complete mixing type reaction tank is particularly preferable because of the ease of controlling the diameter of the rubber-like polymer particles produced and the high ability to uniformly mix the polymerization liquid. The rotation speed of the stirring blade varies depending on the volume of the reactor, the viscosity of the polymerization solution, the required shearing force, etc., but is usually 3 rpm to 600 rpm.
【0033】本発明では、重合は通常80〜160℃、
好ましくは100〜140℃の範囲で行われる。重合温
度が80℃より低いと重合速度が低いため生産性が悪
く、また後続する脱揮発分装置において未反応単量体や
有機溶剤を揮発させるのに必要な熱負荷が大きくなるの
で好ましくない。また160℃以上では重合反応が暴走
しやすく、重合条件を長期間維持するのが困難であり、
実際のプラントとして稼働させるには、プラントの操業
安定性、ひいては高度の透明性、耐衝撃性を有する樹脂
を安定に生産する能力に大きな問題がある。また重合温
度が160℃以上では低分子量の共重合体が多く生成
し、製品の成形加工性が悪化するので好ましくない。In the present invention, the polymerization is usually carried out at 80 to 160 ° C.,
It is preferably carried out in the range of 100 to 140 ° C. When the polymerization temperature is lower than 80 ° C., the polymerization rate is low and the productivity is poor, and the heat load necessary for volatilizing the unreacted monomer and the organic solvent in the subsequent devolatilization apparatus is unfavorable. Further, at 160 ° C or higher, the polymerization reaction is likely to run away, and it is difficult to maintain the polymerization conditions for a long time.
In order to operate as an actual plant, there is a big problem in the operational stability of the plant, and further, in the ability to stably produce a resin having a high degree of transparency and impact resistance. Further, when the polymerization temperature is 160 ° C. or higher, a large amount of a low molecular weight copolymer is produced, which deteriorates the moldability of the product, which is not preferable.
【0034】本発明における重合液の反応槽での平均滞
留時間としては、0.2〜10.0時間、好ましくは
1.5〜5.0時間である。平均滞留時間が0.2時間
より短い場合は、重合原料が十分に重合されないまま反
応槽を素通りする現象が起こり製品の物性が低下し、平
均滞留時間が10.0時間より長い場合は生産量が減少
して樹脂の製造費用が増大し、生産性が低下するので好
ましくない。The average residence time of the polymerization liquid in the reaction tank of the present invention is 0.2 to 10.0 hours, preferably 1.5 to 5.0 hours. When the average residence time is shorter than 0.2 hours, the phenomenon of passing through the reaction tank without polymerization of the polymerization raw material occurs and the physical properties of the product deteriorate, and when the average residence time is longer than 10.0 hours, the production amount. Is decreased, the manufacturing cost of the resin is increased, and the productivity is decreased, which is not preferable.
【0035】本発明においては重合液中の固形分量が1
0〜60重量%以下、好ましくは15〜50重量%以下
の状態で、ゴム状重合体をスチレン−(メタ)アクリル
酸アルキルエステル共重合体で構成される連続相の中に
分散する粒子径0.1〜2.0μm、粒子径分布指数
2.0〜5.0の粒子に転移させる。重合液中の固形分
量とは重合液に含まれるゴム状重合体とスチレン−(メ
タ)アクリル酸アルキルエステル共重合体の総和をい
う。ゴム状重合体が分散相に転移する主な要因はゴム状
重合体と生成したスチレン−(メタ)アクリル酸アルキ
ルエステル共重合体との重量比であり、該共重合体量が
重合液中のゴム状重合体量の約2倍を越えると相転移が
起こるが、本発明では前述した特定のゴム状重合体分子
構造、ゴム状重合体濃度、重合開始剤量、重合温度のも
と重合液中の固形分量を10〜60重量%以下の状態に
することにより、相転移後のゴム状重合体粒子径および
粒子径分布を所定の範囲に制御することができることを
見出した。重合液中の固形分量が10重量%未満あるい
は60重量%を越えるとゴム状重合体粒子径および粒子
径分布が著しく大きくなり、樹脂の透明性、耐衝撃性が
低下するので好ましくない。重合液中の固形分量が50
重量%以下の状態で相転移させると、樹脂の透明性、特
に成形加工時の透明性の保持率が向上するので好まし
い。In the present invention, the solid content in the polymerization solution is 1
Particle size of 0 to 60% by weight or less, preferably 15 to 50% by weight or less, in which a rubber-like polymer is dispersed in a continuous phase composed of a styrene- (meth) acrylic acid alkyl ester copolymer .1 to 2.0 μm and a particle size distribution index of 2.0 to 5.0. The solid content in the polymerization solution means the sum of the rubber-like polymer and the styrene- (meth) acrylic acid alkyl ester copolymer contained in the polymerization solution. The main factor for the rubbery polymer to transfer to the dispersed phase is the weight ratio of the rubbery polymer and the styrene- (meth) acrylic acid alkyl ester copolymer produced, and the amount of the copolymer is A phase transition occurs when the amount exceeds about 2 times the amount of the rubber-like polymer, but in the present invention, the polymerization liquid is controlled under the above-mentioned specific rubber-like polymer molecular structure, rubber-like polymer concentration, amount of polymerization initiator and polymerization temperature. It has been found that the particle size and particle size distribution of the rubber-like polymer after phase transition can be controlled within a predetermined range by setting the solid content in the state to 10 to 60% by weight or less. If the solid content in the polymerization liquid is less than 10% by weight or exceeds 60% by weight, the particle size and particle size distribution of the rubber-like polymer become remarkably large and the transparency and impact resistance of the resin deteriorate, which is not preferable. Solid content in the polymerization liquid is 50
The phase transition in the state of not more than wt% improves the transparency of the resin, particularly the retention of transparency during molding, which is preferable.
【0036】本発明におけるゴム変性スチレン系樹脂に
含まれるゴム状重合体粒子の平均粒子径は0.1〜2.
0μm、粒子径分布指数は2.0〜5.0である。ゴム
状重合体粒子径および粒子径分布指数の測定方法は実施
例1に記す。粒子径が0.1μmより小さいと樹脂の耐
衝撃性が低く、2.0μmより大きいと透明性、耐衝撃
性ともに低いので好ましくない。特に平均粒子径が0.
1〜1.0μmの樹脂は透明性に優れ、0.4〜2.0
μmの樹脂は耐衝撃性に優れ、0.2〜1.3μm、好
ましくは0.3〜0.8μmの樹脂は透明性、耐衝撃性
のバランスに優れている。粒子径分布指数が2.0より
小さいと樹脂の耐衝撃性が低く、5.0より大きいと樹
脂の透明性が低いので好ましくない。特に粒子径分布指
数が2.0〜4.0、好ましくは2.0〜3.0の樹脂
は透明性、成形加工時の透明性の保持に優れ、2.5〜
5.0、好ましくは2.5〜4.0の樹脂は耐衝撃性に
優れ、2.2〜3.5の樹脂は透明性、耐衝撃性のバラ
ンスに優れている。The average particle size of the rubber-like polymer particles contained in the rubber-modified styrenic resin in the present invention is 0.1-2.
0 μm, the particle size distribution index is 2.0 to 5.0. The method for measuring the rubber-like polymer particle size and particle size distribution index is described in Example 1. If the particle size is smaller than 0.1 μm, the impact resistance of the resin is low, and if it is larger than 2.0 μm, both transparency and impact resistance are low, which is not preferable. In particular, the average particle size is 0.
Resin of 1 to 1.0 μm is excellent in transparency and 0.4 to 2.0
The resin of μm has excellent impact resistance, and the resin of 0.2 to 1.3 μm, preferably 0.3 to 0.8 μm has excellent balance of transparency and impact resistance. If the particle size distribution index is smaller than 2.0, the impact resistance of the resin is low, and if it is larger than 5.0, the transparency of the resin is low, which is not preferable. Particularly, a resin having a particle size distribution index of 2.0 to 4.0, preferably 2.0 to 3.0 is excellent in transparency and retention of transparency during molding,
The resin of 5.0, preferably 2.5 to 4.0 has excellent impact resistance, and the resin of 2.2 to 3.5 has excellent balance of transparency and impact resistance.
【0037】反応槽から連続的に抜き出された重合液
は、例えば特公昭48−29798、特開昭61−22
8012、特開昭62−179508、特公平3−56
242などに示されるような脱揮発分装置に連続的に供
給され、重合液から未反応単量体や有機溶剤などの揮発
性物質が除去される。この時の重合液中の固形分量は2
0〜75重量%、好ましくは20〜60重量%である。
固形分量が20重量%未満では揮発性物質を蒸発させる
ための熱量が大きく生産性が低いので好ましくない。固
形分量が75重量%を越えると重合液の粘度が高く脱揮
発分装置の操作が困難になるので好ましくない。The polymerization liquid continuously withdrawn from the reaction tank is, for example, Japanese Patent Publication No. 48-29798 and Japanese Patent Laid-Open No. 61-22.
8012, JP-A-62-179508, JP-B-3-56
242 and the like are continuously supplied to a devolatilization apparatus to remove volatile substances such as unreacted monomers and organic solvents from the polymerization liquid. At this time, the solid content in the polymerization solution is 2
It is 0 to 75% by weight, preferably 20 to 60% by weight.
When the solid content is less than 20% by weight, the amount of heat for evaporating the volatile substance is large and the productivity is low, which is not preferable. When the solid content exceeds 75% by weight, the viscosity of the polymerization liquid is high and the operation of the devolatilization device becomes difficult, which is not preferable.
【0038】脱揮発分工程に続く製造工程は特に限定す
るものではないが、連続流通式塊状あるいは溶液重合法
によるスチレン系樹脂の製造方法において通常行われて
いる押出工程や添加剤供給工程、造粒工程を経て透明な
スチレン系樹脂組成物が製造される。The production step following the devolatilization step is not particularly limited, but the extrusion step, the additive supply step, the production step which are usually carried out in the continuous flow type bulk or solution polymerization method for producing a styrene resin. A transparent styrene resin composition is manufactured through the granulating process.
【0039】本発明によって得られた透明なスチレン系
樹脂組成物は、その優れた透明性、耐衝撃性、成形加工
性からICケース、ブリスターケース等のシート・包装
材料;洗濯機、エアコン、冷蔵庫、AV機器等の家電製
品;OA機器、電話、楽器等の一般機械;玩具、化粧品
容器等の雑貨;自動車、住宅資材などの構造材料として
使用され、産業上の利用価値は極めて大きい。The transparent styrenic resin composition obtained by the present invention has excellent transparency, impact resistance and molding processability, and is a sheet / packaging material for IC cases, blister cases, etc .; washing machines, air conditioners, refrigerators. , Home appliances such as AV equipment; general machines such as office automation equipment, telephones, musical instruments; miscellaneous goods such as toys and cosmetic containers; structural materials for automobiles, housing materials, etc., and their industrial utility value is extremely high.
【0040】[0040]
【実施例】以下、実施例および比較例によって本発明を
さらに具体的に説明するが、本発明はこれらによって何
ら制限されるものではない。The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
【0041】なお、スチレン系樹脂組成物の分析および
物性評価は以下の方法によった。 (a)ゴム状重合体の平均粒子径および粒子径分布指
数:オスミウム酸で染色した樹脂組成物超薄切片を透過
型電子顕微鏡で撮影し、写真中のゴム状重合体粒子50
0〜700個の粒子径を測定して下記の式〓(数1)に
より平均したものが平均粒子径である。ただしnは粒子
径Dのゴム状重合体粒子の個数である。The analysis and physical property evaluation of the styrene resin composition were carried out by the following methods. (A) Average particle size and particle size distribution index of rubber-like polymer: An ultrathin section of a resin composition dyed with osmic acid was photographed with a transmission electron microscope, and the rubber-like polymer particles 50 in the photograph were taken.
The average particle diameter is obtained by measuring the particle diameters of 0 to 700 particles and averaging them according to the following equation (Equation 1). However, n is the number of rubber-like polymer particles having a particle diameter D.
【0042】[0042]
【数1】 ゴム状重合体の平均粒子径 = ΣnD4 /ΣnD3 I また粒子径分布指数は、粒子径の大きい方からの粒子径
の積算体積分率が10%になった時の粒子径をDA、粒
子径の大きい方からの粒子径の積算体積分率が90%に
なった時の粒子径をDBとしたとき、下記の式〓(数
2)で表される指数である。[Equation 1] Average particle size of rubber-like polymer = ΣnD 4 / ΣnD 3 I Further, the particle size distribution index is the particle size when the cumulative volume fraction of the particle sizes from the larger particle size is 10%. Where DA is DA and the particle diameter when the cumulative volume fraction of the particle diameters from the larger particle diameter is 90% is DB, it is an index represented by the following equation (Equation 2).
【0043】[0043]
【数2】 ゴム状重合体の粒子径分布指数 = DA/DB II (b)試験片の作成:得られた樹脂組成物を成形温度2
40℃、金型温度50℃で射出成形し、ヘイズおよび色
相測定用試験片(長さ15cm×幅10cm×厚さ2.
5mm)および図1で示される形状の実用衝撃強度測定
用試験片を作成した。 (c)ヘイズ:ASTM−D1003に従って測定し
た。ヘイズ値が小さい方が透明性に優れている。 (d)実用衝撃強度:図1で示される形状の試験片3箇
所の部位(部位S、部位T、部位U)について落錘衝撃
強度試験を行った。落錘の先端部はR=6.4mm、荷
台の内径は25mmとした。落錘衝撃強度は試験片の5
0%が破壊される時のエネルギーであり、落錘の重さと
落錘の落下距離をかけた値で表した。図1においてゲー
ト部、すなわち溶融した樹脂が金型に流れ込む入口はG
で表され、ゲート部の位置の影響で、部位Sは厚みの変
化する部位であり、部位Tは角の近辺部位、部位Uは標
準的な部位である。一般に、部位S、部位T、部位Uの
順に衝撃強度は強くなる傾向がある。 (e)成形加工時の透明性の変化:30mmシート押出
機を用いて、樹脂を厚さ0.3mmのシートに一次加工
した。このシートを真空成形により縦15cm×横10
cm×深さ5cmの食品パッケージに二次加工した。こ
の食品パッケージの側面を切り出してヘイズ(H)を測
定し、もとのシートのヘイズ(h)に対する割合(H/
h)を比較した。H/hの数値が1に近い樹脂が成形加
工時の透明性の保持に優れている。 (f)色相:樹脂の熱履歴前後において試験片を作成
し、JIS−K7105に従ってLab系による色差を
測定した。色差の数値が小さい方が熱履歴の影響を受け
にくい優れた樹脂である。## EQU00002 ## Particle size distribution index of rubber-like polymer = DA / DB II (b) Preparation of test piece: The obtained resin composition was molded at a molding temperature of 2.
Injection molding was performed at 40 ° C. and a mold temperature of 50 ° C., and test pieces for measuring haze and hue (length 15 cm × width 10 cm × thickness 2.
5 mm) and a test piece for practical impact strength measurement having the shape shown in FIG. (C) Haze: Measured according to ASTM-D1003. The smaller the haze value, the better the transparency. (D) Practical impact strength: A drop weight impact strength test was performed on three sites (site S, site T, site U) of the test piece having the shape shown in FIG. The tip of the falling weight was R = 6.4 mm, and the inner diameter of the loading platform was 25 mm. The falling weight impact strength is 5 of the test piece.
0% is the energy at the time of destruction, and is represented by the value obtained by multiplying the weight of the falling weight and the fall distance of the falling weight. In FIG. 1, the gate portion, that is, the inlet where the molten resin flows into the mold is G
The site S is a site where the thickness changes due to the position of the gate part, the site T is a site near the corner, and the site U is a standard site. Generally, the impact strength tends to increase in the order of the part S, the part T, and the part U. (E) Change in transparency during molding: The resin was primarily processed into a sheet having a thickness of 0.3 mm using a 30 mm sheet extruder. This sheet is vacuum formed by 15 cm in length x 10 in width
Fabricated into a food package of cm x 5 cm deep. The side surface of this food package was cut out and the haze (H) was measured, and the ratio (H / H) of the original sheet to the haze (h) was measured.
h) were compared. A resin whose H / h value is close to 1 is excellent in maintaining transparency during molding. (F) Hue: A test piece was prepared before and after the thermal history of the resin, and the Lab-based color difference was measured according to JIS-K7105. The smaller the color difference value is, the better the resin is.
【0044】実施例1 容量が20リットルの完全混合型反応槽1基から成る連
続的重合装置を用いてスチレン系樹脂を製造した。スチ
レン系単量体としてスチレンを、(メタ)アクリル酸ア
ルキルエステルとしてメタクリル酸メチルとアクリル酸
エチルの混合物を用いた。ゴム状重合体としてはスチレ
ン25重量%とブタジエン75重量%から構成され、ブ
タジエンに基づく不飽和結合のうちの1,2−ビニル結
合の割合が10重量%であり、25℃における5重量%
スチレン溶液の粘度が12センチポイズ、Mw/Mnが
1.1であるスチレン−ブタジエンブロック共重合体を
用いた。該共重合体はリチウム系触媒を用い溶液重合法
で製造したものを用いた。また、重合開始剤としてt−
ブチルパーオキシ(2−エチルヘキサノエ−ト)を用い
た。スチレン30重量部、メタクリル酸メチル36重量
部、アクリル酸エチル9重量部、エチルベンゼン20重
量部、ゴム状重合体5重量部、t−ドデシルメルカプタ
ン0.07重量部、重合開始剤0.03重量部から成る
重合原料をプランジャーポンプを用いて10kg/hで
連続的に該反応槽に供給して重合を行い、重合温度を調
節して反応槽出口における固形分量を重合液に対し4
7.0重量%、重合転化率を56.0重量%にした。こ
のときの重合温度は137℃であった。反応槽の撹拌回
転数は150rpmであり、重合温度は反応槽の上部、
中部、下部の3か所に熱電対を入れて測定したところ、
3か所の温度は平均値±0.2℃の範囲に制御されてお
り、重合液は均一に混合されていると考えられる。重合
原料中のスチレン、メタクリル酸メチル、アクリル酸エ
チルの比率はそれぞれ40重量%、48重量%、12重
量%である。重合に続いて、反応槽から連続的に抜き出
された重合液を脱揮発分装置に供給して未反応単量体や
有機溶剤等の揮発性物質を分離した後、押出機を経て樹
脂をペレット化した。なお本実験での転相時及び脱揮発
前の固形分量は重合液に対して共に47%であった。Example 1 A styrene resin was produced using a continuous polymerization apparatus consisting of one complete mixing type reaction vessel having a capacity of 20 liters. Styrene was used as the styrene-based monomer, and a mixture of methyl methacrylate and ethyl acrylate was used as the (meth) acrylic acid alkyl ester. The rubbery polymer is composed of 25% by weight of styrene and 75% by weight of butadiene, and the proportion of 1,2-vinyl bonds among the unsaturated bonds based on butadiene is 10% by weight, and 5% by weight at 25 ° C.
A styrene-butadiene block copolymer having a styrene solution viscosity of 12 centipoise and Mw / Mn of 1.1 was used. The copolymer was prepared by a solution polymerization method using a lithium catalyst. Further, as a polymerization initiator, t-
Butyl peroxy (2-ethylhexanoate) was used. Styrene 30 parts by weight, methyl methacrylate 36 parts by weight, ethyl acrylate 9 parts by weight, ethylbenzene 20 parts by weight, rubber polymer 5 parts by weight, t-dodecyl mercaptan 0.07 parts by weight, polymerization initiator 0.03 parts by weight. Polymerization raw material consisting of 10 kg / h is continuously supplied to the reaction vessel using a plunger pump to carry out the polymerization, and the polymerization temperature is adjusted so that the solid content at the outlet of the reaction vessel is 4
The polymerization conversion rate was 7.0% by weight and the polymerization conversion rate was 56.0% by weight. The polymerization temperature at this time was 137 ° C. The stirring speed of the reaction tank was 150 rpm, and the polymerization temperature was at the top of the reaction tank.
When the thermocouple was put into the three places of the middle part and the lower part and it measured,
The temperatures at the three locations are controlled within the range of an average value ± 0.2 ° C, and it is considered that the polymerization liquid is uniformly mixed. The proportions of styrene, methyl methacrylate and ethyl acrylate in the polymerization raw materials are 40% by weight, 48% by weight and 12% by weight, respectively. Following polymerization, the polymerization liquid continuously withdrawn from the reaction tank is supplied to a devolatilization device to separate volatile substances such as unreacted monomers and organic solvents, and then the resin is passed through an extruder. Pelletized. In this experiment, the solid content at the time of phase inversion and before devolatilization was 47% with respect to the polymerization liquid.
【0045】得られたスチレン系樹脂の分析および物性
評価結果を表1に示した。後述の比較例1と較べると成
形加工時の透明性の変化が小さく、ゴム状重合体中のブ
タジエンに基づく不飽和結合のうちの1,2−ビニル結
合の割合が14重量%未満でも得られる樹脂は十分な耐
衝撃性を有していることが認められる。熱履歴による物
性の変化を観察するため、以下のようなモデル実験を行
った。樹脂を40mm単軸スクリュー押出機(L/D=
30、但しLはフルフライトスクリューの長さ、Dはシ
リンダーの直径)に供給して加熱溶融した後、水で冷却
して再び固化、粉砕機でペレット化した。押出機のシリ
ンダー温度は220℃、ダイ温度は230℃、スクリュ
ー回転数は100rpmに設定した。この作業を5回繰
り返した後のスチレン系樹脂の物性評価結果を表1に示
した。後述の比較例1と比較すると耐衝撃性の保持率が
高く、色相の変化も小さいことがわかる。実施例のなか
では特に成形加工時の透明性の保持に優れている。Table 1 shows the results of analysis and evaluation of physical properties of the obtained styrene resin. Compared with Comparative Example 1 described below, the change in transparency during molding is small, and even if the ratio of 1,2-vinyl bonds among unsaturated bonds based on butadiene in the rubber-like polymer is less than 14% by weight. It is recognized that the resin has sufficient impact resistance. In order to observe changes in physical properties due to thermal history, the following model experiments were conducted. 40mm single screw extruder (L / D =
30, where L is the length of the full flight screw and D is the diameter of the cylinder) and was heated and melted, cooled with water, solidified again, and pelletized with a pulverizer. The cylinder temperature of the extruder was 220 ° C., the die temperature was 230 ° C., and the screw rotation speed was 100 rpm. Table 1 shows the results of evaluating the physical properties of the styrene resin after repeating this operation 5 times. It can be seen that, as compared with Comparative Example 1 described later, the retention rate of impact resistance is high and the change in hue is small. Among the examples, it is particularly excellent in maintaining transparency during molding.
【0046】比較例1 ゴム状重合体として、スチレン23重量%とブタジエン
77重量%から構成され、ブタジエンに基づく不飽和結
合のうちの1,2−ビニル結合の割合が20重量%であ
り、25℃における5重量%スチレン溶液の粘度が11
センチポイズ、Mw/Mnが1.1であるスチレン−ブ
タジエンブロック共重合体(日本ゼオン(株)社製、商
品名NIPOL:NS310S)を用いるほかは実施例
1と全く同様にスチレン系樹脂を製造した。なお本実験
での転相時及び脱揮発前の固形分量は重合液に対して共
に47%であった。該共重合体はリチウム系触媒を用い
溶液重合法で製造したものを用いた。得られたスチレン
系樹脂の分析および物性評価を表1に示した。Comparative Example 1 As a rubbery polymer, 23% by weight of styrene and 77% by weight of butadiene were used, and the proportion of 1,2-vinyl bonds among the unsaturated bonds based on butadiene was 20% by weight. The viscosity of a 5 wt% styrene solution at 11 ° C is 11
A styrene-based resin was manufactured in exactly the same manner as in Example 1 except that a styrene-butadiene block copolymer (manufactured by Nippon Zeon Co., Ltd., trade name NIPOL: NS310S) having a centipoise and Mw / Mn of 1.1 was used. . In this experiment, the solid content at the time of phase inversion and before devolatilization was 47% with respect to the polymerization liquid. The copolymer was prepared by a solution polymerization method using a lithium catalyst. The analysis and physical property evaluation of the obtained styrene resin are shown in Table 1.
【0047】実施例2 実施例1で用いた完全混合型反応槽を2基連結した連続
的重合装置を用いてスチレン系樹脂を製造した。スチレ
ン系単量体としてスチレンを、(メタ)アクリル酸アル
キルエステルとしてメタクリル酸メチルとアクリル酸エ
チルの混合物を用いた。ゴム状重合体としては、実施例
1と同一のゴム状重合体を用いた。また重合開始剤とし
て1,1−ビス(t−ブチルパーオキシ)3,3,5−
トリメチルシクロヘキサンを用いた。スチレン30重量
部、メタクリル酸メチル36重量部、アクリル酸エチル
9重量部、エチルベンゼン20重量部、ゴム状重合体5
重量部、t−ドデシルメルカプタン0.07重量部、重
合開始剤0.03重量部から成る重合原料をプランジャ
ーポンプを用いて10kg/hで連続的に第1の反応槽
に供給して重合を行い、重合温度を調節して第1反応槽
出口における固形分量を重合液に対して23.0重量
%、重合転化率を24.0重量%にした。このときの重
合温度は110℃であった。なお反応槽の撹拌回転数は
150rpmである。第1反応槽から連続的に抜き出し
た重合液を後続の第2反応槽に供給して更に150rp
mで撹拌しながら重合を行い、重合温度を調節して第1
反応槽出口における固形分量を重合液に対して47.0
重量%、重合転化率を56.0重量%にした。このとき
の重合温度は130℃であった。次いで第2反応槽から
連続的に抜き出された重合液を脱揮発分装置に供給して
未反応単量体や有機溶剤等の揮発性物質を分離した後、
押出機を経て樹脂をペレット化した。なお本実験での転
相時及び脱揮発前の固形分量は重合液に対してそれぞれ
23%、47%であった。得られたスチレン系樹脂の分
析および物性評価結果を表1に示した。後述の比較例2
と較べると、成形加工時の透明性の変化が小さく、十分
な耐衝撃性を有していることが認められる。熱履歴によ
る耐衝撃性の低下は抑えられ、色相の変化も小さいこと
がわかる。実施例のなかでは特に耐衝撃性、熱履歴後の
耐衝撃性の保持に優れている。Example 2 A styrene resin was produced using a continuous polymerization apparatus in which two complete mixing type reaction tanks used in Example 1 were connected. Styrene was used as the styrene-based monomer, and a mixture of methyl methacrylate and ethyl acrylate was used as the (meth) acrylic acid alkyl ester. The same rubber-like polymer as in Example 1 was used as the rubber-like polymer. Also, 1,1-bis (t-butylperoxy) 3,3,5-as a polymerization initiator
Trimethylcyclohexane was used. Styrene 30 parts by weight, methyl methacrylate 36 parts by weight, ethyl acrylate 9 parts by weight, ethylbenzene 20 parts by weight, rubbery polymer 5
Parts by weight, 0.07 parts by weight of t-dodecyl mercaptan, and 0.03 parts by weight of a polymerization initiator are continuously supplied to the first reaction tank at 10 kg / h using a plunger pump to carry out the polymerization. Then, the polymerization temperature was adjusted so that the solid content at the outlet of the first reaction tank was 23.0% by weight and the polymerization conversion rate was 24.0% by weight based on the polymerization liquid. The polymerization temperature at this time was 110 ° C. The stirring rotation speed of the reaction tank is 150 rpm. The polymerization liquid continuously withdrawn from the first reaction tank is fed to the subsequent second reaction tank to further supply 150 rp.
Polymerization is carried out while stirring at m.
The solid content at the outlet of the reaction tank was 47.0 based on the polymerization liquid.
% By weight, and the polymerization conversion rate was 56.0% by weight. The polymerization temperature at this time was 130 ° C. Then, the polymerization liquid continuously withdrawn from the second reaction tank is supplied to a devolatilization device to separate volatile substances such as unreacted monomers and organic solvents,
The resin was pelletized through the extruder. In this experiment, the solid contents at the time of phase inversion and before devolatilization were 23% and 47% with respect to the polymerization liquid, respectively. Table 1 shows the results of analysis and evaluation of physical properties of the obtained styrene resin. Comparative Example 2 described below
Compared with the above, it can be seen that the change in transparency during molding is small and that it has sufficient impact resistance. It can be seen that the impact resistance is prevented from lowering due to heat history, and the change in hue is small. Among the examples, it is particularly excellent in retaining impact resistance and impact resistance after heat history.
【0048】比較例2 ゴム状重合体として比較例1と同一のゴム状重合体を用
いるほかは、実施例2と全く同様にスチレン系樹脂を製
造した。なお本実験での転相時及び脱揮発前の固形分量
は重合液に対してそれぞれ26%、47%であった。得
られたスチレン系樹脂の分析および物性評価を表1に示
した。Comparative Example 2 A styrene resin was produced in exactly the same manner as in Example 2 except that the same rubbery polymer as in Comparative Example 1 was used as the rubbery polymer. In this experiment, the solid contents at the phase inversion and before the devolatilization were 26% and 47% of the polymerization liquid, respectively. The analysis and physical property evaluation of the obtained styrene resin are shown in Table 1.
【0049】実施例3 実施例1と同一の連続的重合装置を用いてスチレン系樹
脂を製造した。スチレン系単量体としてスチレンを、
(メタ)アクリル酸アルキルエステルとしてメタクリル
酸メチルを用いた。ゴム状重合体としては実施例1と同
一のゴム状重合体を用いた。重合開始剤として1,1−
ビス(t−ブチルパーオキシ)3,3,5−トリメチル
シクロヘキサンを用いた。スチレン27重量部、メタク
リル酸メチル48重量部、エチルベンゼン20重量部、
ゴム状重合体5重量部、t−ドデシルメルカプタン0.
2重量部、重合開始剤0.03重量部から成る重合原料
をプランジャーポンプを用いて10kg/hで連続的に
該反応槽に供給して重合を行い、重合温度を調節して反
応槽出口における固形分量を重合液に対し47.0重量
%、重合転化率を56.0重量%にした。このときの重
合温度は141℃であった。反応槽の撹拌回転数は15
0rpmである。重合原料中のスチレン、メタクリル酸
メチルの比率はそれぞれ36重量%、64重量%であ
る。重合に続いて重合液から揮発性物質を分離した後、
押出機を経て樹脂をペレット化した。なお本実験での転
相時及び脱揮発前の固形分量は重合液に対して共に47
%であった。得られたスチレン系樹脂の分析および物性
評価結果を表1に示した。後述の比較例3と較べると、
成形加工時の透明性の変化が小さく、十分な耐衝撃性を
有していることが認められる。実施例のなかでは特に熱
履歴による色相の変化が少ない点で優れている。Example 3 A styrene resin was produced using the same continuous polymerization apparatus as in Example 1. Styrene as the styrene monomer,
Methyl methacrylate was used as the (meth) acrylic acid alkyl ester. The same rubber-like polymer as in Example 1 was used as the rubber-like polymer. 1,1-as a polymerization initiator
Bis (t-butylperoxy) 3,3,5-trimethylcyclohexane was used. 27 parts by weight of styrene, 48 parts by weight of methyl methacrylate, 20 parts by weight of ethylbenzene,
5 parts by weight of rubber-like polymer, t-dodecyl mercaptan 0.
A polymerization raw material consisting of 2 parts by weight and 0.03 part by weight of a polymerization initiator is continuously supplied to the reaction tank at 10 kg / h by using a plunger pump to carry out polymerization, and the polymerization temperature is adjusted to exit the reaction tank. The solid content was 47.0% by weight and the polymerization conversion rate was 56.0% by weight based on the polymerization liquid. The polymerization temperature at this time was 141 ° C. The stirring rotation speed of the reaction tank is 15
It is 0 rpm. The proportions of styrene and methyl methacrylate in the polymerization raw materials are 36% by weight and 64% by weight, respectively. After separation of volatile substances from the polymerization liquid following polymerization,
The resin was pelletized through the extruder. In this experiment, the solid content at the time of phase inversion and before devolatilization was 47 with respect to the polymerization liquid.
%Met. Table 1 shows the results of analysis and evaluation of physical properties of the obtained styrene resin. Compared with Comparative Example 3 described later,
It is recognized that the change in transparency during molding is small and that it has sufficient impact resistance. Among the examples, it is particularly excellent in that there is little change in hue due to heat history.
【0050】比較例3 ゴム状重合体として比較例1と同一のゴム状重合体を用
いるほかは、実施例3と全く同様にスチレン系樹脂を製
造した。なお本実験での転相時及び脱揮発前の固形分量
は重合液に対して共に47%であった。得られたスチレ
ン系樹脂の分析および物性評価を表1に示した。Comparative Example 3 A styrene resin was produced in exactly the same manner as in Example 3 except that the same rubbery polymer as in Comparative Example 1 was used as the rubbery polymer. In this experiment, the solid content at the time of phase inversion and before devolatilization was 47% with respect to the polymerization liquid. The analysis and physical property evaluation of the obtained styrene resin are shown in Table 1.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【発明の効果】本発明は、特定の分子構造を持ったゴム
状重合体とスチレン−(メタ)アクリル酸アルキルエス
テル共重合体から構成される透明な耐衝撃性スチレン系
樹脂組成物およびその製造方法を提供するものであり、
本発明による樹脂組成物は、その優れた透明性、耐衝撃
性、特に熱履歴後の耐衝撃性からICケース、ブリスタ
ーケース等のシート・包装材料;洗濯機、エアコン、冷
蔵庫、AV機器等の家電製品;OA機器、電話、楽器等
の一般機械;玩具、化粧品容器等の雑貨;自動車、住宅
資材などの構造材料等、様々な用途を有し、産業上の利
用価値は極めて大きなものがある。INDUSTRIAL APPLICABILITY The present invention provides a transparent impact-resistant styrene resin composition composed of a rubbery polymer having a specific molecular structure and a styrene- (meth) acrylic acid alkyl ester copolymer, and its production. To provide a way,
The resin composition according to the present invention is excellent in transparency, impact resistance, and particularly impact resistance after heat history, as a sheet / packaging material for IC cases, blister cases, etc .; washing machines, air conditioners, refrigerators, AV equipment, etc. Home appliances; general machines such as office automation equipment, telephones, musical instruments; miscellaneous goods such as toys and cosmetics containers; structural materials such as automobiles and housing materials. .
【図1】図1は実用衝撃強度の評価に用いた試験片であ
り、(a)は平面図、(b)は断面図である。FIG. 1 is a test piece used for evaluation of practical impact strength, (a) is a plan view and (b) is a sectional view.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高久 真人 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 森田 尚夫 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 川野 浩司 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masato Takahisa 1-6 Takasago, Takaishi, Osaka Prefecture Mitsui Toatsu Kagaku Co., Ltd. (72) Nao Morita 1-6 Takasago, Takaishi, Osaka Mitsui Toatsu Kagaku Co., Ltd. (72) Inventor Koji Kawano 1-6-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemical Co., Ltd.
Claims (7)
0〜95重量%から成り、ブタジエンに基づく不飽和結
合のうちの1,2−ビニル結合の割合が1.0〜13.
8重量%、25℃における5重量%スチレン溶液の粘度
が3〜60センチポイズの範囲内にあるスチレン−ブタ
ジエン共重合体(A)を70重量%以上含有するゴム状
重合体4〜30重量部と、該ゴム状重合体と実質的に同
等の屈折率を有し、スチレン系単量体20〜70重量%
と(メタ)アクリル酸アルキルエステル30〜80重量
%から成るスチレン−(メタ)アクリル酸アルキルエス
テル共重合体70〜96重量部とから構成され、該ゴム
状重合体が該スチレン−(メタ)アクリル酸アルキルエ
ステル共重合体中に分散した平均粒子径0.1〜2.0
μm、粒子径分布指数2.0〜5.0の粒子である透明
なゴム変性スチレン系樹脂組成物。1. 5 to 50% by weight of styrene and 5 of butadiene
0 to 95% by weight, and the ratio of 1,2-vinyl bonds among the unsaturated bonds based on butadiene is 1.0 to 13.
4 to 30 parts by weight of a rubbery polymer containing 70% by weight or more of a styrene-butadiene copolymer (A) having a viscosity of a 8% by weight, 5% by weight styrene solution at 25 ° C. within a range of 3 to 60 centipoise. , Having a refractive index substantially equal to that of the rubber-like polymer and having a styrene monomer content of 20 to 70% by weight.
And 70 to 96 parts by weight of a styrene- (meth) acrylic acid alkyl ester copolymer consisting of 30 to 80% by weight of (meth) acrylic acid alkyl ester, the rubbery polymer being the styrene- (meth) acrylic. Average particle size of 0.1 to 2.0 dispersed in acid alkyl ester copolymer
A transparent rubber-modified styrene-based resin composition, which is particles having a particle size distribution index of 2.0 to 5.0 μm.
25℃における5重量%スチレン溶液の粘度が3〜40
センチポイズの範囲内にあり、且つその重量平均分子量
(Mw)の数平均分子量(Mn)に対する割合(Mw/
Mn)が1.5以下である請求項1記載の透明なゴム変
性スチレン系樹脂組成物。2. The viscosity of a 5% by weight styrene solution of the styrene-butadiene copolymer (A) at 25 ° C. is 3 to 40.
Within the range of centipoise, and the ratio of its weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw /
The transparent rubber-modified styrene resin composition according to claim 1, wherein Mn) is 1.5 or less.
タ)アクリル酸アルキルエステルに溶解した重合原料を
重合装置に連続的に供給して重合を行うことにより、ゴ
ム状重合体と実質的に同等の屈折率を有するスチレン−
(メタ)アクリル酸アルキルエステル共重合体を生成さ
せながら、ゴム状重合体を該共重合体で構成される連続
相の中に分散する粒子に転移させた後、重合液から未反
応単量体を除去する透明なゴム変性スチレン系樹脂の連
続的製造方法において、(1)該ゴム状重合体の70重
量%以上が、スチレン5〜50重量%とブタジエン50
〜95重量%から成り、ブタジエンに基づく不飽和結合
のうちの1,2−ビニル結合の割合が1.0〜13.8
重量%、25℃における5重量%スチレン溶液の粘度が
3〜60センチポイズの範囲内にあるスチレン−ブタジ
エン共重合体(A)で占められ、(2)ゴム状重合体濃
度を2〜12重量%に調整した重合原料に、スチレン系
単量体20〜70重量%と(メタ)アクリル酸アルキル
エステル30〜80重量%から成る単量体の総量100
重量部に対して0.001〜5.0重量部の重合開始剤
を添加し、重合温度80〜160℃で重合を行って、重
合液中の固形分量が60重量%以下の状態でゴム状重合
体を粒子径0.1〜2.0μm、粒子径分布指数2.0
〜5.0の粒子に転移させ、(3)重合液中の固形分量
が75重量%以下の状態で重合液から未反応単量体を除
去することを特徴とする透明なゴム変性スチレン系樹脂
の連続的製造方法。3. A rubber-like polymer is substantially obtained by continuously supplying a polymerization raw material obtained by dissolving a rubber-like polymer in a styrene-based monomer and an alkyl (meth) acrylate to a polymerization apparatus to carry out polymerization. Having the same refractive index
After generating the (meth) acrylic acid alkyl ester copolymer, the rubber-like polymer was transferred to the particles dispersed in the continuous phase composed of the copolymer, and the unreacted monomer was removed from the polymerization solution. (1) 70% by weight or more of the rubbery polymer is 5 to 50% by weight of styrene and 50% of butadiene.
˜95% by weight, and the ratio of 1,2-vinyl bonds among the unsaturated bonds based on butadiene is 1.0 to 13.8.
% By weight, the viscosity of a 5% by weight styrene solution at 25 ° C. is occupied by a styrene-butadiene copolymer (A) having a range of 3 to 60 centipoise, and (2) a rubbery polymer concentration of 2 to 12% by weight. The total amount of the monomer composed of 20 to 70% by weight of the styrene-based monomer and 30 to 80% by weight of the (meth) acrylic acid alkyl ester in the polymerization raw material adjusted to 100
0.001 to 5.0 parts by weight of a polymerization initiator is added to parts by weight, polymerization is performed at a polymerization temperature of 80 to 160 ° C., and a rubber-like substance is obtained in a state where the solid content in the polymerization liquid is 60% by weight or less. The polymer has a particle size of 0.1 to 2.0 μm and a particle size distribution index of 2.0.
To 5.0 particles, and (3) removing unreacted monomer from the polymerization liquid in a state where the solid content in the polymerization liquid is 75% by weight or less, a transparent rubber-modified styrene resin. Continuous manufacturing method.
(メタ)アクリル酸アルキルエステルがメタクリル酸メ
チル、アクリル酸メチル、アクリル酸エチル、アクリル
酸ブチルから選ばれる1種あるいは2種以上の混合物で
ある請求項3記載の透明なゴム変性スチレン系樹脂の連
続的製造方法。4. The styrene monomer is styrene,
The continuous transparent rubber-modified styrenic resin according to claim 3, wherein the (meth) acrylic acid alkyl ester is one kind or a mixture of two or more kinds selected from methyl methacrylate, methyl acrylate, ethyl acrylate, and butyl acrylate. Manufacturing method.
(メタ)アクリル酸アルキルエステルがメタクリル酸メ
チル単独あるいはメタクリル酸メチルとアクリル酸エチ
ルの混合物である請求項3記載の透明なゴム変性スチレ
ン系樹脂の連続的製造方法。5. The styrene-based monomer is styrene,
The continuous method for producing a transparent rubber-modified styrene resin according to claim 3, wherein the (meth) acrylic acid alkyl ester is methyl methacrylate alone or a mixture of methyl methacrylate and ethyl acrylate.
ブロック共重合体であり、その25℃における5重量%
スチレン溶液の粘度が3〜40センチポイズの範囲内に
あり、且つその重量平均分子量(Mw)の数平均分子量
(Mn)に対する割合(Mw/Mn)が1.5以下であ
る請求項5記載の透明なゴム変性スチレン系樹脂の連続
的製造方法。6. The styrene-butadiene copolymer (A) is a block copolymer, and its content at 25 ° C. is 5% by weight.
The viscosity of the styrene solution is in the range of 3 to 40 centipoise, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.5 or less. Continuous method for producing a rubber-modified styrene resin.
状態でゴム状重合体を分散粒子に転移させ、重合液中の
固形分量が60重量%以下の状態で重合液から未反応単
量体を除去することを特徴とする請求項6記載の透明な
ゴム変性スチレン系樹脂の連続的製造方法。7. The rubber-like polymer is transferred to dispersed particles in a state where the solid content in the polymerization liquid is 50% by weight or less, and the unreacted unit is reacted from the polymerization solution in the state where the solid content in the polymerization liquid is 60% by weight or less. The method for continuously producing a transparent rubber-modified styrenic resin according to claim 6, wherein the monomer is removed.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04272295A JP3516506B2 (en) | 1995-03-02 | 1995-03-02 | Transparent rubber-modified styrenic resin composition and method for producing the same |
US08/527,718 US5891962A (en) | 1994-09-20 | 1995-09-13 | Transparent, rubber-modified styrene resin and production process thereof |
DE69524336T DE69524336T3 (en) | 1994-09-20 | 1995-09-15 | Transparent, rubber modified styrene resin and process for its preparation |
TW084109667A TW378214B (en) | 1994-09-20 | 1995-09-15 | Transparent rubber-modified styrene-based resin |
EP95306530A EP0703252B2 (en) | 1994-09-20 | 1995-09-15 | Transparent, rubber-modified styrene resin and production process thereof |
KR1019950030858A KR100192675B1 (en) | 1994-09-20 | 1995-09-20 | Transparent rubber modified styrene resin and manufacturing method thereof |
CN95102590A CN1068607C (en) | 1994-09-20 | 1995-09-20 | Transparent, rubber-modified styrene resin and production process thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04272295A JP3516506B2 (en) | 1995-03-02 | 1995-03-02 | Transparent rubber-modified styrenic resin composition and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08239532A true JPH08239532A (en) | 1996-09-17 |
JP3516506B2 JP3516506B2 (en) | 2004-04-05 |
Family
ID=12643966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04272295A Expired - Lifetime JP3516506B2 (en) | 1994-09-20 | 1995-03-02 | Transparent rubber-modified styrenic resin composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3516506B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6162870A (en) * | 1997-08-18 | 2000-12-19 | Denki Kagaku Kogyo Kabushiki Kaisha | Rubber-modified styrene polymer |
US6214278B1 (en) | 1999-02-17 | 2001-04-10 | Denki Kagaku Kogyo Kabushiki Kaisha | Rubber-modified styrene copolymer |
JP2002105150A (en) * | 2000-07-26 | 2002-04-10 | Toray Ind Inc | Rubber-reinforced styrene-based transparent resin composition and method for producing the same |
JP2002179715A (en) * | 2000-12-18 | 2002-06-26 | Denki Kagaku Kogyo Kk | Rubber-modified aromatic vinyl copolymer resin composition and method for producing the same |
JP2017019988A (en) * | 2015-07-10 | 2017-01-26 | 東レ株式会社 | Polymer fine particle, manufacturing method therefor, epoxy resin composition and semiconductor encapsulation material |
-
1995
- 1995-03-02 JP JP04272295A patent/JP3516506B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6162870A (en) * | 1997-08-18 | 2000-12-19 | Denki Kagaku Kogyo Kabushiki Kaisha | Rubber-modified styrene polymer |
US6214278B1 (en) | 1999-02-17 | 2001-04-10 | Denki Kagaku Kogyo Kabushiki Kaisha | Rubber-modified styrene copolymer |
US6403707B2 (en) | 1999-02-17 | 2002-06-11 | Denki Kaguku Kogyo Kabushiki Kaisha | Rubber-modified styrene type copolymer |
JP2002105150A (en) * | 2000-07-26 | 2002-04-10 | Toray Ind Inc | Rubber-reinforced styrene-based transparent resin composition and method for producing the same |
JP2002179715A (en) * | 2000-12-18 | 2002-06-26 | Denki Kagaku Kogyo Kk | Rubber-modified aromatic vinyl copolymer resin composition and method for producing the same |
JP2017019988A (en) * | 2015-07-10 | 2017-01-26 | 東レ株式会社 | Polymer fine particle, manufacturing method therefor, epoxy resin composition and semiconductor encapsulation material |
Also Published As
Publication number | Publication date |
---|---|
JP3516506B2 (en) | 2004-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0703252B2 (en) | Transparent, rubber-modified styrene resin and production process thereof | |
JPH037708A (en) | Production of rubber-modified styrene resin | |
JP3516506B2 (en) | Transparent rubber-modified styrenic resin composition and method for producing the same | |
JPH1072512A (en) | Rubber-modified copolymer resin composition and method for producing the same | |
KR100378127B1 (en) | Styrene resin composition and process for producing the same | |
JP5607065B2 (en) | Rubber reinforced vinyl aromatic (co) polymer with optimal balance of physical / mechanical properties and high gloss | |
JP3353844B2 (en) | Method for producing rubber-modified copolymer resin and rubber-modified copolymer resin composition | |
JP3401126B2 (en) | Rubber-modified styrene resin composition and method for producing the same | |
JPH03199212A (en) | Continuous production method for impact-resistant styrenic resin | |
JP3325401B2 (en) | Method for producing transparent rubber-modified styrenic resin | |
JP3390529B2 (en) | Continuous production method of rubber-modified styrenic resin | |
JP2000178405A (en) | Resin composition and its production | |
JP2006249446A (en) | Method for producing transparent impact-resistant styrenic resin composition | |
JPH08269142A (en) | Transparent rubber-modified styrene-based resin composition | |
JP2003212936A (en) | Transparent impact resistant styrenic resin composition | |
JP4458931B2 (en) | Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition | |
JP2004339357A (en) | Transparent rubber-modified polystyrene resin | |
JPH09309934A (en) | Method for producing rubber-modified aromatic vinyl resin | |
JP4097498B2 (en) | Method for producing rubber-modified copolymer resin | |
JP4080067B2 (en) | Rubber-modified styrene resin | |
TW593370B (en) | Transparent rubber-modified polystyrenic resin | |
CN114867762A (en) | ABS moulding materials obtained by bulk or solution polymerization | |
JPH04255706A (en) | Rubber-modified styrene-based resin excellent in strength | |
JPH06145443A (en) | Styrenic resin composition | |
JPH10338722A (en) | Production of styrene-based polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140130 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |