JPH08239222A - Production of lithium doped alpha-manganese dioxide - Google Patents
Production of lithium doped alpha-manganese dioxideInfo
- Publication number
- JPH08239222A JPH08239222A JP8083262A JP8326296A JPH08239222A JP H08239222 A JPH08239222 A JP H08239222A JP 8083262 A JP8083262 A JP 8083262A JP 8326296 A JP8326296 A JP 8326296A JP H08239222 A JPH08239222 A JP H08239222A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- manganese dioxide
- permanganate
- manganese
- inorganic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 title claims abstract description 35
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- -1 inorganic acid salt Chemical class 0.000 claims abstract description 16
- 239000011572 manganese Substances 0.000 claims abstract description 13
- 238000005342 ion exchange Methods 0.000 claims abstract description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 6
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000002378 acidificating effect Effects 0.000 claims abstract description 5
- 229910002096 lithium permanganate Inorganic materials 0.000 claims abstract description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011777 magnesium Substances 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 abstract description 9
- 229910001414 potassium ion Inorganic materials 0.000 abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract description 3
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 abstract description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 241001620634 Roger Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000007557 optical granulometry Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、その分子中にアン
モニウムイオン、カリウムイオンなどの電池性能に悪影
響を与えるカチオンを含まず、且つリチウム二次電池の
正極活材料として有用なリチウムドープα−二酸化マン
ガンの製造法に関する。TECHNICAL FIELD The present invention relates to a lithium-doped α-dioxide which does not contain cations such as ammonium ions and potassium ions which adversely affect the battery performance in its molecule and which is useful as a positive electrode active material of a lithium secondary battery. It relates to a method for producing manganese.
【0002】[0002]
【従来の技術】近年、携帯電話に代表される様に、電子
機器の小型化、携帯化が進んでいる。この場合、小型の
コードレス電源が必須となり、該電源としてリチウム二
次電池の開発が盛んに行われている。2. Description of the Related Art In recent years, electronic devices have become smaller and more portable, as represented by mobile phones. In this case, a small cordless power source is indispensable, and a lithium secondary battery has been actively developed as the power source.
【0003】現在リチウム電池としては、負極活物質に
リチウム又はリチウム合金を用い、正極活物質にはγ/
β又はβ−二酸化マンガンを用いた非水電解質電池が知
られている。該電池は高電圧で、自己放電も少なく、保
存性にも優れている。At present, lithium batteries or lithium alloys are used for the negative electrode active material, and γ / is used for the positive electrode active material.
Non-aqueous electrolyte batteries using β or β-manganese dioxide are known. The battery has high voltage, little self-discharge, and excellent storage stability.
【0004】しかしながら該電池には、繰り返し充放電
を行うと電池容量の著しい低下が起こるという問題点が
あつた。この様な容量の低下が起こるのは、リチウムイ
オンの二酸化マンガンへの挿入抽出反応により、該二酸
化マンガンの結晶構造が崩壊するためと考えられる。す
なわち、二酸化マンガンはMnO6八面体鎖の架橋による
トンネル構造を有しており〔例えば、Roger. G. Bur
ns et al, "RecentStructural Data For Manganes
e(IV)Oxides", The 2nd MnO2 Symposium in 19
80〕、該トンネルがリチウムイオンの挿入抽出経路とな
るが、MnO6八面体を一単位とするとγ/β型のトンネ
ル寸法は1×1と1×2の混成、β型は1×1と小さい
ため、結晶構造の崩壊が起こるものと考えられる。However, the battery has a problem that the battery capacity is remarkably reduced when it is repeatedly charged and discharged. It is considered that such a decrease in capacity occurs because the crystal structure of the manganese dioxide collapses due to the insertion / extraction reaction of lithium ions into the manganese dioxide. That is, manganese dioxide has a tunnel structure formed by cross-linking MnO 6 octahedral chains [eg, Roger. G. Bur.
ns et al, "RecentStructural Data For Manganes
e (IV) Oxides ", The 2nd MnO 2 Symposium in 19
80], the tunnel serves as an insertion / extraction path for lithium ions, but if the MnO 6 octahedron is taken as one unit, the γ / β type tunnel size is a mixture of 1 × 1 and 1 × 2, and the β type is 1 × 1. Since it is small, it is considered that the crystal structure collapses.
【0005】従つて、γ/βやβ型よりもトンネル寸法
の大きい、例えば2×2の寸法を持つ二酸化マンガン化
合物を用いることにより、結晶構造の崩壊を防止できる
ことは理論上予測し得る。この様な二酸化マンガン化合
物としては、例えば、式KxMn8O16で表されるクリプ
トメレーン、式(NH4)xMn8O16で表される化合物な
どのα−二酸化マンガンが知られているが、これらはい
ずれもトンネル内にカリウムイオンやアンモニウムイオ
ンなどの、電池性能に悪影響を与えるカチオンを保有し
ている。例えば、該カチオンの存在によりリチウムの挿
入抽出反応が阻止され、理論値通りの電池容量が達成さ
れない。また、充放電を繰り返すとカチオンの電解質へ
の溶出が起こり、充放電特性が劣化する。この様に従来
のα−二酸化マンガンは、リチウム二次電池に用いるに
は好ましくない問題を有するものであつた。Therefore, it can be theoretically predicted that the collapse of the crystal structure can be prevented by using a manganese dioxide compound having a tunnel size larger than that of the γ / β or β type, for example, 2 × 2. As such a manganese dioxide compound, for example, α-manganese dioxide such as a cryptomelane represented by the formula K x Mn 8 O 16 or a compound represented by the formula (NH 4 ) x Mn 8 O 16 is known. However, all of them have cations such as potassium ions and ammonium ions in the tunnel, which have a bad influence on the battery performance. For example, the presence of the cation blocks the lithium insertion-extraction reaction, and the theoretical battery capacity is not achieved. In addition, when charging and discharging are repeated, cations are eluted into the electrolyte, which deteriorates charging and discharging characteristics. As described above, the conventional α-manganese dioxide has a problem that it is not preferable for use in a lithium secondary battery.
【0006】上記問題を解消したα−二酸化マンガンと
して、リチウムイオンをドープしたα−二酸化マンガン
が提案されている(特開昭63−148550号公
報)。これは、アンモニウムイオンを含む従来のα−二
酸化マンガンと水酸化リチウムとの水溶液をマイクロ波
照射することにより、アンモニウムイオンとリチウムイ
オンをイオン交換して製造される。しかしながら、α−
二酸化マンガンはカリウムやアンモニウムイオンに対し
著しく高い親和力を有するため、この様なイオン交換反
応では同物質中のアンモニウムイオンを完全に除去する
ことは困難であり、実際にはアンモニウムイオンを含み
Lix(NH4)2-xMn8O16なる化学組成を有する物質が
生成する。よつて、この場合も従来と同様に、充放電の
繰り返しにより電池容量の低下及び充放電特性の劣化が
起こる。As an α-manganese dioxide that solves the above problems, lithium-ion-doped α-manganese dioxide has been proposed (Japanese Patent Laid-Open No. 63-148550). This is manufactured by ion-exchanging ammonium ions and lithium ions by microwave irradiation of a conventional aqueous solution of α-manganese dioxide containing ammonium ions and lithium hydroxide. However, α-
Since manganese dioxide has a remarkably high affinity for potassium and ammonium ions, it is difficult to completely remove the ammonium ions in the same substance by such an ion exchange reaction, and in reality, it contains ammonium ions and Li x ( NH 4) material having a 2-x Mn 8 O 16 becomes chemical composition is produced. Therefore, also in this case, as in the conventional case, the battery capacity is lowered and the charge / discharge characteristics are deteriorated due to repeated charge / discharge.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、カリ
ウムやアンモニウムイオンなどの電池性能に悪影響を与
えるカチオンを含まないリチウムドープα−二酸化マン
ガンを製造することができ、且つ大掛かりな装置、設備
などを必要としない工業的に有利な製造法を提供するこ
とにある。An object of the present invention is to produce lithium-doped α-manganese dioxide that does not contain cations such as potassium and ammonium ions which adversely affect the battery performance, and is a large-scale device and equipment. It is to provide an industrially advantageous manufacturing method that does not require the like.
【0008】[0008]
【課題を解決するための手段】本発明は濃度が4モル以
上になるように無機酸を反応系に添加する酸性条件下
に、マンガンの無機酸塩と過マンガン酸リチウム、過マ
ンガン酸ナトリウム及び過マンガン酸マグネシウムから
選ばれる少なくとも1種の過マンガン酸塩を反応させて
得られるα−二酸化マンガンのプロトンをリチウムにイ
オン交換することを特徴とするリチウムドープα−二酸
化マンガンの製造法に係る。The present invention provides an inorganic acid salt of manganese, lithium permanganate, sodium permanganate, and sodium permanganate under acidic conditions in which an inorganic acid is added to a reaction system so that the concentration becomes 4 mol or more. The present invention relates to a method for producing lithium-doped α-manganese dioxide, which comprises ion-exchange of protons of α-manganese dioxide obtained by reacting at least one permanganate selected from magnesium permanganate with lithium.
【0009】[0009]
【発明の実施の形態】本発明方法では、反応系を酸性条
件とすることを必須とする。酸性条件にするためには公
知の方法が採用でき、例えば、反応系に無機酸を添加す
ればよい。無機酸としては特に制限されないが、硫酸が
好ましい。反応系における無機酸の濃度は4モル未満で
は本発明の目的物とともにγ−二酸化マンガンが生成す
るので、4モル以上とする必要がある。BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, it is essential that the reaction system is under acidic conditions. A known method can be adopted to make the acidic condition, and for example, an inorganic acid may be added to the reaction system. The inorganic acid is not particularly limited, but sulfuric acid is preferable. If the concentration of the inorganic acid in the reaction system is less than 4 mol, γ-manganese dioxide is produced together with the object of the present invention, so it is necessary to set it to 4 mol or more.
【0010】本発明方法においては、原料化合物として
のマンガンの無機酸塩と過マンガン酸塩を使用する。マ
ンガンの無機酸塩としては公知のものが使用できるが、
その中でも、水溶液中で安定な2価のマンガン酸化物を
供給し得るものが好ましい。その具体例としては、例え
ば、硫酸マンガン、硝酸マンガン、塩化マンガンなどを
挙げることができる。これらは1種又は2種以上を併用
して本反応に供することができる。一方過マンガン酸塩
としては、過マンガン酸リチウム、過マンガン酸ナトリ
ウム、過マンガン酸マグネシウムを挙げることができ、
これらは1種又は2種以上を併用して本反応に供するこ
とができる。マンガンの無機酸塩と過マンガン酸塩の使
用割合は特に制限されず広い範囲から適宜選択できる
が、反応効率などを考慮すると、通常等モル量程度とす
ればよい。In the method of the present invention, inorganic acid salts of manganese and permanganate are used as raw material compounds. Known inorganic acid salts of manganese can be used,
Among them, those capable of supplying a stable divalent manganese oxide in an aqueous solution are preferable. Specific examples thereof include manganese sulfate, manganese nitrate, manganese chloride and the like. These may be used in this reaction in combination of one kind or two or more kinds. On the other hand, examples of the permanganate include lithium permanganate, sodium permanganate, and magnesium permanganate,
These may be used in this reaction in combination of one kind or two or more kinds. The use ratio of the inorganic acid salt of manganese and the permanganate salt is not particularly limited and can be appropriately selected from a wide range, but in consideration of reaction efficiency and the like, it is usually about equimolar amount.
【0011】反応は、通常水(好ましくは脱イオン水)
中にて、好ましくは撹拌下に行われる。反応温度は特に
制限されないが、通常40℃程度以上、好ましくは70〜10
0℃程度とすればよい。反応時間にも制限はないが、通
常10分以上、好ましくは2時間以上とすればよい。反応
終了後、室温付近で1日程度エージングしてもよい。生
成物は、濾過などの通常の分離、精製手段により反応系
から容易に分取することができる。The reaction is usually water (preferably deionized water).
In, preferably with stirring. The reaction temperature is not particularly limited, but is usually about 40 ° C. or higher, preferably 70 to 10
It may be about 0 ° C. The reaction time is not limited, but it is usually 10 minutes or longer, preferably 2 hours or longer. After completion of the reaction, aging may be performed at around room temperature for about 1 day. The product can be easily separated from the reaction system by usual separation and purification means such as filtration.
【0012】この様にして、アンモニウムイオンやカリ
ウムイオンを含まないα−二酸化マンガンを製造するこ
とができる。尚、このα−二酸化マンガンを電池用途に
使用する場合には、表面に付着残存した水分及び内部の
結晶水を完全に乾燥除去するのが好ましい。乾燥は、通
常100℃以上、好ましくは300℃以上で行えばよい。In this way, α-manganese dioxide containing no ammonium ion or potassium ion can be produced. When this α-manganese dioxide is used for batteries, it is preferable to completely dry and remove water remaining on the surface and water of crystallization inside. Drying may be performed at 100 ° C. or higher, preferably 300 ° C. or higher.
【0013】本発明では、上記α−二酸化マンガンのプ
ロトンをリチウムでイオン交換することにより、リチウ
ムドープα−二酸化マンガンを製造することができる。
イオン交換は通常の方法に従つて行うことができる。例
えば、水などの適当な溶媒中にて、該α−二酸化マンガ
ンとリチウム塩を混合すればよい。リチウム塩としては
公知のものが使用でき、例えば、水酸化リチウム、沃化
リチウムなどを挙げることができる。In the present invention, lithium-doped α-manganese dioxide can be produced by ion-exchange of the protons of α-manganese dioxide with lithium.
Ion exchange can be performed according to a usual method. For example, the α-manganese dioxide and the lithium salt may be mixed in a suitable solvent such as water. Known lithium salts can be used, and examples thereof include lithium hydroxide and lithium iodide.
【0014】[0014]
【実施例】以下に参考例及び実施例を挙げ、本発明を一
層明瞭なものとする。EXAMPLES The present invention will be made clearer with reference to the following Reference Examples and Examples.
【0015】参考例1 8モルの硫酸を含む0.1モル硝酸マンガン水溶液 1.0lの
液温を100℃とした。これに等容量の0.1モル過マンガン
酸リチウム水溶液を加え、同温度を保持したまま1時間
撹拌した後、20℃で1日間放置した。析出した沈殿物を
吸引濾過により分取し、300℃で24時間乾燥し、固形物1
7g(収率90%)を得た。Reference Example 1 1.0 l of a 0.1 mol manganese nitrate aqueous solution containing 8 mol of sulfuric acid had a liquid temperature of 100 ° C. To this, an equal volume of 0.1 molar aqueous solution of lithium permanganate was added, and the mixture was stirred for 1 hour while maintaining the same temperature, and then left at 20 ° C. for 1 day. The deposited precipitate was collected by suction filtration and dried at 300 ° C for 24 hours to give a solid 1
7 g (yield 90%) was obtained.
【0016】得られた生成物のX線回折チヤートを図1
に示す。これをASTMカードにおけるクリプトメレー
ン(KMn8O16)と比較したところ、両者はほぼ一致し
た。また原子吸光分析によればLi/Mn比(モル)は0.
001以下であり、炎光分析ではCa及びKの存在は認めら
れなかつた。従つて生成物はクリプトメレーンと同型の
結晶構造を持ち、化学式HxMn8O16で示される物質で
あることが判る。The X-ray diffraction chart of the obtained product is shown in FIG.
Shown in When this was compared with cryptomelane (KMn 8 O 16 ) in the ASTM card, they were almost the same. According to atomic absorption spectrometry, the Li / Mn ratio (mol) is 0.
It was 001 or less, and the presence of Ca and K was not recognized by flame photo analysis. Therefore, it is found that the product has the same crystal structure as cryptomelane and is a substance represented by the chemical formula H x Mn 8 O 16 .
【0017】実施例1 参考例1において20℃で1日間放置まで同じ操作を行
い、吸引濾過により分取した沈殿物 10gを0.1モル水酸
化リチウム水溶液 100mlに加え、室温にて7日間放置し
リチウムイオン交換を行つた。得られた固形物を300℃
で24時間乾燥し、固形物を得た。Example 1 The same operation as in Reference Example 1 was performed until it was allowed to stand at 20 ° C. for 1 day, 10 g of a precipitate collected by suction filtration was added to 100 ml of 0.1 molar lithium hydroxide aqueous solution, and left at room temperature for 7 days to obtain lithium. Ion exchange was performed. The obtained solid is 300 ℃
After drying for 24 hours, a solid was obtained.
【0018】得られた生成物のX線回折チヤートは、図
1と一致した。従つて生成物はクリプトメレーンと同型
の結晶構造を持ち、化学式LixMn8O16で示される物質
であることが判る。また本物質のLi/Mn比(モル)は
原子吸光分析により0.23であつた。なお、参考例1と実
施例1の生成物は基本結晶構造を同じくするため、同じ
X線回折チヤートが得られる。カチオンの違いは、X線
回折チヤートには現れない。The X-ray diffraction chart of the product obtained was in agreement with FIG. Therefore, it is understood that the product has the same crystal structure as cryptomelane and is a substance represented by the chemical formula Li x Mn 8 O 16 . The Li / Mn ratio (mol) of this substance was 0.23 by atomic absorption spectrometry. Since the products of Reference Example 1 and Example 1 have the same basic crystal structure, the same X-ray diffraction chart can be obtained. The cation difference does not appear in the X-ray diffraction chart.
【0019】[0019]
【発明の効果】本発明によれば、カリウムやアンモニウ
ムイオンなどの電池性能に悪影響を与えるカチオンを含
まないリチウムドープα−二酸化マンガンを、非常に高
い収率で製造することができる。また本発明の方法に
は、大掛かりな装置、設備などを必要とせず、工業的に
非常に有利であるという利点もある。INDUSTRIAL APPLICABILITY According to the present invention, lithium-doped α-manganese dioxide containing no cation such as potassium or ammonium ion which adversely affects the battery performance can be produced in a very high yield. Further, the method of the present invention has an advantage that it does not require a large-scale device or equipment and is industrially very advantageous.
【0020】更に本発明により得られるリチウムドープ
α−二酸化マンガンをリチウム二次電池に適用すると、
電池性能に悪影響を与えるカチオンを含まないため、高
容量で、充放電の繰り返しによる容量の低下及び充放電
特性の劣化がなく、従つて、サイクル寿命の長い電池を
得ることができる。Further, when the lithium-doped α-manganese dioxide obtained by the present invention is applied to a lithium secondary battery,
Since it does not contain cations that adversely affect the battery performance, it is possible to obtain a battery with a high capacity, without a decrease in capacity due to repeated charging / discharging and deterioration of charge / discharge characteristics, and thus a long cycle life.
【図1】参考例1及び実施例1により得られるα−二酸
化マンガンのX線回折図である。FIG. 1 is an X-ray diffraction diagram of α-manganese dioxide obtained in Reference Example 1 and Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 馮 旗 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (72)発明者 加納 博文 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (72)発明者 宮井 良孝 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463 大塚化 学株式会社徳島研究所内 (72)発明者 谷 真佐人 徳島県徳島市川内町加賀須野463 大塚化 学株式会社徳島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Feng Qi, 2-3-3 Hananomiya-cho, Takamatsu-shi, Kagawa, Shikoku Institute of Industrial Technology, Institute of Industrial Technology (72) Hirofumi Kano 2-chome, Hananomiya-cho, Takamatsu, Kagawa No. 3-3 Inside Shikoku Institute of Industrial Technology (72) Inventor Yoshitaka Miyai 2-3-3 Hananomiyacho, Takamatsu-shi, Kagawa Inside Shikoku Institute of Industrial Technology (72) Inventor Weibun Nakacho 463 Kagasuno, Kawauchi-machi, Tokushima City, Tokushima Research Institute, Otsuka Chemical Co., Ltd. (72) Inventor Masato Tani, 463, Kagasuno, Kawauchi-machi, Tokushima City, Tokushima Prefecture, Tokushima Research Institute, Otsuka Chemical Co., Ltd.
Claims (2)
反応系に添加する酸性条件下に、マンガンの無機酸塩と
過マンガン酸リチウム、過マンガン酸ナトリウム及び過
マンガン酸マグネシウムから選ばれる少なくとも1種の
過マンガン酸塩を反応させて得られるα−二酸化マンガ
ンのプロトンをリチウムにイオン交換することを特徴と
するリチウムドープα−二酸化マンガンの製造法。1. An inorganic acid salt of manganese and lithium permanganate, sodium permanganate, and magnesium permanganate are selected under acidic conditions in which an inorganic acid is added to the reaction system so that the concentration becomes 4 mol or more. A method for producing lithium-doped α-manganese dioxide, characterized in that the proton of α-manganese dioxide obtained by reacting at least one permanganate is ion-exchanged with lithium.
チウム塩の反応により行われる請求項1の製造法。2. The method according to claim 1, wherein the ion exchange is carried out by reacting α-manganese dioxide with a lithium salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8083262A JP2835436B2 (en) | 1996-03-11 | 1996-03-11 | Method for producing lithium-doped α-manganese dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8083262A JP2835436B2 (en) | 1996-03-11 | 1996-03-11 | Method for producing lithium-doped α-manganese dioxide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5166149A Division JP2711624B2 (en) | 1993-06-08 | 1993-06-08 | Production method of α-manganese dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08239222A true JPH08239222A (en) | 1996-09-17 |
JP2835436B2 JP2835436B2 (en) | 1998-12-14 |
Family
ID=13797445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8083262A Expired - Lifetime JP2835436B2 (en) | 1996-03-11 | 1996-03-11 | Method for producing lithium-doped α-manganese dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2835436B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506493B1 (en) | 1998-11-09 | 2003-01-14 | Nanogram Corporation | Metal oxide particles |
US7384680B2 (en) | 1997-07-21 | 2008-06-10 | Nanogram Corporation | Nanoparticle-based power coatings and corresponding structures |
WO2020059450A1 (en) * | 2018-09-18 | 2020-03-26 | パナソニックIpマネジメント株式会社 | Slurry for secondary batteries, positive electrode for secondary batteries, and secondary battery |
CN115000395A (en) * | 2022-05-11 | 2022-09-02 | 中南大学 | K-doped alpha-manganese dioxide nanorod, direct-writing forming ink, zinc ion battery anode and preparation methods thereof |
CN116924474A (en) * | 2023-07-21 | 2023-10-24 | 中科南京绿色制造产业创新研究院 | Alkali metal doped manganese dioxide nano material and preparation method and application thereof |
-
1996
- 1996-03-11 JP JP8083262A patent/JP2835436B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7384680B2 (en) | 1997-07-21 | 2008-06-10 | Nanogram Corporation | Nanoparticle-based power coatings and corresponding structures |
US6506493B1 (en) | 1998-11-09 | 2003-01-14 | Nanogram Corporation | Metal oxide particles |
US6680041B1 (en) | 1998-11-09 | 2004-01-20 | Nanogram Corporation | Reaction methods for producing metal oxide particles |
WO2020059450A1 (en) * | 2018-09-18 | 2020-03-26 | パナソニックIpマネジメント株式会社 | Slurry for secondary batteries, positive electrode for secondary batteries, and secondary battery |
JPWO2020059450A1 (en) * | 2018-09-18 | 2021-08-30 | パナソニックIpマネジメント株式会社 | Secondary battery slurry, secondary battery positive electrode, and secondary battery |
CN115000395A (en) * | 2022-05-11 | 2022-09-02 | 中南大学 | K-doped alpha-manganese dioxide nanorod, direct-writing forming ink, zinc ion battery anode and preparation methods thereof |
CN116924474A (en) * | 2023-07-21 | 2023-10-24 | 中科南京绿色制造产业创新研究院 | Alkali metal doped manganese dioxide nano material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2835436B2 (en) | 1998-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101821878B (en) | Positive electrode active material, method for production thereof, and electrochemical device | |
EP0581290B1 (en) | Novel manganese oxides, production thereof, and use thereof | |
EP0892762B1 (en) | Method of preparation of lithium manganese oxide spinel | |
JP3263725B2 (en) | Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method | |
TW546864B (en) | High-energy, rechargeable, electrochemical cells with gel polymer electrolytes | |
US8968925B2 (en) | Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode | |
JP3506397B2 (en) | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JP3875053B2 (en) | ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME | |
JPH0837007A (en) | Lithium-containing transition metal composite oxide, method for producing the same, and use thereof | |
WO2014178194A1 (en) | Metal-doped transition metal hexacyanoferrate (tmhcf) battery electrode | |
JP2003017057A (en) | Lithium vanadium composite oxide for negative electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JPH04270125A (en) | Manganese oxide compound | |
US10026957B2 (en) | Precursor of Li-ion cathode material, the preparation method thereof and Li-ion cathode material | |
CN110775951A (en) | Preparation method of high-purity phosphate of electrode material | |
CN113830792A (en) | Anhydrous prussian white material, preparation method and application | |
JP2711624B2 (en) | Production method of α-manganese dioxide | |
US6399041B1 (en) | Process for producing layered rock-salt type lithium cobalt oxide by hydrothermal oxidation | |
JP2835436B2 (en) | Method for producing lithium-doped α-manganese dioxide | |
JP2005187282A (en) | Lithium-nickel-manganese composite oxide, method for producing the same, and use thereof | |
US9966602B2 (en) | Metal cyanometallates | |
JPH11162508A (en) | Manufacture of electrolyte and manufacture of secondary battery | |
JP2001114521A (en) | Trimanganese tetraoxide and method for its production | |
JPH10340726A (en) | Manufacture of positive active material for lithium secondary battery and battery using the same | |
JP3407042B2 (en) | Lithium ion secondary battery positive electrode material and method for producing the same | |
CA1226033A (en) | Rechargeable manganese dioxide electrode material - i |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |