JPH08233468A - Heating and melting device - Google Patents
Heating and melting deviceInfo
- Publication number
- JPH08233468A JPH08233468A JP8039247A JP3924796A JPH08233468A JP H08233468 A JPH08233468 A JP H08233468A JP 8039247 A JP8039247 A JP 8039247A JP 3924796 A JP3924796 A JP 3924796A JP H08233468 A JPH08233468 A JP H08233468A
- Authority
- JP
- Japan
- Prior art keywords
- melted
- heating
- induction heating
- amount
- controlling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 83
- 230000008018 melting Effects 0.000 title claims abstract description 52
- 238000002844 melting Methods 0.000 title claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 75
- 230000006698 induction Effects 0.000 claims abstract description 40
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 25
- 238000010079 rubber tapping Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims abstract description 3
- 230000005674 electromagnetic induction Effects 0.000 claims description 8
- 239000000571 coke Substances 0.000 abstract description 43
- 239000002184 metal Substances 0.000 abstract description 22
- 229910052751 metal Inorganic materials 0.000 abstract description 22
- 239000007789 gas Substances 0.000 abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 10
- 229910000805 Pig iron Inorganic materials 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000002893 slag Substances 0.000 description 6
- 239000007769 metal material Substances 0.000 description 5
- 238000009841 combustion method Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000011819 refractory material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
(57)【要約】
【課題】銑ダライのような細かい材料も使用でき、酸
素、窒素等の含有ガス量の少ない高品質の溶湯を連続的
に、しかも安定に所定の温度に調製されて得られる加熱
溶解装置を提供することにある。
【解決手段】炉床部に開閉自在の出湯口5が設けられ、
この炉床部の上部開口部を被溶解材投入口とすると共
に、その内部に例えばコークスの如き炭素材1及び鉄材
の如き被溶解材2が順次充てんされる溶解炉本体と、炉
床部の炭素材層から被溶解材層の所定高さに至る加熱必
要領域に相当する溶解炉本体の外周部領域に設けられた
電磁コイル3と、電磁コイル3に高周波電力の如き電力
を給電する誘導加熱エネルギ印加手段と、この誘導加熱
エネルギを制御する手段とを備え、この制御手段が炭素
材1及び被溶解材2に与える誘導加熱量の比率を制御す
ることで、出湯温度を所定温度に制御し得るように構成
する。
(57) 【Abstract】 PROBLEM TO BE SOLVED: A fine material such as pig iron can be used, and a high quality molten metal containing a small amount of gas such as oxygen and nitrogen can be continuously and stably prepared at a predetermined temperature. The present invention is to provide a heating and melting device. SOLUTION: A hot water outlet 5 that can be opened and closed is provided in the hearth.
The upper opening of the hearth is used as the material-to-be-melted inlet, and the inside of the furnace is filled with a carbonaceous material 1 such as coke and a material-to-be-dissolved 2 such as an iron material. Electromagnetic coil 3 provided in the outer peripheral region of the melting furnace main body corresponding to the required heating region from the carbon material layer to the predetermined height of the material layer, and induction heating for supplying electric power such as high frequency power to electromagnetic coil 3. An energy applying unit and a unit for controlling this induction heating energy are provided, and the control unit controls the ratio of the amount of induction heating given to the carbon material 1 and the material to be melted 2, thereby controlling the tapping temperature to a predetermined temperature. Configure to get.
Description
【0001】[0001]
【産業上の利用分野】本発明は金属材料等の加熱溶解方
法に係わり、特に還元性に優れ、かつ出湯温度を所定温
度に制御できる連続溶解に好適な加熱溶解装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating and melting method for metal materials and the like, and more particularly to a heating and melting apparatus suitable for continuous melting which is excellent in reducibility and can control the tapping temperature to a predetermined temperature.
【0002】[0002]
【従来の技術】鋳鉄の溶解装置としてはキュポラ及びる
つぼ型誘導炉が良く知られており広く利用されている。
キュポラは精練された良質の溶湯が連続的に得られる連
続溶解炉であり、誘導炉は細かい材料も使用できる成分
調節が容易な間欠溶解炉である。それぞれ一長一短があ
り、現在ではこれらを併用した二重溶解装置も広く用い
られている。なお、この種の技術に関連するものとして
は、例えば特公昭52−48564号公報が挙げられる。2. Description of the Related Art Cupola and crucible type induction furnaces are well known and widely used as cast iron melting devices.
The cupola is a continuous melting furnace that can continuously obtain a refined and high-quality molten metal, and the induction furnace is an intermittent melting furnace that can use fine materials and whose components can be easily adjusted. Each of them has advantages and disadvantages, and at present, a double dissolution apparatus using them together is widely used. Note that, for example, Japanese Patent Publication No. 52-48564 can be cited as one related to this type of technology.
【0003】[0003]
【発明が解決しようとする課題】キュポラはコークスを
高温燃焼させるために大量の空気を吹き込む必要があ
り、したがって炉内のガス流速が大きく、例えば、銑ダ
ライのような細かい材料は酸化されたり溶融する前にガ
スの流れによって溶解装置外に排出されるため溶解困難
である。また、材料を加熱溶融する熱源はコークスの燃
焼によるため高温にするには不完全燃焼が伴い特に1,50
0℃以上の出湯温度を得るためには効率が下がり温度制
御も困難である。The cupola requires a large amount of air to be blown in order to burn the coke at a high temperature. Therefore, the gas flow velocity in the furnace is high, and for example, fine materials such as pig dalai are oxidized or melted. It is difficult to dissolve because it is discharged to the outside of the melting apparatus by the flow of gas before the melting. In addition, the heat source that heats and melts the material is the combustion of coke, so incomplete combustion is necessary to reach a high temperature, especially 1,50
In order to obtain the tapping temperature of 0 ° C or higher, the efficiency is lowered and it is difficult to control the temperature.
【0004】一方、誘導炉は単なる材料の誘導加熱のみ
で溶解を行うため精練効果は望めない。また、基本的に
間欠溶解法であり連続的な鋳造装置に溶湯を供給するに
は不便であるという問題点がある。On the other hand, in the induction furnace, the scouring effect cannot be expected because melting is performed only by induction heating of the material. Further, there is a problem that it is basically an intermittent melting method and it is inconvenient to supply the molten metal to a continuous casting apparatus.
【0005】また、従来の技術に挙げた特公52−48564
号公報ではキュポラの上部に誘導コイルを設置して材料
を加熱しようとしているが、コークス層の加熱は考慮さ
れておらず従って大量の空気を吹き込む為の不利、高温
を効率良く得るための方策は改善されていない。Further, Japanese Patent Publication No. 52-48564 mentioned in the prior art.
In the publication, an induction coil is installed on the upper part of the cupola to heat the material, but the heating of the coke layer is not taken into consideration. Therefore, a disadvantage for blowing a large amount of air, and a method for efficiently obtaining high temperature are Not improved.
【0006】つまり、誘導炉と燃焼炉を併用した上記従
来の溶解装置は、低温部加熱に電磁誘導加熱を、そして
高温部加熱にコークスによる燃焼加熱を行う連続精錬技
術に関する提案であるが、以下に述べるような問題点が
あり、実用レベルに達していない。That is, the above-mentioned conventional melting apparatus using both an induction furnace and a combustion furnace is a proposal for a continuous refining technique in which electromagnetic induction heating is used for low temperature heating and coke combustion heating is used for high temperature heating. However, it has not reached the practical level.
【0007】すなわち、この種の従来技術においては、
被溶解材料が投入された低温部加熱において誘導加熱が
用いられているが、流動する被溶解材である金属材料の
みを誘導加熱するいわば予備加熱であり、電力での予備
加熱は経済的に高価であり実用的でない。また、高温部
加熱はコークスによる燃焼方式であるため、コークスの
不完全燃焼によるCOの生成に伴う効率の低下、大量の
排ガス発生に伴う装置の大型化と公害防止対策の必要
性、細かい被溶解材料がガス流で飛散し溶解困難となる
点、さらには燃焼に伴い、ガス中の酸素による金属の酸
化が起り、十分な還元が進行せず、酸化物がスラグとな
るという問題があった。That is, in this type of conventional technique,
Induction heating is used in the low temperature heating where the material to be melted is input, but it is so-called preheating that heats only the metal material that is the material to be melted that is flowing, and preheating with electric power is economically expensive. It is not practical. In addition, since the high temperature heating is a combustion method using coke, the efficiency is reduced due to the generation of CO due to incomplete combustion of coke, the size of the equipment is increased due to the generation of a large amount of exhaust gas, and pollution prevention measures are required. There is a problem that the material is scattered in a gas flow and becomes difficult to dissolve, and further, with combustion, oxidation of the metal by oxygen in the gas occurs, sufficient reduction does not proceed, and the oxide becomes slag.
【0008】したがって、本発明の目的は、上記従来の
問題点を解消することにあり、その目的は銑ダライのよ
うな細かい材料も使用でき、酸素、窒素等の含有ガス量
の少ない高品質の溶湯を連続的に、しかも安定に温度調
製されて得られる改良された電磁誘導加熱方法を実現す
るための加熱溶解装置を提供することにある。Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art. The object is to use a fine material such as pig iron and to provide a high quality product containing a small amount of gas such as oxygen and nitrogen. It is an object of the present invention to provide a heating and melting apparatus for realizing an improved electromagnetic induction heating method obtained by continuously and stably adjusting the temperature of a molten metal.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
の本発明の加熱溶解装置は、炉床部に開閉自在の出湯
口が設けられ、この炉床部の対向上部開口部を被溶解材
投入口とすると共に、その内部に炭素材及び被溶解材を
順次充てん収納する溶解炉本体と、前記炉床部の炭素
材層から被溶解材層の所定高さに至る加熱必要領域に相
当する前記溶解炉本体外周部領域に設けられた電磁コイ
ルと、前記電磁コイルに給電する誘導加熱エネルギ印
加手段と、前記誘導加熱エネルギを制御する手段とを
備え、この制御手段の誘導加熱によって前記炭素材及び
被溶解材が発熱する熱量の比率を制御することにより、
出湯温度を所定温度に制御し得るように構成することを
特徴としている。In order to achieve the above object, a heating and melting apparatus of the present invention is provided with a tap hole that can be opened and closed in a hearth part, and a facing upper opening part of the hearth part is a material to be melted. It corresponds to a melting furnace main body that sequentially fills and stores a carbon material and a material to be melted inside the charging port, and a heating required area from the carbon material layer to the predetermined height of the material to be melted in the hearth. The carbon material is provided with an electromagnetic coil provided in the outer peripheral region of the melting furnace main body, induction heating energy applying means for supplying power to the electromagnetic coil, and means for controlling the induction heating energy. And by controlling the ratio of the amount of heat generated by the material to be melted,
It is characterized in that the tapping temperature can be controlled to a predetermined temperature.
【0010】さらに具体的には、上記誘導加熱エネルギ
印加手段による電磁誘導加熱によって炭素材が発熱する
熱量と被溶解材が発熱する熱量との比率を、誘導加熱エ
ネルギを制御する手段により制御するにあたり、電源で
出力、電流および電圧の内のいずれか1つを制御し、前
記被溶解材の投入量で電磁誘導コイルのインピーダンス
を変化させて、残り2つの内の1つを制御し、それによ
って出湯温度を所定温度に制御するように構成すること
を特徴としている。More specifically, the ratio of the amount of heat generated by the carbon material to the amount of heat generated by the material to be melted by the electromagnetic induction heating by the induction heating energy applying means is controlled by the means for controlling the induction heating energy. , Controlling any one of output, current and voltage with a power source, changing the impedance of the electromagnetic induction coil by the input amount of the material to be melted, and controlling one of the other two, thereby It is characterized in that the tapping temperature is controlled to a predetermined temperature.
【0011】すなわち、電源側で出力、電流、電圧の内
のいずれか1つを一定に制御し、前記炭素材と被溶解材
の投入量で電磁誘導コイルのインピーダンスを変化させ
て残り2つの内の1つを一定に制御することにより、炉
内の炭素材の量と被溶解材料の量の比率を一定に保ち、
前記炭素材と被溶解材が吸収する電力の量と比率を一定
に制御して、炉床の出湯口からの出湯温度を所定温度に
制御し得るように構成することであり、さらに好ましく
は電源で出力を一定に制御し、前記被溶解材の投入量に
基づいて電流もしくは電圧の内のいずれか1つを制御
し、それによって出湯温度を所定温度に制御するように
構成することである。That is, one of output, current and voltage is controlled to be constant on the power supply side, and the impedance of the electromagnetic induction coil is changed by the amount of the carbon material and the material to be melted, and the remaining two are By controlling one of the constants, the ratio of the amount of carbon material and the amount of material to be melted in the furnace is kept constant,
The amount and ratio of the electric power absorbed by the carbon material and the material to be melted are controlled to be constant, and the temperature of the hot water discharged from the hot water outlet of the hearth can be controlled to a predetermined temperature. The output power is controlled to be constant, and either the current or the voltage is controlled based on the amount of the material to be melted, so that the tapping temperature is controlled to a predetermined temperature.
【0012】また、本発明装置においては、上記溶解炉
本体の電磁コイル領域外の被溶解材投入口に至る炉内所
定領域に、被溶解材を予熱する加熱手段を設け、投入さ
れた被溶解材が加熱手段を通過する過程で予熱され電磁
誘導加熱領域に移動するように構成することもできる。Further, in the apparatus of the present invention, heating means for preheating the material to be melted is provided in a predetermined region in the furnace up to the material to be melted introduction port outside the electromagnetic coil area of the melting furnace main body, and the charged material to be melted is introduced. It is also possible to preheat the material as it passes through the heating means and move it to the electromagnetic induction heating region.
【0013】上記誘導加熱エネルギを制御する手段は、
電磁コイルのインピーダンス変動分に応じて被溶解材の
投入量を制御し、出湯温度を制御するように構成するこ
とであり、電磁コイルに給電する誘導加熱エネルギ印加
手段は、高周波エネルギを給電する手段で構成すること
が好ましい。したがってこの場合の誘導加熱エネルギを
制御する手段は、高周波エネルギ制御手段で構成し、被
溶解材の投入状況により変動する電磁コイルのインピー
ダンス変動分を電圧変動でその出力を保障安定化するよ
うに構成することである。The means for controlling the induction heating energy is
The induction heating energy applying means for supplying power to the electromagnetic coil is a means for supplying high-frequency energy, in which the amount of the material to be melted is controlled according to the impedance variation of the electromagnetic coil to control the tapping temperature. It is preferable that Therefore, the means for controlling the induction heating energy in this case is composed of high-frequency energy control means, and the impedance variation of the electromagnetic coil, which fluctuates depending on the feeding condition of the material to be melted, is configured to guarantee and stabilize its output by voltage fluctuation. It is to be.
【0014】実用的に好ましい本発明の代表的な加熱溶
解装置例を示すと、上記炭素材を例えば固有抵抗3,000
〜30,000μΩcmのコークスとし、上記電磁コイルに給
電する高周波エネルギを周波数500〜5,000Hz、出力100
〜10,000kWとすると共に、上記高周波エネルギ制御手
段を、被溶解材の投入状況により変動する電磁コイルの
インピーダンス変動分を電圧変動でその出力を保障安定
化する制御手段で構成することであり、被溶解材として
例えば鉄材を使用すれば、出湯温度が常時1,400〜1,600
℃に調製された溶融鋳鉄を容易に得ることのできる連続
加熱溶解装置が実現できる。A typical heating / melting apparatus of the present invention, which is practically preferable, has the above carbon material, for example, a specific resistance of 3,000.
~ 30,000μΩcm coke, high frequency energy to feed the above electromagnetic coil frequency 500 ~ 5,000Hz, output 100
Is about 10,000 kW, and the high-frequency energy control means is composed of control means for stabilizing and stabilizing the output of the impedance variation of the electromagnetic coil, which varies depending on the state of introduction of the material to be melted, by voltage variation. If, for example, iron material is used as the melting material, the tap water temperature is 1,400 to 1,600 at all times.
A continuous heating and melting apparatus capable of easily obtaining molten cast iron prepared at ℃ can be realized.
【0015】[0015]
【作用】炭素材は金属に比較して電気抵抗が大きいが、
例えば約5,000μΩcmの固有抵抗を有するコークスは
高周波誘導加熱にて充分加熱できることから、金属を溶
解するための誘導加熱量の一部を炉底部に充填されたコ
ークスに与えることにより、空気が全く存在しない雰囲
気で、従って燃焼を利用しないで、このコークスを加熱
媒体として金属溶解に必要な温度にまで加熱することが
できる。[Function] Carbon materials have a higher electric resistance than metals,
For example, since coke having a specific resistance of about 5,000 μΩcm can be sufficiently heated by high frequency induction heating, by giving a part of the induction heating amount for melting the metal to the coke filled in the bottom of the furnace, air does not exist at all. This coke can be heated to the temperature required for metal melting as a heating medium in a non-atmosphere and thus without utilizing combustion.
【0016】この方法は、燃焼法と異なり酸素・窒素の
殆ど存在しない高温の雰囲気を作ることができると共
に、コークスに与える加熱量の比率を変えることにより
温度を容易に制御することが出来る。具体的には炉内の
誘導加熱領域内のコークスの量と金属の量との比率を一
定に保つことにより、このコークスと金属が吸収する電
力の比率を一定にして溶解速度に関係なく一定の温度の
雰囲気を得ることが出来る。Unlike the combustion method, this method can create a high-temperature atmosphere in which oxygen and nitrogen hardly exist, and the temperature can be easily controlled by changing the ratio of the amount of heat given to the coke. Specifically, by keeping the ratio of the amount of coke and the amount of metal in the induction heating region in the furnace constant, the ratio of the electric power absorbed by the coke and the metal is kept constant and is kept constant regardless of the melting rate. An atmosphere of temperature can be obtained.
【0017】つまり、前述のとおりコークスのごとき炭
素材に誘導加熱量の例えば20〜50%を与え、残りの50〜
80%を被溶解材に与えることにより、この雰囲気中に溶
融した金属をコークス表面に滴下接触させて加熱・精練
を行うことができ、銑ダライのような酸化し易い材料を
使用しても殆どスラグを発生させることなく一定温度で
溶解することが出来る。That is, as described above, a carbon material such as coke is supplied with, for example, 20 to 50% of the amount of induction heating, and the remaining 50 to 50%.
By applying 80% to the material to be melted, the metal melted in this atmosphere can be brought into contact with the surface of the coke in a dropping manner for heating and refining, and even if a material that easily oxidizes, such as pig iron, is used, It can be melted at a constant temperature without generating slag.
【0018】なお、炭素材は、いずれのものでも使用で
きるが、固定抵抗3,000μΩcm以下のコークスは価格
が高く経済的に見合わないばかりか、黒鉛化が進んでい
るため溶解した金属(例えば鋳鉄)中の炭素が多くなり
過ぎ、また10,000μΩcm以上のコークスは加熱するの
が困難なため固有抵抗は3,000〜10,000μΩcmのもの
を使用するのが望ましい。Any carbon material can be used, but coke having a fixed resistance of 3,000 μΩcm or less is expensive and economically unfit, and since it is being graphitized, molten metal (for example, cast iron) is used. The carbon content in () is too large, and it is difficult to heat coke having a size of 10,000 μΩcm or more. Therefore, it is desirable to use one having a specific resistance of 3,000 to 10,000 μΩcm.
【0019】また、本炉は連続溶解装置であるため材料
の予熱が連続的に効率良く行えることも特長である。な
お、予熱による加熱量を含めた全加熱量に対し、炭素材
部分への誘導加熱量の割合を20%以下にすると溶融後の
加熱量が減少するため出湯温度が1,400℃以下と低くな
り過ぎ、逆に50%以上にすると溶融後の加熱量が増加し
て1,600℃以上と過熱を引き起こす。このため出湯温度
を1,400℃〜1,600℃に設定したい場合には、炭素材部分
への誘導加熱量の割合を上述のごとく20〜50%とすれば
よい。Further, since this furnace is a continuous melting apparatus, it is also an advantage that the material can be preheated continuously and efficiently. If the ratio of the induction heating amount to the carbon material part is 20% or less of the total heating amount including the heating amount by preheating, the heating amount after melting will decrease and the tapping temperature will be too low at 1,400 ° C or less. On the contrary, if it is 50% or more, the heating amount after melting increases and causes overheating to 1,600 ° C or more. Therefore, when it is desired to set the tapping temperature to 1,400 ° C to 1,600 ° C, the ratio of the amount of induction heating to the carbon material portion may be set to 20 to 50% as described above.
【0020】さらに電源出力100kW以下、周波数5,000
Hz以上では装置が小さくなり過ぎ、出力10,000kW以
上、周波数500Hz以下では装置が大きくなり過ぎる傾向
にあり、一般に鋳鉄の溶解に使用する金属材料を加熱す
るには適さなくなる。したがって、鋳鉄溶解の場合は、
電源出力100〜10,000kW、周波数500〜5,000Hzの範囲
で行うのが望ましい。Further, power output 100 kW or less, frequency 5,000
The apparatus tends to be too small at Hz or higher, and tends to become too large at an output of 10,000 kW or higher and a frequency of 500 Hz or lower, which is generally not suitable for heating a metal material used for melting cast iron. Therefore, in the case of cast iron melting,
It is desirable that the power output is 100 to 10,000 kW and the frequency is 500 to 5,000 Hz.
【0021】また、作業開始時には一般の炉と同様に炉
体が充分加熱されていないため出湯温度が低くなる傾向
にあるがこの場合には出湯口を一時的に閉鎖し、予め銑
ダライの如き金属材を投入し、炉内に溶融金属を溜め、
この金属を誘導加熱することにより、温度を上げること
が出来る。At the start of the work, the hot water temperature tends to be low because the furnace body is not sufficiently heated, as in a general furnace. Charge the metal material, store the molten metal in the furnace,
The temperature can be raised by induction heating this metal.
【0022】なお、誘導加熱において、高周波エネルギ
印加手段(電源)と誘導加熱用電磁コイルとの間に高周
波エネルギ制御手段を接続することは、出力変動を安定
化する上で有効である。つまり、炉内に被溶解材を投入
すると、その材質及び投入状態によりコイルのインピー
ダンスが変動するが、この変動分を、この制御手段の電
圧または電流変動で安定に補障し、出力等を一定にする
ものである。実際の装置においては、高周波電源側にこ
の制御手段が組込まれる。In the induction heating, connecting the high frequency energy control means between the high frequency energy applying means (power source) and the induction heating electromagnetic coil is effective in stabilizing the output fluctuation. In other words, when the material to be melted is put in the furnace, the impedance of the coil changes depending on the material and the state of the input, but this fluctuation is stably prevented by the voltage or current fluctuation of the control means, and the output etc. is kept constant. It is something to do. In an actual device, this control means is incorporated on the high frequency power supply side.
【0023】[0023]
【実施例】以下、本発明による実施例を図1および図2
により説明する。図1は本発明の加熱溶解装置の全体構
成を、図2は誘導加熱部の断面構造をそれぞれ模式的に
示しており、図2において1は炉底部(本文では炉床と
も称した)に充填された固有抵抗5,000μΩcmのコー
クス、2はリターンスクラップ4部、銑ダライ3部、電
磁鋼板プレス屑3部その他珪化鉄等少量の添加材を含ん
だ混合物である被溶解材料、3は電磁コイル、4は炉体
を形成する内径400mm、高さ700mmの耐火材、5は出
湯口、図1において6は溶解材料を炉に供給する材料供
給装置、7は連続的に出湯された溶湯を受ける容量150
kgの前炉、8は一般のガス、液体燃料を使用したバー
ナによる材料予熱装置、9は周波数3,000Hz、出力175k
Wの電源である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described below with reference to FIGS.
This will be described below. FIG. 1 schematically shows the overall configuration of the heating and melting apparatus of the present invention, and FIG. 2 schematically shows the cross-sectional structure of the induction heating unit. In FIG. 2, 1 is the bottom of the furnace (also called the hearth in the text). Coke with a specific resistance of 5,000 μΩcm, 2 is 4 parts of return scrap, 3 parts of pig iron, 3 parts of electromagnetic steel plate press scraps, 3 parts of other materials to be melted such as iron silicide, and 3 is an electromagnetic coil, Reference numeral 4 is a refractory material having an inner diameter of 400 mm and a height of 700 mm, which forms a furnace body, 5 is a tap hole, 6 in FIG. 1 is a material supply device for supplying molten material to the furnace, and 7 is a capacity for continuously receiving molten metal. 150
kg pre-furnace, 8 material preheater by burner using general gas and liquid fuel, 9 frequency 3,000Hz, output 175k
W power source.
【0024】なお、被溶解材料2の銑ダライと電磁鋼板
プレス屑等の細かい材料の使用比率は全溶解材料に対
し、0から70%が使用可能であるが誘導加熱、炉内雰囲
気の遮断の為には20〜60%の使用が好ましい。It should be noted that the use ratio of the fine material such as the pig iron slag of the material to be melted 2 and the electromagnetic steel sheet press scraps can be 0 to 70% with respect to the total melted material, but the induction heating and the atmosphere in the furnace are shut off. Therefore, it is preferable to use 20 to 60%.
【0025】溶解作業を開始するに当たって、先ず前回
の作業後炉内に残留しているコークス層の厚さを炉底部
から約250mmに調節する。250mmに満たない場合は新
しいコークスを補給する。このコークス層の厚さは加熱
量の比率を変え、出湯温度を制御するために必要であ
る。この時のコークスは総重量約30kg、個数約100
個、1個の最大重量は2kgであった。コークスの投入
が終了した後、電源9から電磁コイル3に電力を供給す
る。When starting the melting operation, first, the thickness of the coke layer remaining in the furnace after the previous operation is adjusted to about 250 mm from the bottom of the furnace. If it is less than 250 mm, replenish with fresh coke. The thickness of this coke layer is necessary to change the heating rate and control the tapping temperature. The total weight of coke at this time is about 30 kg, and the number of coke is about 100.
The maximum weight of each piece was 2 kg. After the charging of the coke is completed, the power supply 9 supplies power to the electromagnetic coil 3.
【0026】なお、図2において10は、高周波エネルギ
制御手段であり、炉内に投入した被溶解材料2の溶解に
よる変動分によって生じる電磁コイルのインピーダンス
変動分を電圧変動で補障するものである。Reference numeral 10 in FIG. 2 is a high frequency energy control means for compensating the impedance fluctuation of the electromagnetic coil caused by the fluctuation caused by the melting of the material 2 to be melted in the furnace with the voltage fluctuation. .
【0027】コークス層上部のサイズの大きいコークス
は効率よく電力を吸収して発熱するが下部のサイズの小
さいコークスは発熱し難いため、出湯口5から炉内のガ
スを吸引し、この高温のガスでコークス層下部を加熱す
ることが効果的である。この時の電圧は1,120V、入力
は82kWであった。コークス層上部が約1,600℃になった
時、出湯口5を塞ぎ金属材料として20kgの銑ダライを
投入溶解し、炉底部に貯めて更に加熱する。この作業に
より炉内は急速に加熱され作業開始時から高温の溶湯が
得られる。この時の電圧は1,130V、入力は136kWであ
った。Coke with a large size in the upper part of the coke layer efficiently absorbs electric power to generate heat, but coke with a small size in the lower part does not easily generate heat. Therefore, the gas in the furnace is sucked from the tap hole 5 and the hot gas is discharged. It is effective to heat the lower part of the coke layer. At this time, the voltage was 1,120 V and the input was 82 kW. When the temperature of the upper part of the coke layer reaches about 1,600 ° C., the tap hole 5 is closed, 20 kg of pig dalaai as a metal material is charged and melted, and stored in the bottom of the furnace for further heating. By this operation, the inside of the furnace is rapidly heated, and a high temperature molten metal is obtained from the start of the operation. At this time, the voltage was 1,130 V and the input was 136 kW.
【0028】溶融した銑ダライが1,500℃以上になった
時点で出湯口5を開き溶湯を前炉7に入れると同時に材
料供給装置6により被溶解材料2の投入を開始する。When the temperature of the molten pig iron rises above 1,500 ° C., the tap hole 5 is opened and the molten metal is introduced into the forehearth 7 and, at the same time, the material supply device 6 starts the introduction of the material 2 to be melted.
【0029】材料が投入されるとコークス層の上部は材
料で閉鎖され、外部と通じているのは出湯口のみとな
る。出湯口5も出湯が開始されると溶湯にて閉鎖状態に
なるので、炉内への空気の流通は実質的に遮断される。When the material is added, the upper part of the coke layer is closed with the material, and only the tap hole is connected to the outside. Since the tap hole 5 is also closed by the molten metal when tapping is started, the flow of air into the furnace is substantially cut off.
【0030】投入された被溶解材料2は、特に塊状のリ
ターンスクラップが電磁コイル3によって誘導加熱され
温度上昇しながら下降し、最下層に到達すると下部のコ
ークス1からも熱の供給を受けて溶融する。The melted material 2 is melted by receiving heat from the coke 1 at the bottom when the lumpy return scrap is induction-heated by the electromagnetic coil 3 and descends while the temperature rises and reaches the bottom layer. To do.
【0031】溶融して液滴状となった溶解材料2はコー
クス1の間を縫って滴下するうちに更に加熱され、また
高温のコークス1と酸素が殆ど存在しない還元性雰囲気
とにより精練を受けた後出湯口5より出湯される。The melted material 2 in the form of droplets by being melted is further heated while the space between the coke 1 is sewn and dropped, and is further refined by the high temperature coke 1 and the reducing atmosphere in which oxygen is almost absent. After that, it is tapped from the tap opening 5.
【0032】なお、電源9からの出力は高周波エネルギ
制御手段10で一定に制御されているので、炉中の溶解
材料2が減少しコイル3のインピーダンスが大きくなり
電圧が1,000Vを越えると材料供給装置により材料が炉
内に供給され、溶解材料が増加しコイルのインピーダン
スが低下して電圧が1,000Vより低下すると材料供給装
置は停止し、作業中の出力、電圧はそれぞれ約173kW、
1,000Vに制御され、この状態で連続溶解が維持され
る。この定状状態における出湯温度は約1,450℃であっ
た。Since the output from the power source 9 is constantly controlled by the high-frequency energy control means 10, when the melted material 2 in the furnace is decreased and the impedance of the coil 3 is increased and the voltage exceeds 1,000 V, the material is supplied. When the material is supplied into the furnace by the equipment, the molten material increases and the impedance of the coil decreases and the voltage drops below 1,000 V, the material supply equipment stops and the output and voltage during work are about 173 kW, respectively.
It is controlled to 1,000 V, and continuous dissolution is maintained in this state. The tapping temperature in this normal state was about 1,450 ° C.
【0033】また、1tonの被溶解材料を溶解するに必
要な時間は3.27時間、電力量は入力で566kWh、コーク
ス補給量は11kg、スラグの発生量は測定出来なかった
が極く微量であり、また耐火材の損傷も非常に少なかっ
た。この実施例の場合はバーナ(材料予熱装置8)を使
用しなかったが、バーナを使用するとその加熱量に応じ
て電力を節約し、また出湯速度を増加させることが出来
る。しかも一般のるつぼ炉における電力の節約量が20%
以下であるのに対し、本炉では連続的に加熱できるため
30%まで可能であった(重油バーナを用いた場合)。Further, the time required to dissolve 1 ton of the material to be melted is 3.27 hours, the amount of electric power is 566 kWh at the input, the amount of coke supply is 11 kg, and the amount of slag generated cannot be measured, but it is extremely small. The damage to the refractory material was also very small. In the case of this embodiment, the burner (material preheating device 8) was not used, but if a burner is used, electric power can be saved and the tapping speed can be increased according to the heating amount. Moreover, the amount of electricity saved in a general crucible furnace is 20%.
In contrast to the following, since this furnace can continuously heat
Up to 30% was possible (with heavy oil burner).
【0034】表1に炉床に積層したコークス層の厚さを
変化させた場合の、コークス層のみを加熱した時の入力
とその状態で溶解した時の出湯温度の関係を示す。Table 1 shows the relationship between the input when the coke layer is heated and the tapping temperature when the coke layer is melted in that state when the thickness of the coke layer laminated on the hearth is changed.
【0035】なお、何れの場合も無負荷入力は32kW、
出湯中の入力は173kWであった。この様にコークス層の
厚さを変化させるだけで出湯温度が制御出来ることによ
り、溶解が進行し炉内材料のレベルが低下するに応じて
被溶解材料を投入するだけで一定温度の連続溶解が維持
できる。In any case, the no-load input is 32 kW,
The input during tapping was 173 kW. In this way, the tapping temperature can be controlled simply by changing the thickness of the coke layer, so that as the melting progresses and the level of the material in the furnace lowers, continuous melting at a constant temperature can be achieved simply by adding the material to be melted. Can be maintained.
【0036】[0036]
【表1】 [Table 1]
【0037】また、表2に一般的なキュポラ溶解および
るつぼ型誘導炉溶解と、本発明による溶解で得られた鋳
鉄のチル深さと含有ガス量の分析結果を示す。なお、こ
のときの被溶解材料2の配合は鋼屑30%、出湯成分は炭
素3.3%、珪素2.0%とほぼ同一条件にして測定した。周
知のとおり鋳鉄の品質は、チル深さが浅いものほど、ま
た、含有ガス量が少ないものほど優れており、この表2
から本発明が他の溶解炉に比較していかに優れているか
明らかであろう。Table 2 shows the analysis results of the chill depth and the gas content of the cast iron obtained by the general cupola melting and crucible type induction furnace melting, and the melting according to the present invention. At this time, the content of the material to be melted 2 was 30% as steel scrap, and the molten metal content was 3.3% carbon and 2.0% silicon. As is well known, the quality of cast iron is better as the chill depth is shallower and the gas content is smaller.
It will be clear from the above how the present invention is superior to other melting furnaces.
【0038】[0038]
【表2】 [Table 2]
【0039】以上の説明ではコークスを用いて鋳鉄を溶
解する場合について述べたが、本発明はコークスの代わ
りに誘電性のある耐火物等を用いること、銅合金等の他
の金属類及び鉱石類(導電性を有するものが望ましい)
を溶解することが可能である。なお、亜鉛等の蒸発し易
い不純物を更に減らしたい場合は炉内に通気口を設け、
不活性ガスもしくは還元性ガスを吹き込み、積極的に不
純物の蒸発を促すことも可能である。In the above description, the case where the cast iron is melted by using the coke has been described, but in the present invention, a refractory material having a dielectric property is used instead of the coke, other metals such as copper alloys and ores. (It is desirable to have conductivity)
It is possible to dissolve If you want to further reduce easily evaporating impurities such as zinc, provide a vent in the furnace,
It is also possible to blow an inert gas or a reducing gas to positively promote the evaporation of impurities.
【0040】かかる実施例から明らかなように、本発明
においては出湯の温度制御が出来、ガス流動の少ない強
還元性の雰囲気で溶解・加熱されるため粉末状材料を使
用しても従来の酸化にもとづくスラグの発生が殆ど認め
られず、酸素・窒素などのガス含有量の少ない良質の金
属が得られる。As is apparent from the above examples, in the present invention, the temperature of the tapping water can be controlled, and since it is melted and heated in a strongly reducing atmosphere with little gas flow, even if a powdery material is used, conventional oxidation is performed. Almost no generation of slag based on this is observed, and a good quality metal with a low gas content of oxygen, nitrogen, etc. can be obtained.
【0041】以上のとおり、本発明の炭素材は誘導加熱
による発熱体(加熱媒体)として、また精錬における還
元剤として作用する。したがって、従来の燃焼方式によ
る加熱溶解法と異なり、炭素材自身が燃焼ガスにさらさ
れることがないためその消耗量が著しく少ない。As described above, the carbon material of the present invention acts as a heating element (heating medium) by induction heating and as a reducing agent in refining. Therefore, unlike the conventional heating and melting method by the combustion method, the carbon material itself is not exposed to the combustion gas, so that the consumption amount thereof is extremely small.
【0042】また、コークス等の炭素材の加熱に燃焼法
を用いないため、実質的に炉内の空気の流通を遮断した
状態で誘導加熱され、好ましい状態の還元雰囲気が実現
される。結果として酸素、窒素等のガス量が少ないた
め、ガス含有量の少ない上質の溶解生成物の製造を可能
とし、特別の排ガス処理設備をも要せず、公害防止対策
上も好ましい。Further, since the combustion method is not used for heating the carbon material such as coke, induction heating is carried out in a state where the flow of air in the furnace is substantially cut off, and a reducing atmosphere in a preferable state is realized. As a result, since the amount of gas such as oxygen and nitrogen is small, it is possible to produce a high-quality dissolved product having a small gas content, no special exhaust gas treatment equipment is required, and preferable in terms of pollution prevention measures.
【0043】[0043]
【発明の効果】以上詳述したように本発明により所期の
目的を達成することができた。すなわち、本発明の加熱
溶解装置は銑ダライのような微細な材料をも効率よく溶
解することができると共に、酸化物も加熱された炭素材
と強還元性の雰囲気の精錬作用により還元することがで
き、スラグを殆ど発生させることなくガス含有量の少な
い良質の金属を連続的にしかも工業的に得ることができ
るという効果を奏する。As described above in detail, according to the present invention, the intended purpose can be achieved. That is, the heating and melting apparatus of the present invention can efficiently dissolve even fine materials such as pig iron, and the oxides can be reduced by the refining action of the heated carbon material and the strongly reducing atmosphere. Therefore, there is an effect that a high-quality metal having a small gas content can be continuously and industrially obtained with almost no generation of slag.
【図1】本発明の一実施例となる全体構成の要部を示す
斜視図。FIG. 1 is a perspective view showing a main part of the overall configuration according to an embodiment of the present invention.
【図2】同じく炉の誘導加熱部の詳細を示す縦断面図。FIG. 2 is a vertical sectional view showing details of an induction heating unit of the furnace.
1…コークス 2…溶解材料 3…電磁コイル 4…耐火材 5…出湯口 6…材料供給装置 7…前炉 8…材料予熱装置 8′…バーナ 9…電源 10…制御部。 DESCRIPTION OF SYMBOLS 1 ... Coke 2 ... Melting material 3 ... Electromagnetic coil 4 ... Refractory material 5 ... Exit gate 6 ... Material supply device 7 ... Front furnace 8 ... Material preheating device 8 '... Burner 9 ... Power supply 10 ... Control part.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 幸吉 大阪府富田林市高辺台1丁目10番6号 (72)発明者 炭本 治喜 京都府相楽郡加茂町大字例幣小字板谷垣内 25番地 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kokichi Nakamura 1-10-6 Takabedai, Tomitabayashi-shi, Osaka Prefecture (72) Inventor Haruki Sumimoto, Kamo-cho, Soraku-gun, Kyoto Pref.
Claims (7)
この炉床部の対向上部開口部を被溶解材投入口とすると
共に、その内部に炭素材及び被溶解材を順次充てん収納
する溶解炉本体と、前記炉床部の炭素材層から被溶解
材層の所定高さに至る加熱必要領域に相当する前記溶解
炉本体外周部領域に設けられた電磁コイルと、前記電
磁コイルに給電する誘導加熱エネルギ印加手段と、前
記誘導加熱エネルギを制御する手段とを備え、この制御
手段の誘導加熱によって前記炭素材及び被溶解材が発熱
する熱量の比率を制御することにより、出湯温度を所定
温度に制御し得るように構成して成る加熱溶解装置。1. A hot water outlet that can be opened and closed is provided in the hearth.
A melting furnace main body that sequentially stores and stores a carbon material and a material to be melted therein while using the facing upper opening of the hearth as a material to be melted inlet, and a material to be melted from the carbon material layer of the hearth An electromagnetic coil provided in the outer peripheral region of the melting furnace main body corresponding to a required heating region up to a predetermined height of the layer, induction heating energy applying means for supplying power to the electromagnetic coil, and means for controlling the induction heating energy. A heating and melting apparatus comprising: a control means for controlling the ratio of the amount of heat generated by the carbon material and the material to be melted by induction heating to control the tapping temperature to a predetermined temperature.
誘導加熱によって炭素材が発熱する熱量と被溶解材が発
熱する熱量との比率を制御するにあたり、電源で出力、
電流および電圧の内のいずれか1つを制御し、前記被溶
解材の投入量で残り2つの内の1つを制御し、それによ
って出湯温度を所定温度に制御するように構成して成る
請求項1記載の加熱溶解装置。2. When controlling the ratio of the amount of heat generated by the carbon material and the amount of heat generated by the material to be melted by the electromagnetic induction heating by the induction heating energy applying means, output by a power source,
A configuration in which any one of current and voltage is controlled, and one of the remaining two is controlled by the input amount of the material to be melted, thereby controlling the tapping temperature to a predetermined temperature. Item 2. A heating and melting apparatus according to Item 1.
誘導加熱によって炭素材が発熱する熱量と、被溶解材が
発熱する熱量との比率を制御するにあたり、電源で出力
を一定に制御し、前記被溶解材の投入量に基づいて電流
もしくは電圧の内のいずれか1つを制御し、それによっ
て出湯温度を所定温度に制御するように構成して成る請
求項1記載の加熱溶解装置。3. In controlling the ratio of the amount of heat generated by the carbon material to the amount of heat generated by the material to be melted by electromagnetic induction heating by the induction heating energy applying means, the output is controlled to be constant by a power source, The heating and melting apparatus according to claim 1, wherein either one of the current and the voltage is controlled based on the amount of the melted material to be supplied, and thereby the tapping temperature is controlled to a predetermined temperature.
解材投入口に至る炉内所定領域に、被溶解材を予熱する
加熱手段を設けて成る請求項1乃至3いずれか一つに記
載の3加熱溶解装置。4. The heating means for preheating the material to be melted is provided in a predetermined area in the furnace, which is located outside the electromagnetic coil area of the melting furnace body and reaches the material to be melted inlet. 3. The heating and melting apparatus described in 3.
電磁コイルのインピーダンス変動分に応じて被溶解材の
投入量を制御し、出湯温度を制御するように構成して成
る請求項1乃至4いずれか一つに記載の加熱溶解装置。5. The means for controlling the induction heating energy comprises:
The heating and melting apparatus according to any one of claims 1 to 4, wherein the amount of the material to be melted is controlled according to the impedance variation of the electromagnetic coil to control the tapping temperature.
ギ印加手段を、高周波エネルギを給電する手段で構成し
て成る請求項1乃至5いずれか一つに記載の加熱溶解装
置。6. The heating and melting apparatus according to claim 1, wherein the induction heating energy applying means for supplying power to the electromagnetic coil comprises means for supplying high frequency energy.
高周波エネルギ制御手段で構成し、被溶解材の投入状況
により変動する電磁コイルのインピーダンス変動分を電
圧変動でその出力を保障安定化するように構成して成る
請求項1乃至6いずれか一つに記載の加熱溶解装置。7. A means for controlling the induction heating energy,
7. A high-frequency energy control means, which is configured to guarantee and stabilize the output of an electromagnetic coil impedance variation that varies depending on the input state of the material to be melted by voltage variation. The heating and melting apparatus described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8039247A JPH08233468A (en) | 1996-02-27 | 1996-02-27 | Heating and melting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8039247A JPH08233468A (en) | 1996-02-27 | 1996-02-27 | Heating and melting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4539989A Division JP2914674B2 (en) | 1989-02-28 | 1989-02-28 | Heat dissolution method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08233468A true JPH08233468A (en) | 1996-09-13 |
Family
ID=12547812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8039247A Pending JPH08233468A (en) | 1996-02-27 | 1996-02-27 | Heating and melting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08233468A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112484489A (en) * | 2020-12-16 | 2021-03-12 | 浙江华铸铸业科技有限公司 | Alloy electromagnetic melting furnace with preheating component |
-
1996
- 1996-02-27 JP JP8039247A patent/JPH08233468A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112484489A (en) * | 2020-12-16 | 2021-03-12 | 浙江华铸铸业科技有限公司 | Alloy electromagnetic melting furnace with preheating component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8241391B2 (en) | Process and equipment for the treatment of loads or residues of non-ferrous metals and their alloys | |
JP5236926B2 (en) | Manufacturing method of molten steel | |
EP2210959A1 (en) | Process for producing molten iron | |
US20220389529A1 (en) | Direct current electric arc furnace | |
KR20150076168A (en) | Plasma induced fuming | |
JP2914674B2 (en) | Heat dissolution method | |
US4147887A (en) | Electric smelting furnace | |
JP3204202B2 (en) | Melting method and melting equipment for cold iron source | |
JPH08233468A (en) | Heating and melting device | |
EP1160337A1 (en) | Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF) | |
US3891427A (en) | Method for melting prereduced ore and scrap | |
JPH11344287A (en) | Operation of arc furnace | |
JP2000017319A (en) | Operation of arc furnace | |
JP3263928B2 (en) | Continuous heating melting method | |
Dutta et al. | Electric Furnace Processes | |
JP2914717B2 (en) | Continuous heating and melting equipment | |
JP2000008115A (en) | Melting of cold iron source | |
JPH05231777A (en) | Method and apparatus for heating and melting | |
JPS642652B2 (en) | ||
JP2002327211A (en) | Method for melting cold iron source | |
JPH02110287A (en) | Melting equipment | |
JPH1121607A (en) | Operation of arc furnace | |
JP3521277B2 (en) | Cold iron source melting method and melting equipment | |
JPH09165613A (en) | How to dissolve scrap | |
JPS592467Y2 (en) | Reverberatory furnace molten metal stirring device |