[go: up one dir, main page]

JPH08232061A - Forging method of high-purity titanium material - Google Patents

Forging method of high-purity titanium material

Info

Publication number
JPH08232061A
JPH08232061A JP6468095A JP6468095A JPH08232061A JP H08232061 A JPH08232061 A JP H08232061A JP 6468095 A JP6468095 A JP 6468095A JP 6468095 A JP6468095 A JP 6468095A JP H08232061 A JPH08232061 A JP H08232061A
Authority
JP
Japan
Prior art keywords
forging
upsetting
sputtering
transformation point
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6468095A
Other languages
Japanese (ja)
Other versions
JP2984778B2 (en
Inventor
Takashi Onishi
隆 大西
Yasutoku Yoshimura
泰徳 吉村
Setsuo Okamoto
節男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP7064680A priority Critical patent/JP2984778B2/en
Publication of JPH08232061A publication Critical patent/JPH08232061A/en
Application granted granted Critical
Publication of JP2984778B2 publication Critical patent/JP2984778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

(57)【要約】 【目的】 スパッタ膜厚の均一性に優れたチタンターゲ
ットを製造するための高純度チタン材の鍛造方法を提供
する。 【構成】 変態点以上の温度で鍛錬成形比が5以上とな
るように鍛伸と据え込みを組み合わせた1次鍛造加工を
行なう。その後、変態点以下の温度で鍛錬成形比が5以
上となるように鍛伸と据え込みを組み合わせた2次鍛造
加工を行なう。
(57) [Summary] [Objective] To provide a method for forging a high-purity titanium material for producing a titanium target excellent in the uniformity of the sputtered film thickness. [Structure] Primary forging is performed by combining forging and upsetting so that the wrought forming ratio becomes 5 or more at a temperature equal to or higher than the transformation point. After that, secondary forging processing is performed by combining forging and upsetting so that the wrought forming ratio becomes 5 or more at a temperature below the transformation point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スパッタリング用チタ
ンターゲットの製造に用いられる高純度チタン材の鍛造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forging a high-purity titanium material used for producing a titanium target for sputtering.

【0002】[0002]

【従来の技術】半導体ディバイスの製造においては、配
線材料やバリヤメタルを半導体素子に形成するために、
スパッタリングによる高純度チタンの薄膜形成技術が用
いられている。このスパッタリングに用いられる高純度
チタンターゲットは、通常、鋳造、鍛造、圧延、熱処理
の各プロセスを経て製造される。
2. Description of the Related Art In the manufacture of semiconductor devices, in order to form wiring materials and barrier metals on semiconductor elements,
A thin film forming technique of high-purity titanium by sputtering is used. The high-purity titanium target used for this sputtering is usually manufactured through the processes of casting, forging, rolling, and heat treatment.

【0003】ところで、このようなスパッタリング用チ
タンターゲットにおいては、スパッタ膜厚の均一化を図
るために、結晶粒の微細化が必要とされており、そのた
めに鍛造および圧延で形状を整えると共に、圧延および
熱処理での再結晶により、結晶粒径を制御するようにし
ている。
By the way, in such a titanium target for sputtering, in order to make the sputtering film thickness uniform, it is necessary to make the crystal grains fine. For this reason, the shape is adjusted by forging and rolling, and rolling is performed. Also, the crystal grain size is controlled by recrystallization by heat treatment.

【0004】ここで鍛造は、従来は鋳造材の整形を主眼
として行なわれ、スパッタリング用チタンターゲットの
製造でも専ら鋳造材の形状を圧延に適した形状に整える
ために行なわれていたが、一部では鋳造組織の破壊にも
利用されていた。例えば特開昭62−286639号公
報には、スパッタリングターゲットを製造するためのも
のではないが、チタン合金の鍛造において鍛伸と据え込
みの繰り返しにより変態点以上の温度では鍛錬成形比5
〜8の鍛造を行い、変態点以下の温度では3〜4の鍛造
を行った場合に、結晶粒が微細化されたことが示されて
いる。
Here, forging has heretofore been carried out mainly for shaping a cast material, and in the production of a titanium target for sputtering, it has been carried out mainly for adjusting the shape of the cast material to a shape suitable for rolling. Was also used in the destruction of the casting structure. For example, in JP-A-62-286639, although it is not for producing a sputtering target, in the forging of a titanium alloy, a wrought forming ratio of 5 is obtained at a temperature above the transformation point due to repeated forging and upsetting.
It is shown that the crystal grains are refined when the forging of 8 to 8 is performed and the forging of 3 to 4 is performed at the temperature below the transformation point.

【0005】[0005]

【発明が解決しようとする課題】このような鍛伸と据え
込みの繰り返しによる鍛造は、高純度チタンの場合にも
鋳造組織の破壊に有効である。しかし、その高純度チタ
ンの鍛造材を圧延、熱処理してスパッタリングターゲッ
トとしても、スパッタ膜厚の均一化に与える影響は小さ
く、実効性のある効果は得られなかった。
Forging by repeating such forging and upsetting is effective for breaking the cast structure even in the case of high-purity titanium. However, even if the forged material of high-purity titanium is rolled and heat-treated to be used as a sputtering target, the effect on the uniformity of the sputtered film thickness is small and an effective effect cannot be obtained.

【0006】本発明の目的は、膜厚均一化効果の高いス
パッタリング用チタンターゲットを製造するための高純
度チタンの鍛造方法を提供することにある。
An object of the present invention is to provide a method of forging high-purity titanium for producing a titanium target for sputtering which has a high effect of making the film thickness uniform.

【0007】[0007]

【課題を解決するための手段】膜厚均一化効果の高いス
パッタリング用チタンターゲットを製造するため、本発
明者らは鍛造プロセスに着目し、実験を繰り返した。そ
の結果、鍛伸と据え込みの繰り返しによる鍛造加工、特
に変態点以下の温度での鍛造加工が、スパッタリング用
チタンターゲットの製造では重要であること、特開昭6
2−280639号公報に示されている繰り返し鍛造が
スパッタリングターゲットを製造する場合に十分機能し
ないのは、変態点以下の温度での鍛造加工が不足するた
めであり、変態点以下の温度での鍛造加工を変態点以上
の温度での鍛造加工と同等かこれより大きなものとする
ことにより、その鍛造材から製造されたスパッタリング
ターゲットは、高い膜厚均一化効果を示すことが明らか
になった。
In order to manufacture a titanium target for sputtering having a high film thickness uniforming effect, the present inventors have paid attention to the forging process and repeated the experiment. As a result, forging by repeating forging and upsetting, particularly forging at a temperature below the transformation point is important in the production of a titanium target for sputtering.
The reason why the repeated forging shown in Japanese Patent Laid-Open No. 2-280639 does not sufficiently function when manufacturing a sputtering target is that forging at a temperature below the transformation point is insufficient, and forging at a temperature below the transformation point. It was revealed that the sputtering target manufactured from the forged material exhibits a high film thickness uniformizing effect by making the processing equal to or greater than the forging at a temperature equal to or higher than the transformation point.

【0008】本発明はかかる知見に基づきなされたもの
で、スパッタリング用チタンターゲットを製造するため
の高純度チタン材の鍛造プロセスにおいて、変態点以上
の温度で鍛錬成形比が5以上となるように鍛伸と据え込
みを組み合わせた1次鍛造加工を1回以上行った後、変
態点以下の温度で鍛錬成形比が5以上となるように鍛伸
と据え込みを組み合わせた2次鍛造加工を1回以上行な
うことを特徴とする高純度チタン材の鍛造方法を要旨と
する。
The present invention has been made on the basis of such knowledge, and in a forging process of a high-purity titanium material for producing a titanium target for sputtering, forging is performed so that the wrought forming ratio becomes 5 or more at a temperature of a transformation point or higher. After performing the primary forging process that combines elongation and upsetting once or more, perform the secondary forging process that combines forging and upsetting so that the wrought forming ratio becomes 5 or more at the temperature below the transformation point. The gist is a method of forging a high-purity titanium material, which is characterized by performing the above.

【0009】[0009]

【作用】本発明の鍛造方法で高純度チタンとは4N5
(99.995%)以上のものを指す。また、鍛錬成形比
とは、図1に示すように、鍛伸および据え込みでの各断
面積比を合計した値である。そして本発明の鍛造方法で
は、鍛錬成形比が5以上の1次鍛造加工および2次鍛造
加工が行われる。
[Function] With the forging method of the present invention, high-purity titanium is 4N5
(99.995%) or higher. Further, the wrought forming ratio is a value obtained by summing the respective cross-sectional area ratios in forging and upsetting as shown in FIG. Then, in the forging method of the present invention, the primary forging process and the secondary forging process with the forging ratio of 5 or more are performed.

【0010】1次鍛造加工は鋳造組織の破壊を目的とす
る。そのため、加工性が良好な変態点以上の温度でこの
加工を行なう。ただし、必要以上に高い鍛造温度は材料
表面の酸化を促進する。望ましい鍛造温度は900〜9
50℃である。1次鍛造加工での鍛錬成形比を5以上と
したのは、これ未満では鋳造組織の破壊が不足するから
である。ただし、この加工では後述する2次鍛造加工ほ
ど加工度が大きな意味を持たず、大きな加工度はむしろ
経済性を悪化させる原因になるので、成形比の上限とし
ては10以下が望ましく、加工回数は1回で十分であ
る。
The primary forging process aims to destroy the cast structure. Therefore, this processing is performed at a temperature equal to or higher than the transformation point at which the workability is good. However, an excessively high forging temperature accelerates the oxidation of the material surface. Desirable forging temperature is 900-9
50 ° C. The wrought forming ratio in the primary forging process is set to 5 or more because if it is less than this, the fracture of the cast structure is insufficient. However, in this processing, the degree of processing is not so significant as in the secondary forging processing described later, and a large degree of processing causes worse economic efficiency. Therefore, the upper limit of the molding ratio is preferably 10 or less, and the number of times of processing is One time is enough.

【0011】2次鍛造加工は加工歪の蓄積を目的とす
る。1次鍛造加工では加工性の良い変態点以上の温度で
加工が行われるので、鋳造組織を破壊することはできて
も加工歪を蓄積することはできない。2次鍛造加工で加
工歪を蓄積するこにより、これに続く圧延・熱処理工程
で再結晶が促進され、結晶粒の微細化が図られることに
より、そのスパッタリングターゲットは膜厚の均一性に
優れたものとなる。加工歪を蓄積するため、2次鍛造加
工での鋳造温度は、加工性の良くない変態点以下の温度
で行う。ただし、鍛造温度が低すぎると加工で割れが生
じるおそれがあるので、2次鍛造加工での鍛造温度の下
限としては500℃以上が望ましい。加工度としては最
小限5以上の鍛錬成形比が必要であり、10以上が望ま
しく20以上が更に望ましい。ただし経済性を考慮する
と10〜20が望ましく15〜20が特に望ましい。加
工の回数も2以上が望ましく3回が特に望ましい。
The secondary forging process aims to accumulate working strain. In the primary forging process, since the process is performed at a temperature equal to or higher than the transformation point with good workability, the cast structure can be destroyed but the process strain cannot be accumulated. Accumulation of processing strain in the secondary forging process promotes recrystallization in the subsequent rolling and heat treatment steps, and the crystal grains are made finer, so that the sputtering target has excellent film thickness uniformity. Will be things. In order to accumulate the working strain, the casting temperature in the secondary forging is carried out at a temperature below the transformation point where workability is poor. However, if the forging temperature is too low, cracking may occur during processing, so the lower limit of the forging temperature in the secondary forging is preferably 500 ° C. or higher. As the workability, a minimum wrought forming ratio of 5 or more is required, 10 or more is desirable, and 20 or more is more desirable. However, considering economy, 10 to 20 is desirable, and 15 to 20 is particularly desirable. The number of times of processing is preferably 2 or more, and particularly preferably 3 times.

【0012】1次鍛造加工および2次鍛造加工において
鍛伸と据え込みの組み合わせを使用するのは、1次鍛造
加工では、鍛錬成形比を増加させることにより鋳造組織
を破壊してマクロ組織を均一にするためであり、2次鍛
造加工では鍛錬成形比を増加させることにより加工歪を
蓄積し、その後の圧延、熱処理工程での結晶粒を微細化
するためである。
The use of a combination of forging and upsetting in the primary forging process and the secondary forging process is that in the primary forging process, the casting structure is destroyed by increasing the wrought forming ratio to make the macrostructure uniform. This is because in the secondary forging process, the work strain is accumulated by increasing the wrought forming ratio, and the crystal grains in the subsequent rolling and heat treatment steps are refined.

【0013】[0013]

【実施例】以下に本発明の実施例を示し、比較例と対比
することにより本発明の効果を明らかにする。
EXAMPLES Examples of the present invention will be shown below, and the effects of the present invention will be clarified by comparison with Comparative Examples.

【0014】不純物を表1に示す99.995%(4N
5)の高純度チタン鋳塊を表2の条件で鍛造した。各条
件での鍛造材に対し、鍛伸と据え込み方向のそれぞれに
対して垂直な断面のマクロ組織判定を行った。マクロ組
織判定の合格基準は、結晶粒の最大長さで5mm以下と
した。
Impurities shown in Table 1 are 99.995% (4N
The high-purity titanium ingot of 5) was forged under the conditions shown in Table 2. With respect to the forged material under each condition, macrostructure determination of cross sections perpendicular to the forging and upsetting directions was performed. The acceptance criterion for macrostructure determination was 5 mm or less in terms of the maximum length of crystal grains.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】各条件での鍛造材を加熱温度300℃、圧
下率50%で圧延した後、500℃の熱処理を行ってス
パッタリングターゲットとした。切断法によりターゲッ
トの結晶粒径を測定した。また、各ターゲットを使用し
てスパッタリングを行い、膜厚分布を測定した。スパッ
タリングにより形成された薄膜の平均膜厚は約500オ
ングストロームであり、膜厚分布は(最大膜厚−最小膜
厚)/(平均膜厚×2)×100(%)で表した。
The forged material under each condition was rolled at a heating temperature of 300 ° C. and a rolling reduction of 50%, and then heat-treated at 500 ° C. to obtain a sputtering target. The crystal grain size of the target was measured by the cutting method. Moreover, sputtering was performed using each target and the film thickness distribution was measured. The average film thickness of the thin film formed by sputtering was about 500 Å, and the film thickness distribution was represented by (maximum film thickness-minimum film thickness) / (average film thickness × 2) × 100 (%).

【0018】No. 1では、1次鍛造加工で鍛伸と据え込
みの組み合わせを採用せず2次鍛造加工も行わなかった
ので、鍛造材のマクロ組織が不合格となり、圧延・熱処
理を受けたターゲットにも未再結晶粒が残り、スパッタ
膜厚分布は12%であった。No. 2,3のように2次鍛
造加工を行ってもスパッタ膜厚はそれほど均一化されな
い。
In No. 1, since the combination of forging and upsetting was not adopted in the primary forging process and the secondary forging process was not performed, the macrostructure of the forged material was rejected and subjected to rolling and heat treatment. Unrecrystallized grains remained on the target, and the sputtering film thickness distribution was 12%. Even if secondary forging is performed as in Nos. 2 and 3, the sputtered film thickness is not so uniform.

【0019】No. 4,5では、1次鍛造加工で鍛伸と据
え込みの組み合わせを行ったので、鍛造材のマクロ組織
は合格となったが、ターゲットには未再結晶粒が残り、
スパッタ膜厚分布はNo. 1の場合と変わらなかった。N
o. 6のように2次鍛造加工を行なっても、それが不十
分であると、1次鍛造加工での加工度を大きくしてもス
パッタ膜厚はそれほど均一化されない。
In Nos. 4 and 5, since forging and upsetting were combined in the primary forging process, the macrostructure of the forged material passed, but unrecrystallized grains remained on the target,
The distribution of sputtered film thickness was the same as that of No. 1. N
Even if the secondary forging is carried out as shown in o.6, if it is insufficient, the sputtered film thickness is not so uniform even if the degree of processing in the primary forging is increased.

【0020】これらに対し、No. 7〜12では1次鍛造
加工および2次鍛造加工で鍛伸と据え込みの組み合わせ
を行い、かつその2次鍛造加工で十分な加工を行ったの
で、鍛造材のマクロ組織は合格となり、ターゲットでも
未再結晶粒のない微細な結晶粒が得られ、その結果、ス
パッタ膜厚の分布は大幅に均一化された。
On the other hand, in Nos. 7 to 12, since forging and upsetting were combined in the primary forging process and the secondary forging process, and sufficient processing was performed in the secondary forging process, the forging material was The macrostructure of No. 2 was acceptable, and fine crystal grains free of unrecrystallized grains were obtained even in the target.

【0021】[0021]

【発明の効果】以上に説明した通り、本発明の高純度チ
タン材の鍛造方法は、変態点以上の1次鍛造加工に続け
て変態点以下で十分な2次鍛造加工を行うことにより、
スパッタ膜厚の均一性に優れた高品質なスパッタリング
用チタンターゲットを提供でき、半導体ディバイスの高
集積化等に寄与する。
As described above, the method of forging a high-purity titanium material according to the present invention comprises the steps of primary forging above the transformation point, followed by sufficient secondary forging below the transformation point.
It is possible to provide a high-quality titanium target for sputtering with excellent uniformity of the sputtering film thickness, which contributes to high integration of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】鍛伸と据え込みの組み合わせ加工およびその加
工での鍛錬成形比を示す図である。
FIG. 1 is a diagram showing a combined processing of forging and upsetting and a wrought forming ratio in the processing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリング用のチタンターゲットを
製造するための高純度チタン材の鍛造プロセスにおい
て、変態点以上の温度で鍛錬成形比が5以上となるよう
に鍛伸と据え込みを組み合わせた1次鍛造加工を1回以
上行った後、変態点以下の温度で鍛錬成形比が5以上と
なるように鍛伸と据え込みを組み合わせた2次鍛造加工
を1回以上行なうことを特徴とする高純度チタン材の鍛
造方法。
1. In a forging process of a high-purity titanium material for producing a titanium target for sputtering, a primary process in which forging and upsetting are combined so that a wrought forming ratio becomes 5 or more at a temperature equal to or higher than a transformation point. After performing the forging process once or more, the secondary forging process combining the forging and upsetting is performed once or more so that the wrought forming ratio becomes 5 or more at the temperature of the transformation point or lower. Method of forging titanium material.
JP7064680A 1995-02-27 1995-02-27 Forging method of high purity titanium material Expired - Fee Related JP2984778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064680A JP2984778B2 (en) 1995-02-27 1995-02-27 Forging method of high purity titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064680A JP2984778B2 (en) 1995-02-27 1995-02-27 Forging method of high purity titanium material

Publications (2)

Publication Number Publication Date
JPH08232061A true JPH08232061A (en) 1996-09-10
JP2984778B2 JP2984778B2 (en) 1999-11-29

Family

ID=13265128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064680A Expired - Fee Related JP2984778B2 (en) 1995-02-27 1995-02-27 Forging method of high purity titanium material

Country Status (1)

Country Link
JP (1) JP2984778B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993621A (en) * 1997-07-11 1999-11-30 Johnson Matthey Electronics, Inc. Titanium sputtering target
US6024847A (en) * 1997-04-30 2000-02-15 The Alta Group, Inc. Apparatus for producing titanium crystal and titanium
US6063254A (en) * 1997-04-30 2000-05-16 The Alta Group, Inc. Method for producing titanium crystal and titanium
WO2001012358A1 (en) * 1999-08-16 2001-02-22 Sumitomo Sitix Of Amagasaki, Inc. Titanium material superior in upset-forgeability and method of producing the same
US6210502B1 (en) 1997-12-24 2001-04-03 Toho Titanium Co., Ltd. Processing method for high-pure titanium
US6238494B1 (en) 1997-07-11 2001-05-29 Johnson Matthey Electronics Inc. Polycrystalline, metallic sputtering target
US6309595B1 (en) 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US6348139B1 (en) 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US8061177B2 (en) * 2004-03-26 2011-11-22 H.C. Starck Inc. Refractory metal pots
JP2012067386A (en) * 2010-08-25 2012-04-05 Jx Nippon Mining & Metals Corp Titanium target for sputtering
US8211164B2 (en) 2001-10-25 2012-07-03 Abbott Cardiovascular Systems, Inc. Manufacture of fine-grained material for use in medical devices
JPWO2011111373A1 (en) * 2010-03-11 2013-06-27 株式会社東芝 Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
CN103215553A (en) * 2013-04-27 2013-07-24 西部钛业有限责任公司 Method for preparing high-purity titanium plate for use as target
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof
CN113073214A (en) * 2021-03-04 2021-07-06 鞍钢集团北京研究院有限公司 Rare earth nano high-strength titanium and preparation method thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024847A (en) * 1997-04-30 2000-02-15 The Alta Group, Inc. Apparatus for producing titanium crystal and titanium
US6063254A (en) * 1997-04-30 2000-05-16 The Alta Group, Inc. Method for producing titanium crystal and titanium
US6596228B2 (en) 1997-04-30 2003-07-22 Honeywell International Inc. Titanium materials
US6309595B1 (en) 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US6509102B1 (en) 1997-07-11 2003-01-21 Honeywell International Inc. Titanium film
US5993621A (en) * 1997-07-11 1999-11-30 Johnson Matthey Electronics, Inc. Titanium sputtering target
US6238494B1 (en) 1997-07-11 2001-05-29 Johnson Matthey Electronics Inc. Polycrystalline, metallic sputtering target
US6302977B1 (en) 1997-07-11 2001-10-16 Johnson Matthey Electronics, Inc. Method of making a target
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
US6210502B1 (en) 1997-12-24 2001-04-03 Toho Titanium Co., Ltd. Processing method for high-pure titanium
US6348139B1 (en) 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
WO2001012358A1 (en) * 1999-08-16 2001-02-22 Sumitomo Sitix Of Amagasaki, Inc. Titanium material superior in upset-forgeability and method of producing the same
US7014722B1 (en) 1999-08-16 2006-03-21 Sumitomo Titanium Corporation Titanium material superior in upset-forgeability and method of producing the same
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7101447B2 (en) 2000-02-02 2006-09-05 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US8579960B2 (en) 2001-10-25 2013-11-12 Abbott Cardiovascular Systems Inc. Manufacture of fine-grained material for use in medical devices
US8211164B2 (en) 2001-10-25 2012-07-03 Abbott Cardiovascular Systems, Inc. Manufacture of fine-grained material for use in medical devices
US8419785B2 (en) 2001-10-25 2013-04-16 Abbott Cardiovascular Systems Inc. Manufacture of fine-grained material for use in medical devices
US8562664B2 (en) 2001-10-25 2013-10-22 Advanced Cardiovascular Systems, Inc. Manufacture of fine-grained material for use in medical devices
US8499606B2 (en) 2004-03-26 2013-08-06 H.C. Starck Inc. Refractory metal pots
US8061177B2 (en) * 2004-03-26 2011-11-22 H.C. Starck Inc. Refractory metal pots
JPWO2011111373A1 (en) * 2010-03-11 2013-06-27 株式会社東芝 Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
JP5718896B2 (en) * 2010-03-11 2015-05-13 株式会社東芝 Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
USRE47788E1 (en) 2010-03-11 2019-12-31 Kabushiki Kaisha Toshiba Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
US9382613B2 (en) 2010-03-11 2016-07-05 Kabushiki Kaisha Toshiba Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
JP2012067386A (en) * 2010-08-25 2012-04-05 Jx Nippon Mining & Metals Corp Titanium target for sputtering
CN103732789B (en) * 2011-08-23 2016-05-04 吉坤日矿日石金属株式会社 Sputter titanium target
CN103732789A (en) * 2011-08-23 2014-04-16 吉坤日矿日石金属株式会社 Titanium target for sputtering
US9530628B2 (en) 2011-08-23 2016-12-27 Jx Nippon Mining & Metals Corporation Titanium target for sputtering
WO2013027425A1 (en) * 2011-08-23 2013-02-28 Jx日鉱日石金属株式会社 Titanium target for sputtering
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof
JP6077102B2 (en) * 2013-03-06 2017-02-08 Jx金属株式会社 Titanium target for sputtering and manufacturing method thereof
US10431438B2 (en) 2013-03-06 2019-10-01 Jx Nippon Mining & Metals Corporation Titanium target for sputtering and manufacturing method thereof
CN103215553A (en) * 2013-04-27 2013-07-24 西部钛业有限责任公司 Method for preparing high-purity titanium plate for use as target
CN113073214A (en) * 2021-03-04 2021-07-06 鞍钢集团北京研究院有限公司 Rare earth nano high-strength titanium and preparation method thereof

Also Published As

Publication number Publication date
JP2984778B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP4754617B2 (en) Method for manufacturing tantalum sputtering target
JPH08232061A (en) Forging method of high-purity titanium material
JP4593475B2 (en) Tantalum sputtering target
CN100334252C (en) Tantalum sputtering target and method for preparation thereof
US7767043B2 (en) Copper sputtering targets and methods of forming copper sputtering targets
US6423161B1 (en) High purity aluminum materials
CN100445419C (en) Ta sputtering target and manufacturing method thereof
US20040072009A1 (en) Copper sputtering targets and methods of forming copper sputtering targets
JP2002518593A (en) Metal product having fine and uniform structure and texture and method for manufacturing the same
JP4110476B2 (en) Sputtering target and manufacturing method thereof
JPH11269621A (en) Method for working high-purity titanium material
WO2019058721A1 (en) Titanium sputtering target, production method therefor, and method for producing titanium-containing thin film
JP6293929B2 (en) Tantalum sputtering target and manufacturing method thereof
JP3909406B2 (en) Method for producing Ni-based alloy material
JP2869617B2 (en) Manufacturing method of aluminum alloy wire
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPH0225547A (en) Manufacture of semifinished product and finished product of heat treatment-type aluminum alloy excellent in strength
JPH02258959A (en) Method for manufacturing α+β type titanium alloy with fine and equiaxed structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081001

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees