[go: up one dir, main page]

JPH08232040A - Spheroidal graphite cast iron with high toughness and its production - Google Patents

Spheroidal graphite cast iron with high toughness and its production

Info

Publication number
JPH08232040A
JPH08232040A JP3738095A JP3738095A JPH08232040A JP H08232040 A JPH08232040 A JP H08232040A JP 3738095 A JP3738095 A JP 3738095A JP 3738095 A JP3738095 A JP 3738095A JP H08232040 A JPH08232040 A JP H08232040A
Authority
JP
Japan
Prior art keywords
spheroidal graphite
cast iron
graphite cast
volume
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3738095A
Other languages
Japanese (ja)
Inventor
Norihiro Akita
憲宏 秋田
Tsutomu Kurikuma
勉 栗熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP3738095A priority Critical patent/JPH08232040A/en
Publication of JPH08232040A publication Critical patent/JPH08232040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a spheroidal graphite cast iron having high strength and high toughness. CONSTITUTION: A mixed structure of ausferritic structure and retained austenite is selectively formed by 10-60vol.% around spheroidal graphite and also this mixed structure of the ausferritic structure and the retained austenite is formed by <=5vol.% in the intermediate region of the mutually separated spheroidal graphite, and the balance consists essentially of ferritic structure. The formation of crack originated from graphite can be practically prevented, and also the propagation of crack in the intermediate region of the mutually separated spheroidal graphite cast iron can be practically prevented. This structure can be obtained by subjecting a spheroidal graphite cast iron having a matrix structure containing ferritic structure and <=5vol.% pearlitic structure to temp. rise at a rate of <=16.7K/sec and to holding at 1153-1373K to selectively austenitize the vicinity of the spheroidal graphite and then subjecting the above 10-60vol.% austenitic structure around the spheroidal graphite cast iron to isothermal transformation by austempering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機械構造用部品、例えば
自動車の車体の懸架装置に用いられるロアアーム等の材
料として有用な高靱性球状黒鉛鋳鉄およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-toughness spheroidal graphite cast iron useful as a material for mechanical structural parts, for example, lower arms used in suspensions of automobile bodies, and a method for producing the same.

【0002】[0002]

【従来の技術】球状黒鉛鋳鉄は、熱処理等により基地組
織を任意に変化させ得るという特徴があり、延性の求め
られる場合はフェライト基地材を、強度や耐摩耗性を求
められる場合はパーライト基地材を用いる。例えば、J
ISに規定されているFCD400のように軟質で伸び
の大きいことを望む場合は、黒鉛化焼鈍によってフェラ
イト基地とする。また、FCD500、FCD700の
ように強さを要求する場合は、800〜900℃で焼鈍
処理したのち空冷してパーライト基地とする。
2. Description of the Related Art Spheroidal graphite cast iron is characterized in that its matrix structure can be arbitrarily changed by heat treatment and the like, and a ferrite matrix material is required when ductility is required, and a pearlite matrix material is required when strength and wear resistance are required. To use. For example, J
When it is desired to be soft and have a large elongation like FCD400 specified in IS, graphitization annealing is performed to form a ferrite matrix. When strength is required as in FCD500 and FCD700, annealing is performed at 800 to 900 ° C. and then air cooling is performed to obtain a pearlite base.

【0003】このようにフェライト基地の球状黒鉛鋳鉄
は、軟質で伸びが大きいので高い靱性値を有している
が、強度が低いという欠点がある。一方、パーライト基
地の球状黒鉛鋳鉄は強度は高いが靱性が不十分であり、
衝撃値が低いという欠点がある。そこで、強度と靱性の
両性能を合わせ持つ球状黒鉛鋳鉄を得ることを目的とし
て特開平3−264644号公報には高靱性球状黒鉛鋳
鉄およびその製造方法の発明が開示されている。
As described above, the ferrite-based spheroidal graphite cast iron has a high toughness value because it is soft and has a large elongation, but it has a drawback of low strength. On the other hand, perlite-based spheroidal graphite cast iron has high strength but insufficient toughness,
It has the drawback of low impact value. In order to obtain a spheroidal graphite cast iron having both strength and toughness, JP-A-3-264644 discloses an invention of a high toughness spheroidal graphite cast iron and a method for producing the same.

【0004】前記特開平3−264644号公報の高靱
性球状黒鉛鋳鉄は、ベイナイト組織10〜80体積%と
フェライト組織20〜90体積%からなる基地組織をも
ち、かつ球状黒鉛の周囲にベイニティックフェライトと
残留オーステナイトからなり平均厚さ3μm以上のベイ
ナイト組織が形成されていることを特徴とする。
The high-toughness spheroidal graphite cast iron disclosed in JP-A-3-264644 has a matrix structure composed of a bainite structure of 10 to 80% by volume and a ferrite structure of 20 to 90% by volume, and is bainitic around the spheroidal graphite. It is characterized in that a bainite structure composed of ferrite and retained austenite and having an average thickness of 3 μm or more is formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記特
開平3−264644号公報の高靱性球状黒鉛鋳鉄に
は、ベイナイト組織が球状黒鉛の周囲以外に、離間する
球状黒鉛の中間領域に多量析出し、該中間領域に析出し
たベイナイト組織により亀裂の伝搬が早くなり、効果的
な強靱化ができないという問題点がある。
However, in the high-toughness spheroidal graphite cast iron of JP-A-3-264644, a bainite structure is deposited in a large amount in the intermediate region of the spheroidal graphite apart from the periphery of the spheroidal graphite. The bainite structure precipitated in the intermediate region accelerates the propagation of cracks, resulting in a problem that effective toughening cannot be achieved.

【0006】本発明は球状黒鉛鋳鉄の基地組織の強靱化
法の前記のごとき問題点を解決するためになされたもの
であって、高強度と高靱性を併せ持つ高靱性球状黒鉛鋳
鉄とその製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in the method of strengthening the matrix structure of spheroidal graphite cast iron, and has a high toughness spheroidal graphite cast iron having both high strength and high toughness and a method for producing the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】発明者等は先ず所望の靱
性を確保するためには、基地組織にフェライト組織を採
用することを着想した。次いで、亀裂の発生が球状黒鉛
を起点とする場合が多いことに鑑み、球状黒鉛の回りを
補強することについて鋭意研究を重ねた。その結果、特
定の昇温速度で昇温しオーステナイト化すると、球状黒
鉛の回りを選択的にオーステナイト化できることを新た
に知見し、これをオーステンパすることにより、オース
フェライト組織(フェライトと残留オーステナイト(3
0〜40体積%)との微細混合組織)と残留オーステナ
イトとからなる混合組織を得ることに成功し、本発明を
完成した。
Means for Solving the Problems The inventors of the present invention first conceived to adopt a ferrite structure as a matrix structure in order to secure desired toughness. Next, in view of the fact that the occurrence of cracks often originates from spheroidal graphite, an intensive study was conducted on reinforcing the spheroidal graphite. As a result, it was newly found that the temperature around a spheroidal graphite can be selectively austenitized by increasing the temperature at a specific heating rate, and by austempering the ausferrite structure (ferrite and residual austenite (3
The present invention has been completed by successfully obtaining a mixed structure composed of a fine mixed structure of 0 to 40% by volume) and retained austenite.

【0008】本発明の請求項1の高靱性球状黒鉛鋳鉄
は、オースフェライト組織と残留オーステナイトとから
なる混合組織が球状黒鉛の回りに選択的に10〜60体
積%形成されると共に、該オースフェライト組織と残留
オーステナイトとからなる混合組織が互いに離間した球
状黒鉛の中間領域に5体積%以下形成され、残部が実質
的にフェライト組織であることを要旨とする。
In the high toughness spheroidal graphite cast iron according to claim 1 of the present invention, a mixed structure composed of an aus ferrite structure and retained austenite is selectively formed around the spheroidal graphite in an amount of 10 to 60% by volume, and the aus ferrite A gist is that a mixed structure composed of a structure and retained austenite is formed in an amount of 5% by volume or less in an intermediate region of spheroidal graphite separated from each other, and the balance is substantially a ferrite structure.

【0009】本発明の請求項2の高靱性球状黒鉛鋳鉄
は、請求項1の発明において、前記高靱性球状黒鉛鋳鉄
の組成が重量比で、C;3.5〜4.0%、Si;2.
2〜2.8%、Mn;0.2〜0.5%、P;0.05
%以下、S;0.02%以下、Mg;0.03〜0.0
6%を含有し、残部が実質的にFeであることを要旨と
する。
The high toughness spheroidal graphite cast iron according to claim 2 of the present invention is the high toughness spheroidal graphite cast iron according to the invention of claim 1, wherein the composition of the high toughness spheroidal graphite cast iron is C: 3.5 to 4.0% by weight ratio, Si; 2.
2 to 2.8%, Mn; 0.2 to 0.5%, P; 0.05
% Or less, S; 0.02% or less, Mg; 0.03 to 0.0
The gist is that it contains 6% and the balance is substantially Fe.

【0010】本発明の請求項3の高靱性球状黒鉛鋳鉄の
製造方法は、基地組織がフェライト組織と5体積%以下
のパーライト組織とを含有する球状黒鉛鋳鉄を16.7
K/sec以上で昇温し、1153〜1373Kで保持
して球状黒鉛の周囲を選択的に10〜60体積%をオー
ステナイト化し、次いでオーステンパにより球状黒鉛鋳
鉄の周囲の前記10〜60体積%のオーステナイト組織
を恒温変態させオースフェライト組織と残留オーステナ
イトとからなる混合組織とすることを要旨とする。
According to a third aspect of the present invention, in the method for producing a high-toughness spheroidal graphite cast iron, a spheroidal graphite cast iron having a matrix structure containing a ferrite structure and a pearlite structure of 5% by volume or less is 16.7.
10-60 volume% austenite around the spheroidal graphite cast iron is austempered by austempering, by heating at K / sec or more and holding at 1153-1373K to selectively convert 10-60 volume% austenite around the spheroidal graphite. The gist is to perform a constant temperature transformation of the structure to form a mixed structure composed of an ausferrite structure and retained austenite.

【0011】本発明の請求項4の高靱性球状黒鉛鋳鉄の
製造方法は、請求項3発明において、前記高靱性球状黒
鉛鋳鉄の組成が重量比で、C;3.5〜4.0%、S
i;2.2〜2.8%、Mn;0.2〜0.5%、P;
0.05%以下、S;0.02%以下、Mg;0.03
〜0.06%を含有し、残部が実質的にFeであること
を要旨とする。本発明の請求項5の高靱性球状黒鉛鋳鉄
の製造方法は、請求項3または請求項4の発明におい
て、前記オーステンパによる恒温変態温度が543〜6
83Kであることを要旨とする。
The method for producing a high-toughness spheroidal graphite cast iron according to a fourth aspect of the present invention is the method according to the third aspect, wherein the composition of the high-toughness spheroidal graphite cast iron is C: 3.5 to 4.0% by weight. S
i; 2.2 to 2.8%, Mn; 0.2 to 0.5%, P;
0.05% or less, S; 0.02% or less, Mg; 0.03
The gist of the present invention is to contain 0.06%, with the balance being substantially Fe. The method for producing a high-toughness spheroidal graphite cast iron according to claim 5 of the present invention is the method according to claim 3 or 4, wherein the isothermal transformation temperature by the austemper is 543 to 6
The gist is that it is 83K.

【0012】[0012]

【作用】本発明の請求項1の高靱性球状黒鉛鋳鉄は、オ
ースフェライト組織と残留オーステナイトとからなる混
合組織を球状黒鉛の回りに選択的に10〜60体積%形
成して黒鉛を起点とする亀裂の発生を起こりにくくする
と共に、互いに離間した球状黒鉛の中間領域に形成され
る該オースフェライト組織と残留オーステナイトとから
なる混合組織を5体積%以下として該球状黒鉛の中間領
域に存在するフェライト組織を増加させ、該球状黒鉛の
中間領域での亀裂の伝搬を起こりにくくすることによ
り、高強度および高靱性が得られる。
In the high-toughness spheroidal graphite cast iron according to claim 1 of the present invention, a mixed structure consisting of an aus ferrite structure and retained austenite is selectively formed around the spheroidal graphite in an amount of 10 to 60% by volume, and the starting point is graphite. A ferrite structure existing in the intermediate region of the spherical graphite in which the mixed structure composed of the ausferrite structure and the retained austenite formed in the intermediate region of the spherical graphite separated from each other is set to 5% by volume or less while making the occurrence of cracks less likely. Is increased to make crack propagation less likely to occur in the intermediate region of the spheroidal graphite, so that high strength and high toughness can be obtained.

【0013】図1は、球状黒鉛の回りに選択的に形成さ
れたオースフェライト組織と残留オーステナイトとから
なる混合組織の基地中の体積%と衝撃値との関係を示す
線図であるが、該混合組織が10体積%未満では充分な
衝撃値の向上が得られず、10〜60体積%の間では向
上した衝撃値が維持され、60体積%を越えると却って
衝撃値が低下している。このように、球状黒鉛の回りに
選択的に形成されたオースフェライト組織と残留オース
テナイトとからなる組織の体積%を10〜60%に限定
したのは、10体積%未満では充分な衝撃値の向上が得
られず、60体積%を越えると却って衝撃値が低下する
からである。
FIG. 1 is a diagram showing the relationship between the volume% in the matrix and the impact value of the mixed structure consisting of the ausferrite structure selectively formed around spheroidal graphite and the retained austenite. If the mixed structure is less than 10% by volume, a sufficient improvement of the impact value cannot be obtained, and if it is between 10 and 60% by volume, the improved impact value is maintained, and if it exceeds 60% by volume, the impact value is rather decreased. As described above, the volume% of the structure composed of the ausferrite structure selectively formed around the spheroidal graphite and the retained austenite is limited to 10 to 60% because the impact value is sufficiently improved when the volume ratio is less than 10% by volume. Is not obtained, and if it exceeds 60% by volume, the impact value is rather lowered.

【0014】本発明材の原材料となる球状黒鉛鋳鉄がフ
ェライト組織と5体積%以下のパーライト組織とを含有
するのは、パーライト組織が5体積%以下であればパー
ライト組織の存在が本発明材の靱性に殆ど影響しないた
めである。
The spheroidal graphite cast iron as a raw material of the material of the present invention contains a ferrite structure and a pearlite structure of 5% by volume or less. This is because it hardly affects the toughness.

【0015】次に、本発明の高靱性球状黒鉛鋳鉄の化学
組成を請求項2または請求項4のごとく限定した理由に
ついて説明する。C、Siの範囲は一般的な球状黒鉛鋳
鉄に用いられるものであり、この範囲未満では黒鉛球状
化不良やチルの発生を防止し難く、この範囲を越ええる
と鋳造性が悪化すると共に機械的性質、特に靱性が低下
する。
Next, the reason why the chemical composition of the high-toughness spheroidal graphite cast iron of the present invention is limited as in claim 2 or 4 will be explained. The range of C and Si is used for general spheroidal graphite cast iron, and if it is less than this range, it is difficult to prevent the spheroidization of graphite and the occurrence of chill, and if it exceeds this range, the castability is deteriorated and the mechanical properties are deteriorated. Properties, especially toughness, are reduced.

【0016】Mnは0.2〜0.5%で、0.5%を越
えると偏析により靱性が低下し、0.2%未満では熱処
理性が低下するのでこの範囲とした。Pは鋳造性を向上
するが0.05%を越えると偏析による靱性の低下が大
きく0.05%以下とした。Sは球状化阻害元素であ
り、また硫化物を生成して靱性を低下させるので0.0
2%以下とした。Mgは一般的な球状黒鉛鋳鉄に用いら
れる範囲である。
Mn is 0.2 to 0.5%, and if it exceeds 0.5%, the toughness is deteriorated due to segregation, and if it is less than 0.2%, the heat treatment property is deteriorated, so this range is set. P improves the castability, but if it exceeds 0.05%, the toughness is greatly reduced due to segregation, and it is set to 0.05% or less. S is a spheroidization-inhibiting element, and forms Sulfide to reduce toughness, so 0.0
It was set to 2% or less. Mg is in the range used for general spheroidal graphite cast iron.

【0017】本発明の請求項3の球状黒鉛鋳鉄の製造方
法では、基地組織が実質的にフェライト組織である球状
黒鉛鋳鉄を16.7K/sec以上の昇温速度で昇温
し、1153〜1373Kで保持することにより、球状
黒鉛の周囲を選択的に10〜60体積%をオーステナイ
ト化する。昇温速度を16.7K/sec未満とする
と、オーステナイト化変態温度が低下し、かつ低温での
オーステナイト化時間が長くなるので、黒鉛粒間のオー
ステナイト化が起こり、目的の組織が得られない。保持
温度が1153K未満の場合は、黒鉛粒間のオーステナ
イト化が起こり目的の組織が得られず、1373Kを越
えるとオーステナイト化速度が速く、10〜60体積%
の変態の制御が困難で、目的の組織が得られない。な
お、オーステナイト化における保持の時間は5〜120
secであり、昇温速度や保持温度、化学組成により適
宜選択される。
In the method for producing spheroidal graphite cast iron according to claim 3 of the present invention, spheroidal graphite cast iron having a matrix structure substantially a ferrite structure is heated at a temperature rising rate of 16.7 K / sec or more to 1153 to 1373K. By holding it at, the surroundings of the spheroidal graphite are selectively austenitized by 10 to 60% by volume. When the heating rate is less than 16.7 K / sec, the austenitizing transformation temperature is lowered and the austenitizing time at low temperature is prolonged, so that austenitization between graphite grains occurs and the desired structure cannot be obtained. If the holding temperature is less than 1153K, austenitization between graphite grains occurs and the desired structure cannot be obtained. If the holding temperature exceeds 1373K, the austenitizing rate is high and 10-60% by volume.
It is difficult to control the transformation of and the target structure cannot be obtained. The holding time in austenitization is 5 to 120.
sec, which is appropriately selected depending on the temperature rising rate, holding temperature, and chemical composition.

【0018】次いで、この球状黒鉛鋳鉄の周囲に選択的
に生成した10〜60体積%のオーステナイト組織をオ
ーステンパにより恒温変態させると、球状黒鉛鋳鉄の周
囲に選択的に10〜60体積%のオースフェライト組織
と残留オーステナイトとからなる混合組織が得られる。
恒温変態温度を543〜683Kに限定したのは、恒温
変態温度が543Kより低くなると、オースフェライト
組織と残留オーステナイト組織以外の組織が生じ脆くな
り、683Kを越えるとパーライト組織が生じ、靱性が
低下するからである。
Next, the austenite structure of 10 to 60% by volume selectively formed around this spheroidal graphite cast iron is subjected to isothermal transformation by austemper, and 10 to 60% by volume of aus ferrite is selectively formed around the spheroidal graphite cast iron. A mixed structure composed of the structure and retained austenite is obtained.
The isothermal transformation temperature is limited to 543 to 683K because when the isothermal transformation temperature is lower than 543K, a structure other than the ausferrite structure and the retained austenite structure is generated and becomes brittle, and when it exceeds 683K, a pearlite structure is generated and the toughness is deteriorated. Because.

【0019】[0019]

【実施例】本発明の実施例を比較例と対比して説明し本
発明の効果を明らかにする。表1に示す化学成分でフェ
ライト化焼鈍を行った5体積%のパーライト組織を含有
する球状黒鉛鋳鉄を素材として、実施例1および実施例
2として、表2に示す本発明方法による熱処理を施し
た。また、比較例1および比較例2として、表2に示す
条件で熱処理を施した。なお、比較例1はオーステナイ
ト化における昇温速度が本発明方法のそれより極端に遅
く保持温度が低い比較例であり、比較例2はオーステナ
イト化における昇温速度が本発明方法のそれより僅かに
遅い比較例である。
EXAMPLES Examples of the present invention will be described in comparison with comparative examples to clarify the effects of the present invention. As a raw material of spheroidal graphite cast iron containing 5% by volume of pearlite structure subjected to ferritic annealing with the chemical components shown in Table 1, the heat treatment according to the method of the present invention shown in Table 2 was performed as Examples 1 and 2. . As Comparative Example 1 and Comparative Example 2, heat treatment was performed under the conditions shown in Table 2. Comparative Example 1 is a comparative example in which the temperature rising rate in austenitization is extremely slower than that of the method of the present invention and the holding temperature is low, and Comparative Example 2 has a temperature rising rate in austenitization slightly lower than that of the method of the present invention. This is a slow comparative example.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】続いて、実施例1および2並びに比較例1
および2について、A:黒鉛の回りの(オースフェライ
ト+残留オーステナイト)混合組織(図2の1)の厚
さ、B:基地組織中における(オースフェライト+残留
オーステナイト)混合組織の割合、C:互いに離間した
球状黒鉛の中間領域に形成された(オースフェライト+
残留オーステナイト)混合組織(図2の2)の基地組織
中の割合をそれぞれ測定し、表3に示した。
Then, Examples 1 and 2 and Comparative Example 1
Regarding 2 and 2, A: thickness of (ausferrite + retained austenite) mixed structure (1 in FIG. 2) around graphite, B: ratio of (ausferrite + retained austenite) mixed structure in matrix structure, C: mutual Formed in the intermediate region of spaced spheroidal graphite (ausferrite +
The ratio of the retained austenite) mixed structure (2 in FIG. 2) in the matrix structure was measured, and is shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】図3は実施例1の金属組織を表す100倍
の顕微鏡写真である。図3の写真からも明らかなよう
に、球状黒鉛鋳鉄の回りに約15μmのオースフェライ
トと残留オーステナイトとからなる混合組織が形成され
ている。基地組織全体はオースフェライト組織と残留オ
ーステナイトとからなる混合組織が20体積%、フェラ
イト組織が80体積%で構成されており該混合組織のう
ち5体積%が互いに離間した球状黒鉛の中間領域に形成
されている。残留オーステナイト量は約8体積%であっ
た。実施例2の金属組織を顕微鏡写真観察したところ、
球状黒鉛鋳鉄の回りに約8μmのオースフェライトと残
留オーステナイトの混合組織が形成されている。基地組
織におけるオースフェライト組織と残留オーステナイト
からなる混合組織の体積率は約30%であり、混合組織
のうち5体積%が互いに離間した球状黒鉛の中間領域に
形成されている。本発明方法による熱処理により、オー
スフェライト組織と残留オーステナイトとからなる混合
組織が球状黒鉛の回りに選択的に10〜60体積%形成
されると共に、オースフェライト組織と残留オーステナ
イトとからなる混合組織が互いに離間した球状黒鉛粒の
中間領域に5体積%以下形成され、残部が実質的にフェ
ライト組織である球状黒鉛鋳鉄が得られることが判明し
た。
FIG. 3 is a 100 × micrograph showing the metal structure of Example 1. As is clear from the photograph of FIG. 3, a mixed structure of about 15 μm of ausferrite and retained austenite is formed around the spheroidal graphite cast iron. The whole matrix structure is composed of 20% by volume of a mixed structure composed of aus ferrite structure and retained austenite and 80% by volume of a ferrite structure, and 5% by volume of the mixed structure is formed in an intermediate region of spheroidal graphite separated from each other. Has been done. The amount of retained austenite was about 8% by volume. Microscopic observation of the metal structure of Example 2 revealed that
A mixed structure of about 8 μm of ausferrite and retained austenite is formed around the spheroidal graphite cast iron. The volume fraction of the mixed structure of the ausferrite structure and the retained austenite in the matrix structure is about 30%, and 5% by volume of the mixed structure is formed in the intermediate region of spheroidal graphite separated from each other. By the heat treatment according to the method of the present invention, a mixed structure composed of an ausferrite structure and retained austenite is selectively formed around the spherical graphite in an amount of 10 to 60% by volume, and a mixed structure composed of the ausferrite structure and the retained austenite is mutually formed. It was found that a spheroidal graphite cast iron was formed in which 5 vol% or less was formed in the intermediate region of the separated spheroidal graphite particles, and the balance was substantially a ferrite structure.

【0025】これに対して、図4は比較例1の金属組織
を表す100倍の顕微鏡写真であるが、図4の写真から
も明らかなように、互いに離間した球状黒鉛の中間領域
に約30体積%のオースフェライト組織と残留オーステ
ナイトとの混合組織が形成されている。また、図5は比
較例2の金属組織を表す100倍の顕微鏡写真である
が、図5の写真からも明らかなように、球状黒鉛鋳鉄の
回りに約5μmのオースフェライトと残留オーステナイ
トとからなる混合組織が形成されおり、互いに離間した
球状黒鉛の中間領域に約30体積%のオースフェライト
組織と残留オーステナイトとからなる混合組織が形成さ
れている。その結果、オーステナイト化における昇温速
度が本発明方法のそれより極端に遅く保持温度が低い比
較例、またはオーステナイト化における昇温速度が本発
明方法のそれより僅かに遅い比較例では、互いに離間し
た球状黒鉛の中間領域に約30体積%のオースフェライ
ト組織と残留オーステナイトとからなる混合組織が形成
され所期の高靱性が得られないことが判明した。
On the other hand, FIG. 4 is a 100 × micrograph showing the metallographic structure of Comparative Example 1. As is apparent from the photograph of FIG. A mixed structure of volume% ausferrite structure and retained austenite is formed. Further, FIG. 5 is a 100 × micrograph showing the metal structure of Comparative Example 2. As is apparent from the photograph of FIG. 5, about 5 μm of ausferrite and retained austenite are formed around the spheroidal graphite cast iron. A mixed structure is formed, and a mixed structure composed of about 30% by volume of ausferrite structure and retained austenite is formed in an intermediate region of spheroidal graphite separated from each other. As a result, the comparative example in which the temperature rising rate in austenitization is extremely slower than that of the method of the present invention and the holding temperature is low, or the comparative example in which the temperature rising rate in austenitization is slightly slower than that of the method of the present invention, are separated from each other. It was found that the desired high toughness could not be obtained because a mixed structure composed of about 30% by volume of ausferrite structure and retained austenite was formed in the intermediate region of spheroidal graphite.

【0026】この結果をさらに確認すべく、本実施例の
熱処理で得られた実施例1および2、比較例1および2
ならびに5体積%のパーライト組織を含み残部フェライ
ト組織からなる球状黒鉛鋳鉄(以下比較例3という)に
ついて、引張強さおよび衝撃値を測定し、得られた結果
を図6に示した。
In order to further confirm this result, Examples 1 and 2 obtained by the heat treatment of this Example and Comparative Examples 1 and 2 were obtained.
Further, the tensile strength and impact value of spheroidal graphite cast iron (hereinafter referred to as Comparative Example 3) including 5% by volume of pearlite structure and the balance of ferrite structure were measured, and the obtained results are shown in FIG.

【0027】図6に示したように、比較例3は、衝撃値
は28J/cm2であったが、引張強さが極端に低く4
20MPaであった。また、比較例1および比較例2は
熱処理を施していない球状黒鉛鋳鉄に比較して引張強度
は600〜730MPaと改善されたものの、互いに離
間した球状黒鉛の中間領域に約30体積%のオースフェ
ライト組織と残留オーステナイトとからなる混合組織が
形成されているため、衝撃値の向上が低く23〜27で
J/cm2であった。これに対して、本発明の実施例1
および2は引張強さが680〜700MPaであり、衝
撃値が32〜35J/cm2であって、引張強さ衝撃値
共に著しい向上が見られ、本発明の効果が確認された。
As shown in FIG. 6, in Comparative Example 3, the impact value was 28 J / cm 2 , but the tensile strength was extremely low.
It was 20 MPa. Further, in Comparative Examples 1 and 2, the tensile strength was improved to 600 to 730 MPa as compared with the spheroidal graphite cast iron that was not subjected to heat treatment, but about 30% by volume of aus ferrite was contained in the intermediate region of the spheroidal graphites which were separated from each other. Since the mixed structure consisting of the structure and the retained austenite was formed, the improvement in impact value was low and it was J / cm 2 at 23 to 27. On the other hand, the first embodiment of the present invention
And 2 had tensile strengths of 680 to 700 MPa and impact values of 32 to 35 J / cm 2 , and both the tensile strength and impact value were significantly improved, confirming the effect of the present invention.

【0028】[0028]

【発明の効果】本発明の高靱性球状鋳鉄は以上の説明の
ごとく、オースフェライト組織と残留オーステナイトと
からなる混合組織が球状黒鉛の回りに選択的に10〜6
0体積%形成されると共に、該オースフェライト組織と
該残留オーステナイトとからなる混合組織が互いに離間
した球状黒鉛の中間領域に5体積%以下形成され、残部
が実質的にフェライト組織であることを特徴とするもの
であって、黒鉛を起点とした亀裂の生成を起こりにくく
すると共に互いに離間する球状黒鉛鋳鉄の中間領域での
亀裂の伝播を起こりにくくすることにより、高強度およ
び高靱性が得られる。本発明の高靱性球状黒鉛鋳鉄の製
造方法は、基地組織がフェライト組織と5体積%以下の
パーライト組織とを含有する球状黒鉛鋳鉄を16.7K
/sec以上の昇温速度で昇温し、1153〜1373
Kで保持して球状黒鉛の周囲を選択的に10〜60体積
%をオーステナイト化し、次いでオーステンパにより球
状黒鉛鋳鉄の周囲の前記10〜60体積%のオーステナ
イト組織を恒温変態させることにより、オースフェライ
ト組織と残留オーステナイトとからなる混合組織とする
ことができる。
As described above, in the high-toughness spheroidal cast iron of the present invention, the mixed structure composed of the ausferrite structure and the retained austenite is selectively contained around the spheroidal graphite in an amount of 10-6.
0% by volume, a mixed structure composed of the ausferrite structure and the retained austenite is formed in an amount of 5% by volume or less in an intermediate region of spheroidal graphite separated from each other, and the balance is substantially a ferrite structure. By making it difficult to generate cracks starting from graphite and preventing cracks from propagating in an intermediate region of spheroidal graphite cast iron that is separated from each other, high strength and high toughness can be obtained. The method for producing a high-toughness spheroidal graphite cast iron according to the present invention comprises 16.7K of spheroidal graphite cast iron having a matrix structure containing a ferrite structure and a pearlite structure of 5% by volume or less.
The temperature rises at a temperature increase rate of not less than / sec, and is 1153 to 1373.
By holding K for 10 to 60% by volume austenite around the spheroidal graphite, and then subjecting the austenite structure of 10 to 60% by volume around the spheroidal graphite cast iron to austenite by an austempered transformation to obtain an ausferrite structure. And a retained austenite.

【図面の簡単な説明】[Brief description of drawings]

【図1】黒鉛粒周囲のオースフェライトと残留オーステ
ナイトとからなる混合組織の体積%と衝撃値の関係を示
す線図である。
FIG. 1 is a diagram showing a relationship between a volume percentage of a mixed structure composed of aus ferrite around a graphite grain and retained austenite and an impact value.

【図2】実施例で得られた金属組織を模式的に示す図で
ある。
FIG. 2 is a diagram schematically showing a metallographic structure obtained in an example.

【図3】本発明の実施例の金属組織を表す100倍の顕
微鏡写真である。
FIG. 3 is a 100 × micrograph showing a metal structure of an example of the present invention.

【図4】比較例の金属組織を表す100倍の顕微鏡写真
である。
FIG. 4 is a 100 × micrograph showing a metal structure of a comparative example.

【図5】他の比較例の金属組織を表す100倍の顕微鏡
写真である。
FIG. 5 is a 100 × photomicrograph showing the metal structure of another comparative example.

【図6】本発明の実施例および比較例の引張強さおよび
衝撃値を表した棒グラフである。
FIG. 6 is a bar graph showing the tensile strength and impact value of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・黒鉛の回りの(オースフェライト+残留オー
ステナイト)混合組織 2・・・・互いに離間した球状黒鉛の中間領域に形成さ
れた(オースフェライト+残留オーステナイト)混合組
1 ・ ・ ・ ・ (Ausferrite + retained austenite) mixed structure around graphite 2 ・ ・ ・ ・ (Ausferrite + retained austenite) mixed structure formed in the intermediate region of spheroidal graphite separated from each other

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月8日[Submission date] March 8, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 オースフェライト組織と残留オーステナ
イトとからなる混合組織が球状黒鉛の回りに選択的に1
0〜60体積%形成されると共に、該オースフェライト
組織と該残留オーステナイトとからなる混合組織が互い
に離間した球状黒鉛の中間領域に5体積%以下形成さ
れ、残部が実質的にフェライト組織であることを特徴と
する高靱性球状黒鉛鋳鉄。
1. A mixed structure composed of an aus ferrite structure and retained austenite is selectively formed around the spheroidal graphite.
0 to 60% by volume, a mixed structure consisting of the ausferrite structure and the retained austenite is formed in an amount of 5% by volume or less in an intermediate region of spheroidal graphite separated from each other, and the balance is substantially a ferrite structure. High toughness spheroidal graphite cast iron characterized by.
【請求項2】 前記高靱性球状黒鉛鋳鉄の組成が重量比
で、C;3.5〜4.0%、Si;2.2〜2.8%、
Mn;0.2〜0.5%、P;0.05%以下、S;
0.02%以下、Mg;0.03〜0.06%を含有
し、残部が実質的にFeであることを特徴とする請求項
1に記載の高靱性球状黒鉛鋳鉄。
2. The composition of the high-toughness spheroidal graphite cast iron is C: 3.5-4.0%, Si: 2.2-2.8% by weight ratio.
Mn; 0.2-0.5%, P; 0.05% or less, S;
The high-toughness spheroidal graphite cast iron according to claim 1, containing 0.02% or less, Mg; 0.03 to 0.06%, and the balance being substantially Fe.
【請求項3】 基地組織がフェライト組織と5体積%以
下のパーライト組織とを含有する球状黒鉛鋳鉄を16.
7K/sec以上で昇温し、1153〜1373Kで保
持して球状黒鉛の周囲を選択的に10〜60体積%をオ
ーステナイト化し、次いでオーステンパにより球状黒鉛
鋳鉄の周囲の前記10〜60体積%のオーステナイト組
織を恒温変態させオースフェライト組織と残留オーステ
ナイトとからなる混合組織とすることを特徴とする高靱
性球状黒鉛鋳鉄の製造方法。
3. A spheroidal graphite cast iron whose matrix structure contains a ferrite structure and a pearlite structure of 5% by volume or less.
The temperature is raised at 7 K / sec or more and maintained at 1153 to 1373 K to selectively austenite the periphery of spheroidal graphite in an amount of 10 to 60% by volume, and then austemper the austenite in an amount of 10 to 60% by volume around the spheroidal graphite cast iron. A method for producing a high-toughness spheroidal graphite cast iron, which comprises isothermally transforming a structure into a mixed structure composed of an ausferrite structure and retained austenite.
【請求項4】 前記高靱性球状黒鉛鋳鉄の組成が重量比
で、C;3.5〜4.0%、Si;2.2〜2.8%、
Mn;0.2〜0.5%、P;0.05%以下、S;
0.02%以下、Mg;0.03〜0.06%を含有
し、残部が実質的にFeであることを特徴とする請求項
3に記載の高靱性球状黒鉛鋳鉄の製造方法。
4. The composition of the high-toughness spheroidal graphite cast iron is C: 3.5-4.0%, Si: 2.2-2.8%, in a weight ratio.
Mn; 0.2-0.5%, P; 0.05% or less, S;
The method for producing a high-toughness spheroidal graphite cast iron according to claim 3, wherein the content is 0.02% or less, Mg; 0.03 to 0.06%, and the balance is substantially Fe.
【請求項5】 前記オーステンパによる恒温変態温度が
543〜683Kであることを特徴とする請求項3また
は請求項4に記載の高靱性球状黒鉛鋳鉄の製造方法。
5. The method for producing a high-toughness spheroidal graphite cast iron according to claim 3, wherein the isothermal transformation temperature by the austemper is 543 to 683K.
JP3738095A 1995-02-24 1995-02-24 Spheroidal graphite cast iron with high toughness and its production Pending JPH08232040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3738095A JPH08232040A (en) 1995-02-24 1995-02-24 Spheroidal graphite cast iron with high toughness and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3738095A JPH08232040A (en) 1995-02-24 1995-02-24 Spheroidal graphite cast iron with high toughness and its production

Publications (1)

Publication Number Publication Date
JPH08232040A true JPH08232040A (en) 1996-09-10

Family

ID=12495926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3738095A Pending JPH08232040A (en) 1995-02-24 1995-02-24 Spheroidal graphite cast iron with high toughness and its production

Country Status (1)

Country Link
JP (1) JPH08232040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510072A (en) * 2004-08-18 2008-04-03 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング High hardness wear resistance Corrosion resistance cast iron
JP2008510071A (en) * 2004-08-18 2008-04-03 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Cast iron material for piston rings
NL2002248C2 (en) * 2008-11-24 2010-05-26 Weweler Nv Hardening of flexible trailing arms.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510072A (en) * 2004-08-18 2008-04-03 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング High hardness wear resistance Corrosion resistance cast iron
JP2008510071A (en) * 2004-08-18 2008-04-03 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Cast iron material for piston rings
NL2002248C2 (en) * 2008-11-24 2010-05-26 Weweler Nv Hardening of flexible trailing arms.
WO2010059037A1 (en) * 2008-11-24 2010-05-27 Weweler Nederland B.V. Hardening of flexible trailing arms
EP2594652A1 (en) * 2008-11-24 2013-05-22 VDL Weweler B.V. Hard flexible trailing arms
US8480104B2 (en) 2008-11-24 2013-07-09 Weweler Nederland B.V. Hardening of flexible trailing arms

Similar Documents

Publication Publication Date Title
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
KR20010074896A (en) Cold workable steel bar or wire and process
JPWO2011062012A1 (en) Steel wire for low-temperature annealing and manufacturing method thereof
CN101287851A (en) Oil tempering wire and manufacturing method thereof
JPH09209086A (en) Steel for manufacturing forgings and method of manufacturing forgings
CN104911501B (en) A kind of superhigh intensity high-carbon dislocation type martensite steel and preparation method thereof
CN109161667A (en) A kind of bearing components and preparation method thereof
JPH08127845A (en) Graphite steel,its article and its production
JP3751250B2 (en) Improved bainite steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3544131B2 (en) Manufacturing method of medium carbon steel
CN108220805B (en) Steel wire for high-strength spring having excellent stress corrosion resistance and method for producing same
WO2021065713A1 (en) Method for spheroidizing annealing case-hardening steel
JPH06340946A (en) Non-tempered steel with high toughness and preparation thereof
JP4423608B2 (en) Hardened tool steel material
JPH08232040A (en) Spheroidal graphite cast iron with high toughness and its production
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP4835972B2 (en) Method for producing tool steel intermediate material and method for producing tool steel
CN113136529B (en) Medium manganese drill rod and preparation method thereof
TW200418997A (en) High tensile strength steel having excellent fatigue strength and method of producing the same
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JP2518873B2 (en) Steel plate for heat treatment
JP2794881B2 (en) High toughness spheroidal graphite cast iron and method for producing the same
JP3823347B2 (en) High yield strength, high ductility cast iron and manufacturing method thereof
JP6752624B2 (en) Manufacturing method of carburized steel