[go: up one dir, main page]

JPH08229006A - Ophthalmic device - Google Patents

Ophthalmic device

Info

Publication number
JPH08229006A
JPH08229006A JP7068635A JP6863595A JPH08229006A JP H08229006 A JPH08229006 A JP H08229006A JP 7068635 A JP7068635 A JP 7068635A JP 6863595 A JP6863595 A JP 6863595A JP H08229006 A JPH08229006 A JP H08229006A
Authority
JP
Japan
Prior art keywords
light
eye
detecting
eyelid
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7068635A
Other languages
Japanese (ja)
Other versions
JP3571102B2 (en
Inventor
Kouki Katou
功騎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP06863595A priority Critical patent/JP3571102B2/en
Publication of JPH08229006A publication Critical patent/JPH08229006A/en
Application granted granted Critical
Publication of JP3571102B2 publication Critical patent/JP3571102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE: To provide an efficient measurement while preventing misoperation and reduce burdens to an operator and a subject, by receiving a scattered light of a target forming means which is reflected by eyelids, by detecting the presence of eyelid or not from received light amount, and by stopping initiation of operation when the eyelids are detected. CONSTITUTION: Light bundles ejected from light sources 10 and 20 do not focus into image and are reflected on an eyelid surface when cornea Ec is covered by the eyelid by means of blinking of a test eye. This scattered light is incident into each detecting optic system through the same pathway as the reflected light of the cornea Ec. A measurement stopping signal is outputted to a measurement control system 31 when the output is larger than a standard value by comparing the output signal of a receiving element 16 with the standard value, by means of a stopping signal generating system 33. A trigger signal is stopped to be generated and the operation of a measurement system 32 is stopped regardless of input of alignment completion signal from a position operating system 30, when this stopping signal is received by the measurement control system 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検眼を測定する眼科
装置、さらに詳しく述べると被検眼と装置とを所定の位
置関係にアライメントするアライメント機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic apparatus for measuring an eye to be inspected, and more specifically to an alignment mechanism for aligning the eye to be inspected and the apparatus in a predetermined positional relationship.

【0002】[0002]

【従来の技術】非接触式眼圧計や他覚式眼屈折力測定装
置等の眼科装置では、被検眼と装置との位置調整(アラ
イメント)が必要であり、アライメント状態を検出する
機構としては次のものが知られている。被検眼角膜に向
けてアライメント光を投光することによって角膜反射像
を形成し、角膜反射像の位置を分割受光素子やPSD等
の位置検出素子により検出する。この検出位置に基づ
き、手動操作または自動的に被検眼と装置とのアライメ
ントを行う。位置検出素子が角膜反射像を所定の位置に
検出すると、スタ−ト信号を発し自動的に測定を開始す
る。
2. Description of the Related Art In an ophthalmologic apparatus such as a non-contact tonometer and an objective eye refractive power measuring apparatus, position adjustment (alignment) between the eye to be inspected and the apparatus is necessary. Are known. A corneal reflection image is formed by projecting alignment light toward the cornea of the eye to be inspected, and the position of the corneal reflection image is detected by a position detection element such as a divided light receiving element or PSD. Based on this detection position, the alignment between the eye to be inspected and the apparatus is performed manually or automatically. When the position detecting element detects the corneal reflection image at a predetermined position, a start signal is emitted and the measurement is automatically started.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のような
従来のアライメント機構では、被検眼の瞬きがあると誤
ってアライメントが完了したと判断し、測定を開始しま
うという欠点がある。被検眼の瞬きによりアライメント
光はまぶたによって散乱され、この散乱光は角膜反射光
と同様に位置検出素子により受光される。散乱光は状況
によって位置検出素子に一様に入射することがあり、位
置検出素子が入射する光量分布等の検出により被検眼の
位置を検出する形式のときには、位置検出素子の出力は
被検眼のアライメントが完了した状態と区別がつかな
い。このため、装置は不要な測定を開始し、無駄な時間
が費やされるのみならず、検者及び被検者に余分な負担
をかけるという欠点があった。
However, the conventional alignment mechanism as described above has a drawback in that if the eye to be inspected blinks, it is erroneously determined that the alignment has been completed and the measurement is started. The alignment light is scattered by the eyelids due to the blinking of the eye to be inspected, and the scattered light is received by the position detecting element similarly to the cornea reflected light. The scattered light may be uniformly incident on the position detecting element depending on the situation, and in the case of the type in which the position of the eye to be inspected is detected by detecting the distribution of the amount of light incident on the position detecting element, the output of the position detecting element is It is indistinguishable from the completed alignment. For this reason, the apparatus has a drawback that unnecessary measurement is started and unnecessary time is spent, and an extra burden is imposed on the examiner and the subject.

【0004】本発明は、上記欠点に鑑み案出されたもの
であり、装置の誤動作を防止して効率の良い測定を可能
にし、検者及び被検者にかける負担を軽減する眼科装置
を提供することを技術課題とする。
The present invention has been devised in view of the above drawbacks, and provides an ophthalmologic apparatus which prevents malfunction of the apparatus, enables efficient measurement, and reduces the burden on the examiner and the examinee. To do is a technical issue.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、次のような構成を有することを特徴とす
る。 (1) 被検眼にアライメント用指標を形成する指標形
成手段と、該アライメント用指標を検出する検出手段
と、該検出手段の検出結果に基づいてアライメント状態
を判断する判断手段と、被検眼を測定するための測定手
段とを持つ眼科装置において、まぶたで反射された前記
指標形成手段の散乱光を受光する受光手段と、該受光手
段の受光量からまぶたの有無を検知する検知手段と、該
検知手段によりまぶたを検知したときは前記測定手段の
作動開始を停止させる停止手段と、を設けたことを特徴
とする。
In order to solve the above problems, the present invention is characterized by having the following configuration. (1) Index forming means for forming an alignment index on the eye to be inspected, detection means for detecting the alignment index, determination means for determining an alignment state based on the detection result of the detection means, and measurement of the eye to be inspected In an ophthalmologic apparatus having a measuring means for doing so, a light receiving means for receiving the scattered light of the index forming means reflected by the eyelid, a detecting means for detecting the presence or absence of the eyelid based on the amount of light received by the light receiving means, and the detecting means. Stop means for stopping the operation start of the measuring means when the eyelid is detected by the means.

【0006】(2) (1)の検知手段は、前記受光手
段による受光量と所定の基準レベルとを比較する比較手
段を有することを特徴とする。
(2) The detecting means of (1) is characterized by having a comparing means for comparing the amount of light received by the light receiving means with a predetermined reference level.

【0007】(3) (1)の眼科装置は、さらに前記
判断手段が所定の測定開始条件を充足しているときは前
記測定手段を作動させるトリガ信号を発する制御手段を
持つことを特徴とする。
(3) The ophthalmologic apparatus of (1) is characterized by further having control means for issuing a trigger signal for operating the measuring means when the judging means satisfies a predetermined measurement start condition. .

【0008】(4) (1)の眼科装置は、被検眼角膜
に圧縮気体を噴射して角膜を変形させる流体噴射手段
と、被検眼の角膜変形状態を検出する角膜変形検出手段
と、該角膜変形検出手段の検出結果に基づいて被検眼の
眼圧を測定する非接触式眼圧計であることを特徴とす
る。
(4) In the ophthalmologic apparatus of (1), fluid ejecting means for ejecting a compressed gas to the cornea of the eye to be deformed, corneal deformation detecting means for detecting the corneal deformation state of the eye to be inspected, and the cornea. It is a non-contact tonometer that measures the intraocular pressure of the eye to be inspected based on the detection result of the deformation detecting means.

【0009】(5) (4)の角膜変形検出手段は、前
記受光手段と兼用されることを特徴とする。
(5) The corneal deformation detecting means of (4) is also used as the light receiving means.

【0010】[0010]

【実施例1】以下、本発明の実施例を図面に基づいて説
明する。図1は実施例1の装置のアライメント光学系と
制御系の概略構成を示す図であり、光学系は上から見た
図を示している。なお、測定系については非接触式眼圧
計(図5参照)や眼屈折力測定装置等周知の種々の構成
のものが使用できるが、その説明は省略している。光学系 (観察光学系)Lは観察光学系の光軸を示し、観察光軸
L上にはハ−フミラ−1、対物レンズ2、フィルタ3、
ハ−フミラ−4、CCDカメラ5が設けられている。フ
ィルタ3は後述する正面指標投影光学系の光束の波長を
透過し、距離指標投影光学系の光束の波長を透過しない
特性を持ち、CCDカメラ5及び正面指標検出光学系の
検出素子に不要なノイズ光が入射することを防止する。
6は被検眼Eの前眼部像を映し出すテレビモニタであ
る。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an alignment optical system and a control system of the apparatus of Example 1, and the optical system is a view seen from above. As the measurement system, various known configurations such as a non-contact tonometer (see FIG. 5) and an eye-refractive-power measuring device can be used, but the description thereof is omitted. An optical system (observation optical system) L indicates the optical axis of the observation optical system, and on the observation optical axis L, Haarmylar-1, objective lens 2, filter 3,
A half mirror-4 and a CCD camera 5 are provided. The filter 3 has the characteristic of transmitting the wavelength of the light flux of the front index projection optical system, which will be described later, and not transmitting the wavelength of the light flux of the distance index projection optical system, and unnecessary noise in the CCD camera 5 and the detection elements of the front index detection optical system. Prevents light from entering.
Reference numeral 6 denotes a television monitor which displays an anterior ocular segment image of the eye E to be inspected.

【0011】(正面視標投影光学系)10は近赤外光を
発する正面視標投影用の光源、11は投光レンズであ
る。光源10からの光は投光レンズ11により平行光束
とされた後、ハ−フミラ−1により光軸Lにそって被検
眼Eへ正面から投光される。 (正面視標検出光学系)正面視標検出光学系は、観察光
学系と共用する対物レンズ2及びフィルタ3、光軸La
上に配置されたハ−フミラ−12、PSD等の2次元位
置検出素子13から構成される。2次元位置検出素子1
3の中心は光軸La上に位置し、2次元位置検出素子1
3は、光軸Laと交わる点を原点として入射した光束の
光量分布の重心位置の偏位から被検眼の上下左右方向を
検出する。 (まぶた検出光学系)Lbはハ−フミラ−12によって
光軸Laから分岐されたまぶた検出光学系の光軸であ
る。まぶた検出光学系は観察光学系の対物レンズ2及び
フィルタ3を共用し、光軸Lbからずれた位置に開口を
持つ絞り15、受光素子16を有する。
(Frontal target projection optical system) 10 is a light source for frontal target projection that emits near-infrared light, and 11 is a projection lens. The light from the light source 10 is collimated by the light projecting lens 11 and is then projected from the front to the eye E to be inspected along the optical axis L by the Haarmylar-1. (Front optotype detection optical system) The front optotype detection optical system includes an objective lens 2 and a filter 3, which are also used as an observation optical system, and an optical axis La.
It is composed of a half mirror 12 and a two-dimensional position detecting element 13 such as a PSD arranged above. Two-dimensional position detection element 1
The center of 3 is located on the optical axis La, and the two-dimensional position detecting element 1
Reference numeral 3 detects the vertical and horizontal directions of the eye to be inspected from the deviation of the barycentric position of the light amount distribution of the incident light beam with the origin intersecting with the optical axis La. (Eyelid detection optical system) Lb is an optical axis of the eyelid detection optical system branched from the optical axis La by the Haarmylar-12. The eyelid detection optical system shares the objective lens 2 and the filter 3 of the observation optical system, and has a diaphragm 15 and a light receiving element 16 having an opening at a position displaced from the optical axis Lb.

【0012】(距離指標投影光学系)Mは距離指標投影
光学系の光軸であり、光軸Mは観察光軸Lに対して斜め
に交差して設けられている。光軸M上には光源10と異
なる波長の光を発する光源20、投光レンズ21が配置
されている。 (距離指標検出光学系)Nは距離指標検出光学系の光軸
であり、光軸Nは光軸Lに対して光軸Mと対称に配置さ
れている。光軸N上には受光レンズ22、フィルタ2
3、円柱レンズ24、1次元位置検出素子25が配置さ
れる。フィルタ23は光源20の波長の光を透過し、正
面指標投影光学系の光源10の波長の光を透過しない特
性を持ち、位置検出素子25に光源10の角膜反射光束
が入射することを防止する。位置検出素子25は1次元
のPSDであり、その中心は光軸N上に位置する。1次
元位置検出素子25は被検眼の前後方向の位置をその光
量分布の重心位置から検出する。
(Distance index projection optical system) M is an optical axis of the distance index projection optical system, and the optical axis M is provided so as to obliquely intersect the observation optical axis L. On the optical axis M, a light source 20 that emits light having a wavelength different from that of the light source 10 and a light projecting lens 21 are arranged. (Distance index detection optical system) N is an optical axis of the distance index detection optical system, and the optical axis N is arranged symmetrical to the optical axis M with respect to the optical axis L. A light receiving lens 22 and a filter 2 are provided on the optical axis N.
3, a cylindrical lens 24, and a one-dimensional position detecting element 25 are arranged. The filter 23 has a characteristic of transmitting light of the wavelength of the light source 20 and not transmitting light of the wavelength of the light source 10 of the front index projection optical system, and prevents the corneal reflected light flux of the light source 10 from entering the position detection element 25. . The position detection element 25 is a one-dimensional PSD, and its center is located on the optical axis N. The one-dimensional position detecting element 25 detects the position of the eye to be examined in the front-back direction from the position of the center of gravity of the light amount distribution.

【0013】制御系 30は2次元位置検出素子13及び1次元位置検出素子
25からの出力信号に所定の処理を施して被検眼の位置
を求める位置演算系である。31は測定系32を制御す
る測定制御系である。33は測定系32の作動を停止さ
せるための測定停止信号を発生する停止信号発生系であ
り、停止信号発生系33は受光素子16からの出力信号
に所定の処理を施し、その信号と予め設定記憶された基
準値(後述する)とを比較することにより測定停止信号
を発生する。
The control system 30 is a position calculation system that obtains the position of the eye to be inspected by subjecting the output signals from the two-dimensional position detecting element 13 and the one-dimensional position detecting element 25 to predetermined processing. Reference numeral 31 is a measurement control system for controlling the measurement system 32. Reference numeral 33 denotes a stop signal generation system that generates a measurement stop signal for stopping the operation of the measurement system 32. The stop signal generation system 33 performs a predetermined process on the output signal from the light receiving element 16 and presets the signal. A measurement stop signal is generated by comparing with a stored reference value (described later).

【0014】以上のような構成を持つ装置において、そ
の動作を説明する。正面視標投影光学系により光源10
の光束が被検眼Eの角膜Ecに投光されると、この光束
により角膜Ecでは光源10の角膜反射像である虚像の
指標i1を形成する。指標i1の光束は観察光学系によ
りCCDカメラ5の撮像素子上に指標i1の像を形成す
る。検者はこの指標像と、図示なき照明光源に照明され
た被検眼前眼部像をテレビモニタ6で観察し、アライメ
ント操作のための情報とする。
The operation of the apparatus having the above configuration will be described. Light source 10 by frontal target projection optical system
When this light flux is projected onto the cornea Ec of the eye E to be examined, this light flux forms a virtual image index i1 which is a corneal reflection image of the light source 10 on the cornea Ec. The luminous flux of the index i1 forms an image of the index i1 on the image pickup device of the CCD camera 5 by the observation optical system. The examiner observes the index image and the anterior ocular segment image of the subject's eye illuminated by an illumination light source (not shown) on the television monitor 6 and uses them as information for the alignment operation.

【0015】角膜Ecで反射した正面指標i1の光束
は、ハ−フミラ−4によって正面視標検出光学系に導か
れ、2次元位置検出素子13に受光される。また、正面
視標検出光学系に導かれた光束の一部は、ハ−フミラ−
12によりまぶた検出光学系に入射するが、位置調整が
完了した時には絞り15の開口が光軸Lbからずらして
あるので、受光素子16には光束は入射しない(図2の
(c)参照)。一方、光源20を出射した光は投光レン
ズ21によりほぼ平行光束とされ、光軸Mにそって角膜
Ecへ斜め前から投光される。角膜Ecで鏡面反射した
光束は光源20の虚像である指標i2を形成し、角膜反
射光は受光レンズ22によりフィルタ23、円柱レンズ
24を介して検出素子25上に入射する。円柱レンズ2
4はその母線方向を1次元位置検出素子25の検出方向
と一致するように配置することにより、被検眼が上下に
振れても1次元位置検出素子25は指標i2の光束を受
光することができる。
The light beam of the front index i1 reflected by the cornea Ec is guided to the front target detection optical system by the Hahmira-4 and is received by the two-dimensional position detection element 13. In addition, a part of the light flux guided to the front target detection optical system is a half mirror.
Although it enters the eyelid detection optical system by 12, the light flux does not enter the light receiving element 16 because the aperture of the diaphragm 15 is displaced from the optical axis Lb when the position adjustment is completed (see (c) of FIG. 2). On the other hand, the light emitted from the light source 20 is made into a substantially parallel light flux by the light projecting lens 21, and is projected obliquely from the front to the cornea Ec along the optical axis M. The light flux specularly reflected by the cornea Ec forms an index i2 that is a virtual image of the light source 20, and the cornea reflected light is incident on the detection element 25 via the filter 23 and the cylindrical lens 24 by the light receiving lens 22. Cylindrical lens 2
4 is arranged so that the generatrix direction thereof coincides with the detection direction of the one-dimensional position detecting element 25, so that the one-dimensional position detecting element 25 can receive the light flux of the index i2 even if the eye to be inspected is vertically swung. .

【0016】検者が装置のアライメントを行い、指標i
1の光束が2次元位置検出素子13上に、指標i2の光
束が1次元検出素子25上に入射するようになると、そ
れぞれの位置検出素子は指標像を検出する。図2は被検
眼と装置とが所定の位置関係に位置調整されたときのそ
れぞれの素子に入射する光束の状態を示す図であり、
(a)は2次元位置検出素子13を光軸La方向から見
た図、(b)は1次元位置検出素子25を光軸N方向か
ら見た図、(c)は受光素子16を光軸Lb方向から見
た図である。図中の点線は入射光束の分布を示す。位置
演算系30は2つの位置検出素子13及び25からの信
号によりそれぞれの指標像の位置を算出し、両者の指標
像が共に所定の許容誤差内にあると判定すると、測定制
御系31にアライメント完了の信号を出力する。被検眼
が瞬きをせずに正常にアライメントが行われた場合に
は、角膜反射の指標i1の光束は受光素子16に入射し
ないので停止信号発生系33は停止信号を出力しない。
測定制御系はトリガ信号を測定系32に発し、測定系3
2は測定を開始する。
The inspector performs the alignment of the device, and the index i
When the light flux of 1 enters the two-dimensional position detecting element 13 and the light flux of the index i2 enters the one-dimensional detecting element 25, each position detecting element detects the index image. FIG. 2 is a diagram showing a state of a light beam incident on each element when the eye to be inspected and the device are adjusted in a predetermined positional relationship,
(A) is a view of the two-dimensional position detecting element 13 viewed from the optical axis La direction, (b) is a view of the one-dimensional position detecting element 25 viewed from the optical axis N direction, and (c) is a light receiving element 16 of the optical axis. It is the figure seen from the Lb direction. The dotted line in the figure shows the distribution of the incident light flux. The position calculation system 30 calculates the position of each index image based on the signals from the two position detection elements 13 and 25, and when both index images are determined to be within a predetermined tolerance, the position calculation system 30 aligns them with the measurement control system 31. Output a completion signal. When the eye to be inspected is normally aligned without blinking, the stop signal generation system 33 does not output the stop signal because the light flux of the index i1 of the corneal reflection does not enter the light receiving element 16.
The measurement control system issues a trigger signal to the measurement system 32, and the measurement system 3
2 starts the measurement.

【0017】次に、被検眼が瞬きをして角膜Ecがまぶ
たに覆われると、光源10及び光源20から出射した光
束は像を結ぶことなく、まぶた表面でそれぞれ散乱反射
される。この散乱光は角膜Ecの反射光と同じ経路を経
て各検出光学系に入射する(図3参照)。図中の点線は
入射光束の分布を示し、まぶたによる散乱光は大きく広
がって各素子に入射し、位置検出素子13及び1次元位
置検出素子25では光量分布の重心位置を検出している
ため、図2の状態と図3の状態を弁別ができず、図3の
状態でもその重心位置が所定の許容誤差内であれば位置
演算系30はアライメント完了と判別し、その信号を測
定制御系31に出力する。まぶたが閉じられた状態で
は、まぶた検出光学系の受光素子16には図3の(c)
で示すように光束の一部が入射している。図4は受光素
子16のまぶたが閉じられることなくアライメントが完
了したときの出力例(イ)と、まぶたが閉じられたとき
の出力例(ロ)を示しており、あらかじめ基準値である
しきい値I0を設定しておくことにより2つの状態を判
別できる。したがって、受光素子16の出力からまぶた
を検知することができる。
Next, when the eye E blinks and the cornea Ec is covered by the eyelids, the light beams emitted from the light sources 10 and 20 are scattered and reflected on the surfaces of the eyelids without forming an image. This scattered light enters each detection optical system through the same path as the reflected light of the cornea Ec (see FIG. 3). The dotted line in the figure shows the distribution of the incident light flux, and the scattered light from the eyelids spreads widely and enters each element, and the position detecting element 13 and the one-dimensional position detecting element 25 detect the barycentric position of the light amount distribution. If the state of FIG. 2 and the state of FIG. 3 cannot be discriminated, and the position of the center of gravity is within the predetermined tolerance even in the state of FIG. Output to. In the state where the eyelids are closed, the light receiving element 16 of the eyelid detection optical system is shown in FIG.
As shown by, a part of the luminous flux is incident. FIG. 4 shows an output example (a) when alignment is completed without closing the eyelids of the light receiving element 16 and an output example (b) when the eyelids are closed, and the threshold value is a reference value in advance. Two states can be discriminated by setting the value I 0 . Therefore, the eyelids can be detected from the output of the light receiving element 16.

【0018】停止信号発生系33は、受光素子16の出
力信号と基準値(I0 )とを比較することにより、基準
値を越える出力があったときには測定停止信号を測定制
御系31に出力する。測定制御系31はこの停止信号を
受けたときは、位置演算系30からのアライメント完了
信号の入力にかかわらずトリガ信号の発生を停止し、測
定系32を作動させない。このように瞬きによって検出
された被検眼偏位信号が所定の許容誤差内におかれたと
しても、装置は瞬きによるものであることを判別するた
め、誤って測定を開始することを防止することができ
る。
The stop signal generation system 33 compares the output signal of the light receiving element 16 with the reference value (I 0 ) and outputs a measurement stop signal to the measurement control system 31 when an output exceeding the reference value is detected. . When receiving the stop signal, the measurement control system 31 stops the generation of the trigger signal regardless of the input of the alignment completion signal from the position calculation system 30, and does not operate the measurement system 32. In this way, even if the eye deviation signal detected by blinking falls within a predetermined tolerance, the device determines that it is due to blinking, and thus it is possible to prevent erroneous measurement start. You can

【0019】[0019]

【実施例2】実施例2は本発明を非接触式眼圧計に適用
したものであり、測定系の角膜変形状態を検出するため
の光学系と共用させる構成としている。図5はその流体
噴射機構、光学系及び制御系の概略構成を示した図であ
る。図において図1と共通な要素については同一の符号
を付し、その説明は省略する。非接触式眼圧計は、被検
眼角膜に圧縮気体を噴射して角膜を変形させるととも
に、その角膜で反射された光束を受光光学系で受光し、
その受光量により角膜が所定の状態に変形されたことを
検出し、所定状態に変形された気体圧を得、その気体圧
に基づいて眼圧を測定するものであるが、本明細書では
本発明と関連する要素のみの説明にとどめ、測定機構自
体の詳細な説明は本出願人による特願平3−29415
号(発明の名称「非接触式眼圧計」)の記載を援用す
る。
Second Embodiment A second embodiment is a case where the present invention is applied to a non-contact tonometer and is configured to be shared with an optical system for detecting a corneal deformation state of a measurement system. FIG. 5 is a diagram showing a schematic configuration of the fluid ejection mechanism, the optical system, and the control system. In the figure, the elements common to those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The non-contact tonometer deforms the cornea by injecting compressed gas onto the cornea of the eye to be inspected, and receives the light flux reflected by the cornea by the light receiving optical system,
Detecting that the cornea is deformed to a predetermined state by the amount of received light, obtain the gas pressure deformed to a predetermined state, and measure the intraocular pressure based on the gas pressure. Only the elements related to the invention will be described, and the detailed description of the measuring mechanism itself will be made by the present applicant in Japanese Patent Application No. 3-29415.
No. (Invention title “Non-contact tonometer”) is incorporated by reference.

【0020】気体噴射機構は、シリンダ40、ソレノイ
ド41により駆動されて往復するピストン42、圧縮気
体の噴射口のノズル43、ノズル43を保持するガラス
部材45、シリンダ40の後壁を構成する後壁窓46、
シリンダ40内の圧力を検出する圧力センサ47等から
構成される。圧縮気体は測定系32がソレノイド41を
駆動してピストン42で押圧することにより発生し、ノ
ズル43から角膜Ecに向けて噴射される。
The gas injection mechanism includes a cylinder 40, a piston 42 driven by a solenoid 41 to reciprocate, a nozzle 43 for injecting a compressed gas, a glass member 45 for holding the nozzle 43, and a rear wall constituting a rear wall of the cylinder 40. Window 46,
It is composed of a pressure sensor 47 and the like for detecting the pressure in the cylinder 40. The compressed gas is generated by the measurement system 32 driving the solenoid 41 and pressing it with the piston 42, and is ejected from the nozzle 43 toward the cornea Ec.

【0021】50は角膜変形検出光学系であり、光源2
0(距離指標検出光学系の光源と共用される)の光束の
角膜反射光を検出し、角膜Ecの変形状態を検出する。
角膜変形検出光学系50は、距離指標検出光学系の受光
レンズ22及びフィルタ23を共用し、光軸N上に配置
されたハ−フミラ−51、受光素子52、受光素子52
への入射光を制限する絞り53から構成される。絞り5
3は位置調整が完了して測定が行われ、角膜Ecが変形
されて所定形状になったときに光源20と共役になる位
置に設けられている。角膜変形検出光学系50はまぶた
検出光学系と共用され、受光素子52はアライメント時
のまぶたによる反射光を検出する。これは角膜とまぶた
とでは、まぶたの方がより平面に近いため、アライメン
が完了されたときと、まぶたが閉じられたときでは、ま
ぶたが閉じられたときの方が受光素子52の受光量が多
いことを利用している。
Reference numeral 50 denotes a corneal deformation detecting optical system, which is a light source 2
The corneal reflected light of the light flux of 0 (shared with the light source of the distance index detection optical system) is detected to detect the deformed state of the cornea Ec.
The corneal deformation detection optical system 50 shares the light receiving lens 22 and the filter 23 of the distance index detection optical system, and is provided with a half mirror 51, a light receiving element 52, and a light receiving element 52 arranged on the optical axis N.
It is composed of a diaphragm 53 that limits the incident light to the. Aperture 5
Reference numeral 3 is provided at a position that is conjugate with the light source 20 when the position adjustment is completed and the measurement is performed and the cornea Ec is deformed into a predetermined shape. The corneal deformation detection optical system 50 is also used as an eyelid detection optical system, and the light receiving element 52 detects light reflected by the eyelid during alignment. This is because the eyelid is closer to the flat surface between the cornea and the eyelid, and therefore, when the alignment is completed and when the eyelid is closed, the amount of light received by the light-receiving element 52 is smaller when the eyelid is closed. It takes advantage of many things.

【0022】55は測定波形処理系であり、測定波形処
理系55は測定時の受光素子52の受光量の変化を解析
し、ピ−ク検出処理等を行う。停止信号発生系33がア
ライメント中の受光素子52の受光量が、予め設定され
た基準値を越えたときに、停止信号を測定制御系31に
出力し、まばたきにより誤って測定を開始することを防
ぐことができる。このように、実施例2ではまぶた検出
のための専用の光学系を設けることなく、非接触式眼圧
計の周知の構成要素を利用できるので、より簡単に本機
能を装置に付加することができる。
Reference numeral 55 denotes a measurement waveform processing system. The measurement waveform processing system 55 analyzes changes in the amount of light received by the light receiving element 52 during measurement, and performs peak detection processing and the like. When the amount of light received by the light receiving element 52 being aligned by the stop signal generation system 33 exceeds a preset reference value, a stop signal is output to the measurement control system 31 to prevent false start of measurement due to blinking. Can be prevented. As described above, in the second embodiment, since the well-known constituent elements of the non-contact tonometer can be used without providing a dedicated optical system for eyelid detection, this function can be added to the apparatus more easily. .

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
装置の誤動作を防止して効率の良い測定を可能にし、検
者及び被検者にかける負担を軽減することができる。ま
た、非接触式眼圧計に本発明を適用するときには、非接
触式眼圧計が持つ構成要素を利用して簡便に上記効果を
果たすことができる。
As described above, according to the present invention,
It is possible to prevent malfunction of the device, enable efficient measurement, and reduce the burden on the examiner and the subject. Further, when the present invention is applied to the non-contact tonometer, the above-mentioned effects can be easily achieved by utilizing the constituent elements of the non-contact tonometer.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の装置のアライメント光学系と制御系
の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an alignment optical system and a control system of an apparatus according to a first embodiment.

【図2】被検眼と装置とが所定の位置関係に位置調整さ
れたときのそれぞれの素子に入射する光束の状態を示す
図である。
FIG. 2 is a diagram showing a state of a light beam incident on each element when the eye to be inspected and the device are adjusted in a predetermined positional relationship.

【図3】角膜がまぶたに覆われたときのそれぞれの素子
に入射する光束の状態を示す図である。
FIG. 3 is a diagram showing a state of a light beam incident on each element when the cornea is covered with an eyelid.

【図4】まぶたが閉じられることなくアライメントが完
了したときの出力例と、まぶたが閉じられたときの出力
例を示す図である。
FIG. 4 is a diagram showing an output example when alignment is completed without closing the eyelids and an output example when the eyelids are closed.

【図5】本発明を非接触式眼圧計に適用した実施例2の
装置の流体噴射機構、光学系及び制御系の概略構成を示
した図である。
FIG. 5 is a diagram showing a schematic configuration of a fluid ejection mechanism, an optical system, and a control system of an apparatus according to a second embodiment in which the present invention is applied to a non-contact tonometer.

【符号の説明】[Explanation of symbols]

10 光源 13 2次元位置検出素子 16 受光素子 20 光源 25 1次元位置検出素子 30 位置演算系 31 測定制御系 32 測定系 33 停止信号発生系 10 light source 13 two-dimensional position detection element 16 light receiving element 20 light source 25 one-dimensional position detection element 30 position calculation system 31 measurement control system 32 measurement system 33 stop signal generation system

【手続補正書】[Procedure amendment]

【提出日】平成7年11月30日[Submission date] November 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被検眼にアライメント用指標を形成する
指標形成手段と、該アライメント用指標を検出する検出
手段と、該検出手段の検出結果に基づいてアライメント
状態を判断する判断手段と、被検眼を測定するための測
定手段とを持つ眼科装置において、まぶたで反射された
前記指標形成手段の散乱光を受光する受光手段と、該受
光手段の受光量からまぶたの有無を検知する検知手段
と、該検知手段によりまぶたを検知したときは前記測定
手段の作動開始を停止させる停止手段と、を設けたこと
を特徴とする眼科装置。
1. An index forming means for forming an alignment index on an eye to be inspected, a detecting means for detecting the alignment index, a determining means for determining an alignment state based on a detection result of the detecting means, and an eye to be inspected. In an ophthalmologic apparatus having a measuring means for measuring, a light receiving means for receiving scattered light of the index forming means reflected by an eyelid, and a detecting means for detecting the presence or absence of an eyelid from the amount of light received by the light receiving means, An ophthalmologic apparatus comprising: stop means for stopping the operation start of the measuring means when the eyelid is detected by the detecting means.
【請求項2】 請求項1の検知手段は、前記受光手段に
よる受光量と所定の基準レベルとを比較する比較手段を
有することを特徴とする眼科装置。
2. The ophthalmologic apparatus according to claim 1, further comprising a comparing unit that compares the amount of light received by the light receiving unit with a predetermined reference level.
【請求項3】 請求項1の眼科装置は、さらに前記判断
手段が所定の測定開始条件を充足しているときは前記測
定手段を作動させるトリガ信号を発する制御手段を持つ
ことを特徴とする眼科装置。
3. The ophthalmologic apparatus according to claim 1, further comprising control means for issuing a trigger signal for activating the measuring means when the judging means satisfies a predetermined measurement start condition. apparatus.
【請求項4】 請求項1の眼科装置は、被検眼角膜に圧
縮気体を噴射して角膜を変形させる流体噴射手段と、被
検眼の角膜変形状態を検出する角膜変形検出手段と、該
角膜変形検出手段の検出結果に基づいて被検眼の眼圧を
測定する非接触式眼圧計であることを特徴とする眼科装
置。
4. The ophthalmologic apparatus according to claim 1, wherein fluid injection means for injecting a compressed gas onto the cornea of the eye to be inspected to deform the cornea, corneal deformation detection means for detecting a corneal deformation state of the eye to be inspected, and the corneal deformation. An ophthalmologic apparatus, which is a non-contact tonometer that measures the intraocular pressure of the eye to be inspected based on the detection result of the detection means.
【請求項5】 請求項4の角膜変形検出手段は、前記受
光手段と兼用されることを特徴とする眼科装置。
5. The ophthalmologic apparatus according to claim 4, wherein the corneal deformation detecting means is also used as the light receiving means.
JP06863595A 1995-02-28 1995-02-28 Ophthalmic equipment Expired - Fee Related JP3571102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06863595A JP3571102B2 (en) 1995-02-28 1995-02-28 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06863595A JP3571102B2 (en) 1995-02-28 1995-02-28 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JPH08229006A true JPH08229006A (en) 1996-09-10
JP3571102B2 JP3571102B2 (en) 2004-09-29

Family

ID=13379401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06863595A Expired - Fee Related JP3571102B2 (en) 1995-02-28 1995-02-28 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JP3571102B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149884A (en) * 1995-11-30 1997-06-10 Nidek Co Ltd Ophthalmological device
JP2011092598A (en) * 2009-10-30 2011-05-12 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011194106A (en) * 2010-03-23 2011-10-06 Topcon Corp Ophthalmologic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288035A (en) * 1988-09-22 1990-03-28 Canon Inc Noncontact tonometer
JPH0288032A (en) * 1988-09-22 1990-03-28 Canon Inc Ophthalmologic device
JPH0329415A (en) * 1989-04-20 1991-02-07 Werner Turck Gmbh & Co Kg Induction proximity switch
JPH04297226A (en) * 1991-01-30 1992-10-21 Nidek Co Ltd Non-contact type tonometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288035A (en) * 1988-09-22 1990-03-28 Canon Inc Noncontact tonometer
JPH0288032A (en) * 1988-09-22 1990-03-28 Canon Inc Ophthalmologic device
JPH0329415A (en) * 1989-04-20 1991-02-07 Werner Turck Gmbh & Co Kg Induction proximity switch
JPH04297226A (en) * 1991-01-30 1992-10-21 Nidek Co Ltd Non-contact type tonometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149884A (en) * 1995-11-30 1997-06-10 Nidek Co Ltd Ophthalmological device
JP2011092598A (en) * 2009-10-30 2011-05-12 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011194106A (en) * 2010-03-23 2011-10-06 Topcon Corp Ophthalmologic device

Also Published As

Publication number Publication date
JP3571102B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JP2009201636A (en) Non-contact type tonometer
JP2000107131A (en) Ophthalmologic apparatus
US5807273A (en) Ophthalmic apparatus
JP3108261B2 (en) Ophthalmic instruments
JP3320532B2 (en) Non-contact tonometer
JP3317806B2 (en) Ophthalmic instruments
JP3571102B2 (en) Ophthalmic equipment
US9560966B2 (en) Non-contact type tonometer
JP3394344B2 (en) Ophthalmic instruments
JP3283342B2 (en) Ophthalmic instruments
JPH08562A (en) Position detector for ophthalmological equipment
JP3113324B2 (en) Non-contact tonometer
JPH01284229A (en) Non-contact type ophthalmotonometer
US5000181A (en) Noncontact type tonometer
JPH07231875A (en) Optometrical device
JPH0554337B2 (en)
JP3521980B2 (en) Ophthalmic instruments
JP3156859B2 (en) Non-contact tonometer
JPH0554338B2 (en)
JP3452388B2 (en) Ophthalmic instruments
JPH0430298B2 (en)
JP3444627B2 (en) Non-contact tonometer
JP2000041950A (en) Tonometer
JPH0430299B2 (en)
JP3176897B2 (en) Eye measurement device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees