JPH08225915A - Aluminum-silicon alloy pre-compact low in thermal expansion and its compact - Google Patents
Aluminum-silicon alloy pre-compact low in thermal expansion and its compactInfo
- Publication number
- JPH08225915A JPH08225915A JP7027141A JP2714195A JPH08225915A JP H08225915 A JPH08225915 A JP H08225915A JP 7027141 A JP7027141 A JP 7027141A JP 2714195 A JP2714195 A JP 2714195A JP H08225915 A JPH08225915 A JP H08225915A
- Authority
- JP
- Japan
- Prior art keywords
- content
- alloy
- preform
- thermal expansion
- compact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、低熱膨張性のAl−S
i系合金予備成形体及びその加工体に関し、詳細には、
熱膨張係数が小さく例えば電子部品材料(具体的にはハ
イブリッドIC用のヒートシンク、メタルパッケージ、
セラミックス代替基板材料など)として、ステンレス鋼
材やAl2 O3 等のセラミックスなどとの接合性に優
れ、且つ塑性加工の可能な低熱膨張性Al−Si系合金
予備成形体、ならびにこれを鍛造、プレス、押し出しな
どにより機械加工して得られる高品質の加工体に関する
ものである。BACKGROUND OF THE INVENTION The present invention relates to a low thermal expansion Al-S.
Regarding the i-type alloy preform and its processed body, in detail,
It has a small coefficient of thermal expansion, such as electronic component materials (specifically, heat sinks for hybrid ICs, metal packages,
As a substrate material for substituting ceramics, etc., a low thermal expansion Al-Si alloy preform which has excellent joining properties with stainless steel and ceramics such as Al 2 O 3 and which can be plastically processed, as well as forging and pressing The present invention relates to a high-quality processed body obtained by mechanical processing such as extrusion.
【0002】[0002]
【従来の技術】近年、摺動部品の軽量化、更には伝熱
性、耐食性、非磁性性等の改善あるいはコスト低減等を
目的として、各種のAl系合金、中でも優れた耐摩耗性
を示すAl−Si系合金の需要が増大してきている。2. Description of the Related Art In recent years, for the purpose of reducing the weight of sliding parts, improving heat conductivity, corrosion resistance, non-magnetic property, etc., or reducing costs, various Al-based alloys, especially Al showing excellent wear resistance, have been developed. -Demand for Si-based alloys is increasing.
【0003】しかしながら、Al−Si系合金の鋳造に
よる成形体には次の様な欠点がある。 (A) Si含有量の少ない亜共晶Al−Si系合金の場合
は、Alの初晶および共晶状のα相が析出し、Siの分
散状態が悪くなるため十分な耐摩耗性が得られ難い。 (B) Si含有量の多い過共晶Al−Si合金では、粗
大なSi粒子がマトリックスから脱落するため材料自体
の摩耗が著しい、被削加工性に乏しく精密加工がむつ
かしい、偏析の問題からSi及び他の元素の添加量に
限界があり、合金設計によって期待される程の材料特性
が得られない。However, the molded body produced by casting the Al--Si alloy has the following drawbacks. (A) In the case of a hypoeutectic Al-Si alloy having a low Si content, the primary phase and eutectic α phase of Al are precipitated, and the dispersed state of Si deteriorates, so that sufficient wear resistance is obtained. It's hard to be beaten. (B) In a hypereutectic Al-Si alloy with a high Si content, the material itself is significantly worn because coarse Si particles fall off from the matrix, the machinability is poor, and precision processing is difficult. In addition, there is a limit to the amount of addition of other elements, and the material properties expected by alloy design cannot be obtained.
【0004】そこで、比較的多量のSiや他の合金元素
を偏析なく均一微細に分散させることのできる方法とし
て粉末冶金法が利用される様になり、Al−Si系合金
においても種々の改良法が多数提案されている。ところ
が粉末冶金法によってAl−Si系合金を製造するに際
しては次の様な問題が生じてくる。Therefore, powder metallurgy has come to be used as a method for uniformly and finely dispersing a relatively large amount of Si and other alloying elements without segregation, and various improved methods for Al-Si alloys. Have been proposed. However, the following problems arise when an Al-Si alloy is manufactured by the powder metallurgy method.
【0005】粉末冶金法とは、合金材料を微粉末にし
てから圧縮成形及び焼結を行なって成形体を得る方法で
あるが、AlやSiはいずれも非常に酸化され易いもの
であるため、粉末表面は強固な酸化皮膜で覆われてお
り、焼結性が悪い。そこでAl−Si系合金粉末の予備
成形体を焼結させるには、少なくとも一部が液相となる
焼結温度を採用しなければならないが、その様な焼結条
件では焼結中にSi粒子が成長して粗大化し、耐摩耗性
が悪くなる。こうした傾向は微細なSi粒子を含むもの
ほど顕著であり、粉末化工程でSi粒子をいかに微細な
ものとしても、焼結体としての特性向上につながらな
い。しかも予備成形体内に分散した酸化物は亀裂伝播等
の原因となるため、変形能も悪くなる。酸化物皮膜の形
成に伴なう上記の様な問題点を回避するため、酸素含有
量の少ない微粉末を使用することも考えられるが、製
造、保管、使用をすべて非酸化性雰囲気中で行なわなけ
ればならないので作業が非常に面倒であるばかりでな
く、大気に接触すると発火するという安全面の問題も生
じてくる。The powder metallurgy method is a method in which an alloy material is made into a fine powder and then compression molding and sintering are performed to obtain a molded body. However, since Al and Si are very easily oxidized, The powder surface is covered with a strong oxide film, and the sinterability is poor. Therefore, in order to sinter the preformed body of Al-Si alloy powder, it is necessary to adopt a sintering temperature at least a part of which is in a liquid phase. Grows and becomes coarse and wear resistance deteriorates. Such a tendency is more remarkable in the case of containing fine Si particles, and no matter how fine the Si particles are in the powdering step, the characteristics as a sintered body are not improved. Moreover, since the oxide dispersed in the preform causes crack propagation and the like, the deformability also deteriorates. In order to avoid the above problems associated with the formation of an oxide film, it is possible to use fine powder with a low oxygen content, but all manufacturing, storage, and use are performed in a non-oxidizing atmosphere. Not only is the work very troublesome because it has to be done, but there is also a safety problem in that it ignites when it comes into contact with the atmosphere.
【0006】押出し、鍛造、プレス等の機械加工に先
立って行なわれる予備成形体の脱ガスが不十分である
と、加工後の熱処理時に膨れが生じ、寸法精度が低下す
ると共に内部欠陥を生じる原因となる。しかも予備成形
体の密度が真密度の85%以上になると、予備成形体中
に存在する水蒸気や空気等のガスを除去するのに非常に
長い時間を要する。If the degassing of the preform carried out prior to mechanical processing such as extrusion, forging and pressing is insufficient, swelling occurs during the heat treatment after processing, which reduces the dimensional accuracy and causes internal defects. Becomes Moreover, when the density of the preformed body is 85% or more of the true density, it takes a very long time to remove the gas such as water vapor and air existing in the preformed body.
【0007】押出し用もしくは鍛造用等のビレットと
して使用するには、予備成形体を真密度に対して90%
以上の高密度にしなければならないが、CIP法によっ
て得られる予備成形体は密度が低く(80%程度)、押
出し機等への装入時や取扱い時に破損する恐れがあるた
め、量産ラインに流すことができない。In order to use it as a billet for extrusion or forging, the preform should be 90% of the true density.
Although the above high density is required, the preform obtained by the CIP method has a low density (about 80%) and may be damaged during loading or handling in an extruder or the like. I can't.
【0008】上記以外の難点として、製造時あるいは
取扱い時に粉塵などによる汚染を招き易い、大型製品の
製造に適さない、工程数が多いため時間とコストがかか
る、といった問題もある。[0008] Other than the above, there are problems that contamination by dust or the like is likely to occur at the time of manufacturing or handling, it is not suitable for manufacturing a large-sized product, and it takes time and cost due to the large number of steps.
【0009】こうした難点を伴うことのない比較的新し
い技術として、非酸化性雰囲気内で金属溶湯を流下させ
ながら、流下途中の該金属溶湯に不活性ガスジェット流
を衝突させて微粒子とし、該微粒子をサブストレイト上
に堆積させつつ凝固させることにより予備成形体を得る
方法(以下、本明細書では噴霧成形法という)が開発さ
れ、注目を集めている(特開昭62−1849号公報
等)。As a relatively new technique which does not involve such a difficulty, while letting a molten metal flow down in a non-oxidizing atmosphere, an inert gas jet stream is made to collide with the molten metal in the course of flowing down to form fine particles. A method for obtaining a preformed body by depositing and solidifying on a substrate (hereinafter referred to as a spray molding method in the present specification) has been developed and attracted attention (Japanese Patent Laid-Open No. 62-1849, etc.). .
【0010】即ち噴霧成形法は、上記の様に金属溶湯に
不活性ガスジェット流を衝突させて微粒子とし、部分的
に溶融状態にある該粒子をサブストレイト上で融着させ
て予備成形体を得るものであり、粉末冶金法に似た方法
でありながら、微粒化された金属はその直後にサブスト
レイト上で融着し合って所定形状の予備成形体とされる
ので、その後の取扱いが極めて簡単で且つ酸化も受け難
く、押出し用或は鍛造用のビレットとした場合でも押出
し機等への装入時あるいは取扱い時に破損する恐れがな
く量産ラインへの適応が可能であるなど、多くの利点を
享受できる。That is, in the spray molding method, as described above, the molten metal is made to collide with an inert gas jet stream to form fine particles, and the partially molten particles are fused on a substrate to form a preform. Although it is a method similar to the powder metallurgy method, the atomized metal is fused directly on the substrate to form a preformed body of a predetermined shape immediately after that, so that subsequent handling is extremely difficult. It is simple and resistant to oxidation, and even when it is used as a billet for extrusion or forging, it can be applied to a mass production line without being damaged during loading or handling in an extruder, etc. Can enjoy.
【0011】本発明者らは上記の様な状況の下で、噴霧
形成法を利用した金属成形体について種々研究を進めて
いるが、特にAl−Si系合金よりなる予備成形体にお
けるSi含有量やガス成分量、更には該成形体中に含ま
れるSi粒子の大きさ等が耐摩耗性、伸び、被削性、押
出し若しくは鍛造加工性等にどの様な影響を与えるかを
究明し、当該研究成果の一環として先に特開平4−25
9364号公報に記載の技術を提示した。Under the circumstances as described above, the present inventors have been conducting various researches on a metal compact using the spray forming method. In particular, the Si content in the preform made of an Al--Si alloy is And how the amount of gas components, and further the size of Si particles contained in the molded body, affect wear resistance, elongation, machinability, extrudability or forgeability, etc. As part of the research results, we previously mentioned JP-A-4-25.
The technique described in 9364 is presented.
【0012】この公開発明は、8〜30重量%のSiを
含有するAl−Si系合金溶湯を使用し、これを前記噴
霧成形法を利用して予備成形したものであって、該予備
成形体中に含まれる酸素、水素、窒素の各含有量が、酸
素:250ppm 以下、水素:0.4ppm 以下、窒素:6
0ppm 以下に夫々制限されると共に、該成形体中に含ま
れるSiの粒子径が10μm以下、更に密度が真密度に
対して95%以上であるAl−Si系合金予備成形体で
あり、この予備成形体あるいはこれを更に鍛造・プレス
・押し出し等によって加工した加工体は、耐摩耗性、被
削性、伸び等が良好で且つ、熱処理時における耐ブリス
ター性も良好で内部欠陥のない製品を与えるので、様々
の用途に有効に活用することができる。The disclosed invention uses an Al-Si alloy melt containing 8 to 30% by weight of Si and is preformed by the above spray forming method. Each content of oxygen, hydrogen, and nitrogen contained in: oxygen: 250ppm or less, hydrogen: 0.4ppm or less, nitrogen: 6
Al-Si alloy preforms, each of which has a particle size of 10 μm or less and a density of 95% or more of the true density and is limited to 0 ppm or less. A molded product or a processed product obtained by further processing it by forging, pressing, extrusion, etc., has good wear resistance, machinability, elongation, etc., and also has good blister resistance during heat treatment and gives no internal defects. Therefore, it can be effectively utilized for various purposes.
【0013】本発明者らは、その後も噴霧成形法を利用
したAl−Si系合金成形体の物性改善およびその用途
開発を期して研究を進めており、高密度で物理的特性の
安定した前記公開発明の前記特性を有効に活用すれば、
これを電子部品用材料としても利用できるのではないか
と考え、その線に沿って研究を進めてきた。ところが上
記公開発明のAl−Si系合金は、熱膨張係数が高く温
度変化による収縮・膨張が著しいため、これを電子部品
材料としてステンレス鋼材やAl2 O3 等のセラミック
スと接合して利用しようとすると、該熱膨張の大きいこ
とに由来して被接合材料の間で確実かつ強固な接合が困
難となり、こうした用途には適用し難いことを知った。The inventors of the present invention have been conducting research for the purpose of improving the physical properties of Al-Si alloy compacts by utilizing the spray molding method and developing the applications thereof, and have succeeded in researching the above with a high density and stable physical properties. Effectively utilizing the above characteristics of the disclosed invention,
We thought that it could be used as a material for electronic parts, and we have pursued research along that line. However Al-Si based alloy of the public invention, since significant contraction and expansion due to the thermal expansion coefficient is high temperature changes, attempts to use this bonded to the ceramics such as stainless steel, Al 2 O 3, or the as an electronic component material Then, it has been found that reliable and strong joining is difficult between the materials to be joined due to the large thermal expansion, and it is difficult to apply for such applications.
【0014】[0014]
【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、その目的は、噴
霧成形法を適用して製造されるAl−Si系合金予備成
形体あるいはその成形加工体に指摘される熱膨張の問題
を解消し、熱膨張係数が小さくて例えばハイブリッドI
C用のヒートシンク、メタルパッケージ、セラミックス
代替基板材料などの電子部品材料としての適性に優れ、
且つ塑性加工の可能な低熱膨張性Al−Si系合金予備
成形体および該予備成形体を用いた低熱膨張性加工体を
提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above problems, and its object is to preform an Al-Si alloy produced by applying a spray forming method. The problem of thermal expansion pointed out in the body or its molded body is solved, and the coefficient of thermal expansion is small.
Excellent suitability as electronic component material such as heat sink for C, metal package, ceramic substitute substrate material,
Another object of the present invention is to provide a low-thermal-expansion Al-Si alloy preform capable of plastic working and a low-thermal-expansion processed body using the preform.
【0015】[0015]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る低熱膨張性Al−Si系合金予備
成形体とは、Al−Si系合金溶湯を微粒子化しつつ落
下させ、これらを溶融付着させながら順次凝固成長させ
ることによって得られる予備成形体において、Si含有
量が30〜45重量%、酸素量が250ppm 以下、水素
量が0.4ppm以下、窒素量が60ppm 以下で、残部が
実質的にAlからなり、密度が真密度に対して95%以
上で且つ内部に含まれるSiの粒子径が10μm以下で
あるところに要旨を有するものであり、上記Al−Si
系合金中には、更に他の元素としてCu,Mg,Ni,
Fe,Mn,Cr,V,Zr,Tiよりなる群から選択
される1種又は2種以上の元素を0.1〜13重量%含
有させることによって、得られる予備成形体の物性を更
に優れたものとすることができる。またこの予備成形体
に押出し・鍛造・プレス等の加工を施すことにより、内
部欠陥がなく且つ優れた物性を与えることができ、殊に
低熱膨張性電子部品材料などとしてステンレス鋼材やセ
ラミックス材等と接合する場合でも優れた接合性を持っ
た加工体を得ることができる。The low-thermal-expansion Al-Si alloy preform according to the present invention, which has been able to solve the above-mentioned problems, is formed by dropping an Al-Si alloy molten metal into fine particles and dropping them. In a preform obtained by sequentially solidifying and growing while melting and adhering, the Si content is 30 to 45% by weight, the oxygen content is 250 ppm or less, the hydrogen content is 0.4 ppm or less, the nitrogen content is 60 ppm or less, and the balance is The present invention has a gist in that it is substantially composed of Al, the density is 95% or more with respect to the true density, and the particle diameter of Si contained inside is 10 μm or less.
Other elements such as Cu, Mg, Ni, and
By adding 0.1 to 13% by weight of one or more elements selected from the group consisting of Fe, Mn, Cr, V, Zr, and Ti, the physical properties of the obtained preform are further improved. Can be one. By subjecting this preformed body to processing such as extrusion, forging, and pressing, it is possible to give it excellent physical properties without internal defects, and especially with low thermal expansion electronic component materials such as stainless steel materials and ceramic materials. Even in the case of joining, it is possible to obtain a processed body having excellent joining properties.
【0016】[0016]
【作用】噴霧成形法とは、たとえば図1に示す如く、溶
解炉1から流下する金属溶湯Mにアトマイザー2からの
不活性ガスジェット流を衝突させて微粒子状にすると共
に、これを非酸化性雰囲気に保ったチャンバー3内の所
定位置に堆積させつつ該微粒子を冷却凝固させて予備成
形体(図1では円柱状ビレット4)を製造する方法であ
り(図中、5は排気口を示す)、微粒子状では空気と接
触することがないので、従来の粉末冶金法で指摘される
様に酸化の問題を起こすことがなく、製造工程が簡単で
且つ能率的であり、しかもその後の取扱いも非常に簡単
である。しかも微粒子状態で堆積させていく方法である
から結晶粒の粗大化や合金元素の偏析も起こり難いとい
う利点がある。The spray molding method is, for example, as shown in FIG. 1, in which the metal melt M flowing down from the melting furnace 1 is collided with an inert gas jet stream from the atomizer 2 to form fine particles and is made non-oxidizing. This is a method for producing a preform (a cylindrical billet 4 in FIG. 1) by cooling and solidifying the fine particles while depositing them at a predetermined position in a chamber 3 kept in an atmosphere (in the figure, 5 indicates an exhaust port). Since it does not come into contact with air in the form of fine particles, it does not cause the problem of oxidation as pointed out in the conventional powder metallurgy method, the manufacturing process is simple and efficient, and the subsequent handling is also very easy. Easy to. Moreover, since it is a method of depositing in the state of fine particles, there is an advantage that coarsening of crystal grains and segregation of alloying elements hardly occur.
【0017】またこの製造工程では、ガスジェット流の
衝突によって微粒子状となった金属の多くは部分的に溶
融状態にあり、これらが堆積することによって相互に融
着し隙間を埋めながら凝固していくので、従来の粉末冶
金法で得られるCIP成形体等に比べると密度が高く且
つガス成分の含有量も相対的に少ない。Further, in this manufacturing process, most of the metal particles which have become fine particles due to the collision of the gas jet flow are partially in a molten state, and when these are deposited, they are fused to each other and solidify while filling the gap. Therefore, the density is higher and the content of the gas component is relatively smaller than that of the CIP molded body or the like obtained by the conventional powder metallurgy method.
【0018】しかしながら、微粒子化するためのガスジ
ェット流の流速や流量あるいは凝固時の冷却速度等によ
っては、微粒子相互の融着が不十分になって密度が低下
したり、あるいは内部のガス成分含量が多くなってその
後の加工性低下や製品欠陥の原因になることがある。However, depending on the flow velocity and flow rate of the gas jet stream for atomizing, the cooling rate during solidification, etc., the mutual fusion of the particles becomes insufficient and the density decreases, or the internal gas component content May increase, resulting in deterioration of workability and subsequent product defects.
【0019】そこで本発明者らは、Al−Si系合金を
対象として、噴霧成形法によって得られる予備成形体の
密度や内部にガス状あるいは固溶状態で含まれる酸素、
水素、窒素の各含有量が、加工性や加工品の物性にどの
様な影響を与えるかを調べた。Therefore, the inventors of the present invention have targeted the Al--Si alloy and have a density of a preform obtained by a spray forming method or oxygen contained in the interior in a gaseous or solid solution state.
It was investigated how each content of hydrogen and nitrogen influences workability and physical properties of processed products.
【0020】その結果、前記特開平4−259364号
公報に記載した様に、まず当該合金の真密度に対して9
5%以上である予備成形体は、押出し機等への装入時あ
るいは取扱い工程で破損することがなく、量産ラインに
適用した場合でも全く問題を生じないことが確認され
た。As a result, as described in the above-mentioned Japanese Patent Laid-Open No. 4-259364, first, the true density of the alloy was 9%.
It was confirmed that the preform having a content of 5% or more does not break during charging into an extruder or the like or during the handling process, and does not cause any problem even when applied to a mass production line.
【0021】また予備成形体中に存在する酸素、水素、
窒素の各含有量は、加工時の伸び率や熱処理時に生ずる
ことのあるブリスター発生量と密接な関連を有してお
り、特に酸素量を250ppm 以下、水素量を0.4ppm以
下、窒素量を60ppm 以下に夫々制限された予備成形体
は、伸び率が高くて優れた加工性を示し、且つ熱処理工
程でブリスター現象を生ずることもなく、優れた品質の
加工製品を与えることが明らかとなった。たとえば図2
は、噴霧成形法によって得たAl−Si系合金予備成形
体(Si含有量:35重量%)の酸素含有量と押出加工
時の伸び率の関係を調べた結果を示すグラフであり、酸
素含有量が250ppm 以下の予備成形体は高い伸び率を
示すが、酸素含有量が250ppm を超えると伸び率は急
激に低下し、押出し成形工程などで破断や割れ等を生ず
る恐れがでてくる。Oxygen, hydrogen, which are present in the preform,
Each nitrogen content is closely related to the elongation rate during processing and the amount of blister that may occur during heat treatment. Especially, the oxygen content is 250ppm or less, the hydrogen content is 0.4ppm or less, and the nitrogen content is 60ppm. It was clarified that the preforms each limited to the following have high elongation and excellent workability, and give a processed product of excellent quality without causing the blister phenomenon in the heat treatment step. Figure 2
[Fig. 4] is a graph showing the results of examining the relationship between the oxygen content of an Al-Si alloy preform (Si content: 35% by weight) obtained by the spray forming method and the elongation rate during extrusion processing. The preform having an amount of 250 ppm or less shows a high elongation rate, but when the oxygen content exceeds 250 ppm, the elongation rate sharply decreases and there is a possibility that breakage or cracking may occur in the extrusion molding process or the like.
【0022】また図3,4は、同じくSi含有量が35
重量%であるAl−Si系合金予備成形体中の水素含有
量または窒素含有量と熱処理時におけるブリスター発生
量の関係を調べた結果を示すグラフであり、水素含有量
が0.4ppm以下で且つ窒素含有量が60ppm である予備成
形体を用いて得た押出し成形品のブリスター発生量は極
く僅かであるのに対し、水素含有量及び窒素含有量が規
定量を超えたものはブリスター発生量が急激に増大して
くる。3 and 4, the Si content is 35 as well.
It is a graph showing the results of examining the relationship between the hydrogen content or nitrogen content in the Al-Si alloy preform which is wt% and the blister generation amount during heat treatment, wherein the hydrogen content is 0.4 ppm or less and nitrogen. The amount of blister generated in the extruded product obtained by using the preform having the content of 60 ppm is very small, whereas the amount of blister generated in the case where the hydrogen content and the nitrogen content exceed the specified amount. It increases rapidly.
【0023】上記図2〜4からも明らかである様に、A
l−Si系合金予備成形体中における各成分のより好ま
しい含有量は、伸びの低下を一層確実に抑え且つブリス
ターを確実に防止する意味から、酸素は200ppm 以
下、水素は0.3ppm以下、窒素は40ppm 以下とすること
が特に望まれる。As is clear from FIGS. 2 to 4 above, A
The more preferable content of each component in the 1-Si alloy preform is that oxygen is 200 ppm or less, hydrogen is 0.3 ppm or less, and nitrogen is nitrogen in order to more surely suppress the decrease in elongation and prevent blister. It is particularly desirable that the content be 40 ppm or less.
【0024】上記成分のうち窒素は、予備成形体全体と
しての窒素含有量だけでなく、予備成形体中における残
留空孔内の窒素量もブリスター発生量と関係しており、
上記の目的をより確実に達成するには、該残留空孔内の
窒素量を4ppm 以下に抑えることが望まれる。ちなみ
に、本発明者らが該残留空孔内の窒素量とブリスター発
生量の関係を調べたところによると、窒素量が4ppm 以
下の場合のブリスター発生量は低レベルに保たれるのに
対し、これを超えるとブリスター発生量が急増すること
が確認された。尚残留空孔内の窒素量はたとえば、まず
塩酸を用い母相を溶解して母相中の窒素量を測定(この
とき窒素はAl母相中にはほとんど固溶していないので
空孔中の窒素量の測定となる)することによって求める
ことができる。尚固溶窒素量は、上記処理の後、硫酸を
用い残渣(主として初晶Si)を溶解して残渣中の窒素
量を測定する方法、等によって求めることができる。Among the above-mentioned components, nitrogen is related to not only the nitrogen content of the preform as a whole but also the amount of nitrogen in the residual pores in the preform, to the blister generation amount,
In order to more reliably achieve the above object, it is desirable to control the amount of nitrogen in the residual holes to 4 ppm or less. By the way, according to the investigation by the present inventors of the relationship between the amount of nitrogen in the residual pores and the amount of blister generated, the amount of blister generated when the amount of nitrogen is 4 ppm or less is maintained at a low level. It has been confirmed that the blister generation amount increases sharply when the amount exceeds this. The amount of nitrogen in the residual pores is, for example, first measured by dissolving the mother phase with hydrochloric acid and measuring the amount of nitrogen in the mother phase (at this time, since nitrogen is hardly dissolved in the Al mother phase, It becomes the measurement of the amount of nitrogen). The amount of solid-dissolved nitrogen can be determined by a method of dissolving the residue (mainly primary crystal Si) using sulfuric acid and measuring the amount of nitrogen in the residue after the above treatment.
【0025】この様なAl−Si系合金予備成形体は、
噴霧成形時におけるアトマイズガスの流量や流速もしく
は雰囲気温度、あるいは堆積後の冷却速度等を適正にコ
ントロールすることによって得ることができる。尚必須
の合金元素として含有されるSiは予備成形体内におい
てAlとの共晶もしくは分散状態で存在するが、分散状
態で存在するSiの粒子径が大きくなると、耐摩耗性、
被削性、精密加工性等に悪影響が表われてくるので、粒
子状で存在するSiは粒径が10μm 以下となる様に噴
霧成形条件をコントロールすることが望まれる。The Al-Si alloy preform as described above is
It can be obtained by appropriately controlling the flow rate and flow rate of the atomizing gas during spray molding, the ambient temperature, the cooling rate after deposition, and the like. Although Si contained as an essential alloying element exists in the preformed body in a eutectic or dispersed state with Al, when the particle size of Si existing in the dispersed state becomes large, wear resistance,
Since machinability and precision machinability are adversely affected, it is desirable to control the spray molding conditions so that the particle size of Si is 10 μm or less.
【0026】ところで前述の特開平4−259364号
では、様々の用途への適用に主眼をおいて、押出し成形
性、鍛造加工性あるいはプレス加工性を高めるため、A
l−Si系合金中に含まれるSi含有量を8〜30重量
%の範囲に特定した。これは、Si含有量が30重量%
を超えるものは、成形加工性が悪く汎用性に欠けるもの
となるという理由に基づくものであった。By the way, in the above-mentioned Japanese Unexamined Patent Publication No. 4-259364, in order to improve extrusion moldability, forging workability or press workability, aiming at application to various uses, A
The Si content contained in the 1-Si alloy was specified to be in the range of 8 to 30% by weight. This has a Si content of 30% by weight.
The reason above is that the moldability is poor and the versatility is lacking.
【0027】ところが、本発明者らがその後更に研究を
進めたところによると、前述の如く該Al−Si系合金
予備成形体を先に示した様な電子部品材料用として適用
しようとすると、かかる比較的Si含有量の少ないAl
−Si系合金は熱膨張率が大きいことに起因して、例え
ばステンレス材やAl2 O3 等のセラミックス材等から
なるパッケージ材との接合性が悪く、使用中に簡単に剥
離するという大きな問題を生じることが確認された。そ
こで、こうした高熱膨張率の物性を改善して低熱膨張化
してやれば、電子部品材料等としても有効に活用するこ
とができるであろうと考え、その線に沿って熱膨張率の
低減を期して更に研究を進めた。However, according to further researches conducted by the inventors of the present invention, when the Al--Si alloy preform as described above is applied as a material for electronic parts as described above, it takes a lot of time. Al with a relatively low Si content
-Si-based alloy due to thermal expansion coefficient is large, for example, bonding between the stainless steel and Al 2 O 3, or the like packaging material made of a ceramic material or the like is poor, a large problem easily peeled off during use It was confirmed that Therefore, by improving the physical properties of such a high coefficient of thermal expansion to reduce the coefficient of thermal expansion, we believe that it can be effectively utilized as a material for electronic parts, and so on. I proceeded with my research.
【0028】その結果、Si含有量を30〜45重量%
にまで増大してやれば、上記の様な熱膨張の問題が解消
され、電子部品材料等として使用する場合でも様々の素
材との間で優れた接合性を示すものが得られることを知
った。As a result, the Si content is 30 to 45% by weight.
It has been found that the above-mentioned problem of thermal expansion can be solved by increasing the number of materials to 1, and a material exhibiting excellent bondability with various materials can be obtained even when used as an electronic component material.
【0029】ちなみに図5は、前記図1に示した様な噴
霧成形法によって得たAl−Si系合金予備成形体にお
けるSi含有量と熱膨張率の関係を調べた結果を示した
グラフであり、この図からも明らかである様に該予備成
形体の熱膨張率はSi含有量を増加するにつれて急激に
低下し、Si含有量を30重量%以上に高めると、電子
部品用のケーシング材等として汎用されるステンレス鋼
を下回る低熱膨張率のAl−Si系合金予備成形体を得
ることが可能となり、そのため接合時あるいはその後の
熱膨張差に起因する剥離等が抑えられ、優れた接合性が
確保されるものと思われる。但し、Si量が過度に多く
なると、成形時におけるノズルの閉塞や成分のバラツキ
が起こり易くなってビレット製造面で障害が生じてくる
ばかりでなく、成形後の塑性加工性も悪くなるので、S
i量は45重量%以下に抑えるべきである。Incidentally, FIG. 5 is a graph showing the results of examining the relationship between the Si content and the coefficient of thermal expansion in the Al--Si alloy preform obtained by the spray forming method as shown in FIG. As is clear from this figure, the coefficient of thermal expansion of the preform decreases sharply as the Si content increases, and if the Si content is increased to 30% by weight or more, a casing material for electronic parts, etc. As a result, it is possible to obtain an Al-Si alloy preform having a low coefficient of thermal expansion lower than that of stainless steel, which is widely used as a material. Therefore, peeling due to a difference in thermal expansion at the time of joining or thereafter is suppressed, and excellent joining properties are obtained. It seems to be secured. However, if the Si amount is excessively large, not only nozzle clogging during the molding and variation of components are apt to occur, but not only the billet manufacturing surface is impaired, but also the plastic workability after molding is deteriorated.
The i content should be kept below 45% by weight.
【0030】即ち本発明においては、Si含有量が30
重量%未満のものでは、熱膨張を満足に低下させること
ができないので、低熱膨張化による接合性改善の目的が
果たせなくなる。尚、Si含有量を増大するにつれて成
形加工性は悪くなるが、Si含有量が45重量%程度ま
でであれば、成形加工条件を工夫することによって塑性
加工は可能となる。即ち本発明では、成形加工性をある
程度犠牲にしても低熱膨張性を確保するための手段とし
てSi含有量を30重量%以上に定めるものであるが、
こうした低熱膨張性という特異な物性において前記公開
発明とは合金として異なるものであり、噴霧成形法によ
って得られるAl−Si系合金の新たな用途を提供する
ものとして、実用上非常に有用なものである。但し、S
i含有量が45重量%を超えて過多になると、塑性加工
性の悪化が実用上大きな障害となってくるので、実用性
の観点からその上限は45重量%と定めた。低熱膨張性
と塑性加工性の両面から考えてより好ましいSi含有量
は30〜40重量%の範囲である。That is, in the present invention, the Si content is 30.
If it is less than 10% by weight, the thermal expansion cannot be satisfactorily reduced, and the purpose of improving the bondability due to the low thermal expansion cannot be fulfilled. Molding workability becomes worse as the Si content increases, but if the Si content is up to about 45% by weight, plastic working becomes possible by devising the molding processing conditions. That is, in the present invention, the Si content is set to 30% by weight or more as a means for ensuring the low thermal expansion property even if the molding processability is sacrificed to some extent.
It is different from the above-mentioned published invention as an alloy in such a unique physical property of low thermal expansion, and is very useful in practice as a new application of the Al-Si alloy obtained by the spray forming method. is there. However, S
If the i content exceeds 45% by weight and becomes excessive, deterioration of plastic workability becomes a serious obstacle to practical use, so the upper limit was set to 45% by weight from the viewpoint of practicality. Considering both low thermal expansion and plastic workability, the more preferable Si content is in the range of 30 to 40% by weight.
【0031】尚、本発明で使用されるAl−Si系合金
中には、得られる予備成形体あるいはその加工体の要求
特性に応じて適量のCu,Mg,Ni,Fe,Mn等か
ら選択される1種又は2種以上の元素を含有させること
ができる。即ちCu、Mg、Niは耐熱性向上元素とし
て有用であり、またFe、Mnは強度向上元素として有
効に作用し、それらの添加効果はAl−Si系合金素材
中に0.1 重量%程度以上含有させることによって有効に
発揮される。しかしながらそれらの含有量が多くなり過
ぎると、得られる予備成形体の耐食性、伸び、絞り等が
悪くなる傾向があるので、それらの総和で13重量%程
度以下に抑えなければならない。るのがよい。In the Al-Si alloy used in the present invention, an appropriate amount of Cu, Mg, Ni, Fe, Mn or the like is selected according to the required characteristics of the obtained preformed body or its processed body. One or two or more kinds of elements can be contained. That is, Cu, Mg, and Ni are useful as heat resistance improving elements, and Fe and Mn act effectively as strength improving elements. The effect of addition of them is to add about 0.1% by weight or more to the Al-Si alloy material. It is effectively demonstrated by However, if the content of these components is too large, the corrosion resistance, elongation, drawing, etc. of the obtained preform tend to deteriorate, so the total amount of these components must be suppressed to about 13% by weight or less. It is good to
【0032】尚、予備成形体の形状としては、図1に示
した様な中実棒状のビレットの他、例えば前記特開昭6
2−1849号公報に開示されている様に、管状(もし
くは棒状)のサブストレイトを回転させながらその表面
に噴霧されたAl−Si系合金微粒子を堆積させて冷却
凝固させた後、サブストレイトから脱型する方法を採用
すれば管状の予備成形体を得ることができ、また平板状
のサブストレイトを使用して同様に噴霧成形すれば板状
の予備成形体を得ることができ、更には特公昭56−1
220号公報に記載されている様にダイを兼ねたサブス
トレイ上にAl−Si系合金微粒子を堆積せしめ、鍛造
用の予備成形体を得ることも可能であり、噴霧成形法を
工夫することによって様々の形状の予備成形体を得るこ
とができる。As the shape of the preform, in addition to the solid bar-shaped billet as shown in FIG.
As disclosed in Japanese Unexamined Patent Publication No. 2-1849, while rotating a tubular (or rod-shaped) substrate, the sprayed Al-Si alloy fine particles are deposited and solidified by cooling, and then the substrate is removed from the substrate. A tubular preform can be obtained by adopting a demolding method, and a plate-like preform can be obtained by spray molding similarly using a flat plate-like substrate. 56-1
It is also possible to obtain a preform for forging by depositing Al-Si alloy fine particles on a substrate that also serves as a die as described in Japanese Patent Publication No. 220-220, and by devising a spray forming method. Preforms of various shapes can be obtained.
【0033】かくして得られる予備成形体を押出し、鍛
造もしくはプレス等の成形加工を行なうと、その密度を
容易に真密度に対してほぼ100%にまで高めることが
できる。尚該成形加工体中に存在する前記3成分の含有
量は、成形加工前の予備成形体中に含まれるそれら3成
分の量と殆んど変らないが、その量は前述の如く極く僅
かであり、内部欠陥となって機械的特性に悪影響を及ぼ
すことはない。By extruding the thus-obtained preform and subjecting it to a forming process such as forging or pressing, the density can be easily increased to almost 100% of the true density. The content of the three components present in the molded product is almost the same as the amount of these three components contained in the pre-molded product before the molding process, but the amount is extremely small as described above. Therefore, internal defects do not adversely affect mechanical properties.
【0034】[0034]
【実施例】以下、実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前・後記
の趣旨に適合し得る範囲で適当に変更を加えて実施する
ことも可能であり、それらはいずれも本発明の技術的範
囲に包含される。EXAMPLES Hereinafter, the constitution and working effects of the present invention will be described more specifically with reference to examples, but the present invention is not limited by the following examples, and is applicable to the gist of the preceding and the following. It is also possible to carry out appropriate modifications within the range to be obtained, and all of them are included in the technical scope of the present invention.
【0035】実施例1 表1に示すAl−Si系合金を真空溶解炉によって溶製
し、これを母材として噴霧成形法(以下、S/F法とい
う)及び従来の粉末冶金法(以下、P/M法という)に
よりビレット状の予備成形体を製造した。尚、S/F法
としては図1に示した方法(噴霧用ガスとしては窒素を
使用)を採用し、一方P/M法としては、窒素ガスアト
マイズ法によって得た粉末をCIP成形する方法を採用
した。Example 1 The Al-Si alloys shown in Table 1 were melted in a vacuum melting furnace, and using this as a base material, a spray molding method (hereinafter, referred to as S / F method) and a conventional powder metallurgy method (hereinafter, referred to as S / F method). A billet-shaped preform was manufactured by the P / M method. The S / F method employs the method shown in FIG. 1 (using nitrogen as the atomizing gas), while the P / M method employs the method of CIP molding the powder obtained by the nitrogen gas atomizing method. did.
【0036】得られた予備成形体のうち、S/F法によ
って得たものの各部の密度の一例を図6に示す。また上
記S/F法及びP/M法で得た予備成形体(ビレット)
を450℃に加熱してから、押出し比15で直接押出し
を行ない、得られた各押出し材より試験片を切り出して
化学成分及び含有ガス成分を分析すると共に機械的特性
を調べた。得られた各押出し材のガス分析結果を表2に
示す。FIG. 6 shows an example of the density of each part of the obtained preform obtained by the S / F method. In addition, a preform (billet) obtained by the above S / F method and P / M method
Was heated to 450 ° C. and then directly extruded at an extrusion ratio of 15, and a test piece was cut out from each of the obtained extruded materials to analyze the chemical components and contained gas components and examine the mechanical properties. Table 2 shows the gas analysis results of the obtained extruded materials.
【0037】[0037]
【表1】 [Table 1]
【0038】[0038]
【表2】 [Table 2]
【0039】表1からも明らかである様に、S/F材と
P/M材はいずれも同じ母材を用いたものであるが、表
2より、押出し材中の水素、酸素、窒素の各含有量はP
/M材よりもS/F材の方が少なく、特に酸素量は極端
に少なくなっている。そしてこれらのデータを前記図2
〜4と対比すれば明らかである様に、本発明のS/F材
は従来のP/M材に比べて伸び率及び耐ブリスター性に
おいて格段に優れたものであることが分かる。As is clear from Table 1, the S / F material and the P / M material both use the same base material. From Table 2, it can be seen that hydrogen, oxygen and nitrogen in the extruded material Each content is P
The amount of the S / F material is smaller than that of the / M material, and in particular, the amount of oxygen is extremely small. And these data are shown in FIG.
As is clear from comparison with Nos. 4 to 4, it can be seen that the S / F material of the present invention is remarkably superior in elongation and blister resistance to the conventional P / M material.
【0040】実施例2 下記表3に示す如く、Si含有量の異なるAl−Si系
合金を用いて上記と同様にして溶製を行なった後、S/
F法およびP/M法によって予備成形体を作製し、夫々
について塑性加工性とAl2 O3 セラミックスとの接合
性を調べた。尚塑性加工性は、直径67mmのビレット
を22mmw ×5mmt の板状に押出し加工したときの
難易で評価した(○:容易に押出しできる、×:押出し
が困難で押出し時に割れを起こす)。また接合性につい
ては、Al2 O3 セラミックス基板と各Al−Si系合
金予備成形体をAu−Sn合金ろう材によってろう付け
し、ろう付け後の接合面の剥離の有無によって評価した
(○:全く剥離を起こさない、△:局部的に剥離を起こ
す、×:剥離が著しい)。Example 2 As shown in Table 3 below, after performing melting in the same manner as above using Al--Si type alloys having different Si contents, S /
Preforms were prepared by the F method and the P / M method, and the plastic workability and the bondability with Al 2 O 3 ceramics were examined for each. The plastic workability was evaluated as the difficulty when a billet having a diameter of 67 mm was extruded into a plate shape of 22 mm w x 5 mm t (○: easy to extrude, x: extruding is difficult and cracking occurs during extrusion). Further, the bondability was evaluated by brazing the Al 2 O 3 ceramics substrate and each Al-Si alloy preform with an Au-Sn alloy brazing material, and checking the presence or absence of peeling of the bonding surface after brazing (○: (Peeling does not occur at all, Δ: Peeling occurs locally, ×: Peeling is remarkable).
【0041】結果は表3に示す通りであり、Si含量が
30〜45重量%の範囲にある本発明の予備成形体(S
/F材)は、塑性加工性および接合性のいずれにおいて
も良好であり、電子部品材料用等として非常に優れた特
性を有していることが分かる。尚表3に示したS/F材
の密度は真密度に対してほぼ100%であるのに対し、
P/M材の場合は、Au−Sn合金ろう付け時に含有酸
素に起因するガスの発生により一部剥離を起こしたため
か、S/F材よりも接合性が若干悪くなっている。The results are shown in Table 3, and the preform of the present invention (S having a Si content in the range of 30 to 45% by weight) (S
It can be seen that the / F material) is excellent in both plastic workability and bondability, and has very excellent characteristics as a material for electronic parts. Incidentally, while the density of the S / F material shown in Table 3 is almost 100% of the true density,
In the case of the P / M material, the bondability is slightly worse than that of the S / F material, probably because some peeling occurred due to the generation of gas due to oxygen contained during brazing of the Au-Sn alloy.
【0042】[0042]
【表3】 [Table 3]
【0043】[0043]
【発明の効果】本発明は以上の様に構成されており、噴
霧成形法によって得られるAl−Si系合金中に含まれ
るSi含有量を相対的に増大することによって熱膨張率
を小さくし、更に予備成形体の密度を特定しすると共に
内部に含まれる酸素、水素、窒素の各含有量を制限する
ことにより、低熱膨張性でステンレス鋼やセラミックス
材との接合性に優れると共に塑性加工が可能であり、耐
ブリスター性や耐摩耗性等の良好な加工製品を与える予
備成形体を得ることができ、またこの予備成形体を押出
し、鍛造、プレス等の加工に付すことによって、内部欠
陥のない優れた物性を備えた低熱膨張性加工体を提供し
得ることになった。The present invention is constituted as described above, and the thermal expansion coefficient is reduced by relatively increasing the Si content contained in the Al-Si alloy obtained by the spray forming method. Furthermore, by specifying the density of the preformed body and limiting the contents of oxygen, hydrogen, and nitrogen contained in the preformed body, it has low thermal expansion and excellent bondability with stainless steel and ceramics, and plastic processing is possible. It is possible to obtain a preformed body that gives a good processed product such as blister resistance and abrasion resistance, and by extruding this preformed body and subjecting it to processing such as forging and pressing, there is no internal defect. It has become possible to provide a low thermal expansion processed product having excellent physical properties.
【図1】本発明で採用される噴霧成形法を例示する概略
説明図である。FIG. 1 is a schematic explanatory view illustrating a spray molding method adopted in the present invention.
【図2】予備成形体中の酸素含有量と伸びの関係を示す
グラフである。FIG. 2 is a graph showing the relationship between the oxygen content in the preform and the elongation.
【図3】予備成形体中の水素含有量とブリスター発生量
の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the hydrogen content in the preform and the amount of blisters generated.
【図4】予備成形体中の窒素含有量とブリスター発生量
の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the nitrogen content in the preform and the blister generation amount.
【図5】Al−Si系合金予備成形体におけるSi含有
量と熱膨張率の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the Si content and the coefficient of thermal expansion in an Al-Si alloy preform.
【図6】本発明に係る予備成形体各部の密度の一例を示
すものである。FIG. 6 shows an example of the density of each part of the preform according to the present invention.
1 溶解炉 2 アトマイザー 3 チャンバー 4 ビレット 5 排気口 1 Melting furnace 2 Atomizer 3 Chamber 4 Billet 5 Exhaust port
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 充彦 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhiko Morita 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute
Claims (3)
落下させ、これらを溶融付着させながら順次凝固成長さ
せることによって得られる予備成形体において、Si含
有量が30〜45重量%、酸素量が250ppm 以下、水
素量が0.4ppm 以下、窒素量が60ppm 以下で、残部
が実質的にAlからなり、密度が真密度に対して95%
以上で且つ内部に含まれるSiの粒子径が10μm以下
であることを特徴とする低熱膨張性Al−Si系合金予
備成形体。1. A preformed article obtained by dropping an Al-Si alloy molten metal while making it into fine particles, and successively solidifying and growing them while melting and adhering them, and having a Si content of 30 to 45% by weight and an oxygen content of 250ppm or less, hydrogen content is 0.4ppm or less, nitrogen content is 60ppm or less, and the balance is substantially Al, and the density is 95% of the true density.
The low-thermal-expansion Al-Si alloy preform, characterized in that the particle size of Si contained therein is 10 μm or less.
u,Mg,Ni,Fe,Mn,Cr,V,Zr,Tiよ
りなる群から選択される1種又は2種以上の元素を0.
1〜13重量%含有するものである請求項1に記載の低
熱膨張性Al−Si系合金予備成形体。2. An Al-Si based alloy containing C as another element.
One or more elements selected from the group consisting of u, Mg, Ni, Fe, Mn, Cr, V, Zr, and Ti may be used as the element.
The low-thermal-expansion Al-Si alloy preform according to claim 1, which contains 1 to 13% by weight.
工したものである低熱膨張性Al−Si系合金加工体。3. A low-thermal-expansion Al—Si based alloy processed product obtained by machining the preformed product according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7027141A JPH08225915A (en) | 1995-02-15 | 1995-02-15 | Aluminum-silicon alloy pre-compact low in thermal expansion and its compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7027141A JPH08225915A (en) | 1995-02-15 | 1995-02-15 | Aluminum-silicon alloy pre-compact low in thermal expansion and its compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08225915A true JPH08225915A (en) | 1996-09-03 |
Family
ID=12212780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7027141A Withdrawn JPH08225915A (en) | 1995-02-15 | 1995-02-15 | Aluminum-silicon alloy pre-compact low in thermal expansion and its compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08225915A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080360A (en) * | 1997-08-01 | 2000-06-27 | Daimlerchrysler Ag | Coating for a cylinder of a reciprocating engine |
US6221504B1 (en) | 1997-08-01 | 2001-04-24 | Daimlerchrysler Ag | Coating consisting of hypereutectic aluminum/silicon alloy and/or an aluminum/silicon composite material |
-
1995
- 1995-02-15 JP JP7027141A patent/JPH08225915A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080360A (en) * | 1997-08-01 | 2000-06-27 | Daimlerchrysler Ag | Coating for a cylinder of a reciprocating engine |
US6221504B1 (en) | 1997-08-01 | 2001-04-24 | Daimlerchrysler Ag | Coating consisting of hypereutectic aluminum/silicon alloy and/or an aluminum/silicon composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI431140B (en) | Method for manufacturing sputtering standard materials for aluminum - based alloys | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
EP0265307B1 (en) | Process for manufacturing shaped bodies from hypereutectic aluminium-silicon alloys, starting from powders obtained by rapid cooling | |
JPS63140001A (en) | Granular metal composite and its production | |
JP7386819B2 (en) | Method for manufacturing parts made of aluminum alloy | |
EP1905856B1 (en) | Al base alloy excellent in heat resistance, workability and rigidity | |
US4961457A (en) | Method to reduce porosity in a spray cast deposit | |
EP2327808A1 (en) | Magnesium-based composite material having ti particles dispersed therein, and method for production thereof | |
JPH08225915A (en) | Aluminum-silicon alloy pre-compact low in thermal expansion and its compact | |
JP2003277867A (en) | Aluminum powder alloy excellent in high temperature strength, method for producing piston for internal combustion engine, and piston for internal combustion engine | |
JP3987471B2 (en) | Al alloy material | |
JP4214352B2 (en) | Al-based composite material for brake disc and manufacturing method thereof | |
JP2020007594A (en) | Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material | |
KR19990088161A (en) | Heat treated, spray formed superalloy articles and method of making the same | |
JPH11302807A (en) | Manufacture of aluminum alloy for compressor vane | |
JP2596205B2 (en) | Manufacturing method of Al alloy powder compact | |
JPH04259364A (en) | Al-si alloy preform and its worked body | |
JP7589859B2 (en) | Ni-based alloy powder for additive manufacturing, additively manufactured product, and method for manufacturing additively manufactured product | |
JP7118705B2 (en) | Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same | |
JP2790774B2 (en) | High elasticity aluminum alloy with excellent toughness | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
JP2002256307A (en) | Preparation of magnesium alloy powder using rapid solidification and molding method | |
JP2000282161A (en) | Heat resisting aluminum alloy excellent in toughness, and its manufacture | |
JPH11269592A (en) | Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture | |
JP4064917B2 (en) | Al-based alloy with excellent heat resistance and wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020507 |