JPH08222265A - Manufacture of alkaline secondary battery - Google Patents
Manufacture of alkaline secondary batteryInfo
- Publication number
- JPH08222265A JPH08222265A JP7026896A JP2689695A JPH08222265A JP H08222265 A JPH08222265 A JP H08222265A JP 7026896 A JP7026896 A JP 7026896A JP 2689695 A JP2689695 A JP 2689695A JP H08222265 A JPH08222265 A JP H08222265A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- electrode
- separator
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000004804 winding Methods 0.000 claims abstract description 98
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000003792 electrolyte Substances 0.000 claims description 7
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 6
- 230000008961 swelling Effects 0.000 abstract description 19
- 230000002093 peripheral effect Effects 0.000 abstract description 8
- 239000008151 electrolyte solution Substances 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 22
- 229910052739 hydrogen Inorganic materials 0.000 description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 238000007599 discharging Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 229910000480 nickel oxide Inorganic materials 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229940065285 cadmium compound Drugs 0.000 description 2
- 150000001662 cadmium compounds Chemical class 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910018007 MmNi Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は渦巻形電極群を備えたア
ルカリ二次電池の製造方法に関し、特に電極群作製工程
を改良したアルカリ二次電池の製造方法に係るものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an alkaline secondary battery having a spiral electrode group, and more particularly to a method of manufacturing an alkaline secondary battery having an improved electrode group manufacturing process.
【0002】[0002]
【従来の技術】アルカリ二次電池の一例であるニッケル
水素二次電池は、水酸化ニッケルを含むペーストを集電
体に充填した構造を有する正極と、水素吸蔵合金を含む
ペーストを集電体に充填した構造を有する負極と、合成
樹脂繊維製不織布からなるセパレータと、アルカリ電解
液とを備える。前記ニッケル水素二次電池は、前記正極
と前記負極との間に前記セパレータを介装して渦巻状に
捲回した電極群と、前記電解液とを容器内に収納した構
造を有する。前記容器は、一般的なアルカリ二次電池と
同様に負極の端子を兼ねている。2. Description of the Related Art A nickel-hydrogen secondary battery, which is an example of an alkaline secondary battery, uses a positive electrode having a structure in which a paste containing nickel hydroxide is filled in a current collector and a paste containing a hydrogen storage alloy as a current collector. It is provided with a negative electrode having a filled structure, a separator made of a synthetic resin fiber non-woven fabric, and an alkaline electrolyte. The nickel-hydrogen secondary battery has a structure in which an electrode group in which the separator is interposed between the positive electrode and the negative electrode and which is spirally wound, and the electrolytic solution are housed in a container. The container also serves as a negative electrode terminal as in a general alkaline secondary battery.
【0003】前記ニッケル水素二次電池は、特開昭60
−100382号、特開昭60−130053号、特開
昭61−99278号に開示されているように、最外周
端が前記負極の端部となるように作製された渦巻形電極
群を前記容器内に収納し、前記容器の内面と前記最外周
に位置する負極とを接触させることにより集電をとる構
造を有するものが知られている。このように電極群の最
外周端が負極の端部となるような構造にすることによっ
て、二次電池の製造工程が簡単になり、集電が確実にな
る。また、前記二次電池が過充電された際に前記正極か
ら発生する酸素ガスを前記負極で水に還元する反応が効
率良く行われるため、前記二次電池の内圧が上昇するの
が抑制され、電池特性が向上する。The nickel-hydrogen secondary battery is disclosed in JP-A-60
-100382, JP-A-60-130053, and JP-A-61-99278, the spiral-shaped electrode group prepared so that the outermost peripheral end is the end of the negative electrode is provided in the container. There is known a structure having a structure in which a current is collected by being housed inside and contacting the inner surface of the container with the negative electrode located at the outermost periphery. In this way, the structure in which the outermost peripheral end of the electrode group is the end of the negative electrode simplifies the manufacturing process of the secondary battery and ensures reliable current collection. In addition, since the reaction of reducing oxygen gas generated from the positive electrode to water at the negative electrode when the secondary battery is overcharged is efficiently performed, it is suppressed that the internal pressure of the secondary battery rises. Battery characteristics are improved.
【0004】ところで、前述した水酸化ニッケルを含む
ペーストを集電体に充填した構造を有する正極を備えた
アルカリ二次電池は充放電サイクルの進行に伴って前記
正極が膨潤する。前記正極の膨潤は、電解液の移動と、
電解液の移動が関係しない事柄との2つが原因となって
生じる。前記二次電池のセパレータ中の電解液は充放電
サイクルの進行に伴って前記正極及び前記負極に移動す
るため、前記正極及び前記負極が前記電解液を吸収する
ことにより膨潤する。また、前記正極は、前記二次電池
の充放電によっても膨潤する。この後、放電されると前
記正極は元の体積に戻る。しかしながら、充放電サイク
ルの進行に伴って、放電時に減少する体積が低減するた
め、結果として前記正極は膨潤する。この正極を備え、
かつ前述した電極群の最外周端が負極の端部となるよう
な構造を有する二次電池に充放電サイクルを施すと、電
極群の中心から離れた箇所に位置する正極、つまり両側
面がセパレータを挟んで負極と対向している正極は、前
記負極により位置が規制されているため、膨潤度合いが
小さい。しかしながら、前記正極の巻き始め端部は、そ
の位置が前記負極によって規制されていないため、膨潤
度合いが大きくなるという問題点があった。前記正極の
巻き始め端部が膨潤すると、巻き始め端部近傍の正極の
厚さが電極群の中心に向けて厚くなったり、前記正極の
巻き始め端部が電極群の中心方向へ曲り込んだりする。
その結果、前記正極の巻き始め端部近傍とこれと対向す
る負極との距離が変動するため、前記正極において前記
負極と反応する箇所が局所的になり、前記二次電池の容
量が低下して充放電サイクル寿命が短くなるという問題
点があった。Meanwhile, in an alkaline secondary battery having a positive electrode having a structure in which a current collector is filled with the paste containing nickel hydroxide described above, the positive electrode swells as the charging / discharging cycle progresses. The swelling of the positive electrode is caused by movement of the electrolytic solution,
It is caused by two things that are not related to the movement of the electrolytic solution. The electrolytic solution in the separator of the secondary battery moves to the positive electrode and the negative electrode as the charging / discharging cycle progresses, so that the positive electrode and the negative electrode absorb the electrolytic solution and swell. Further, the positive electrode also swells when the secondary battery is charged and discharged. After that, when discharged, the positive electrode returns to its original volume. However, as the charge / discharge cycle progresses, the volume that decreases during discharge decreases, and as a result, the positive electrode swells. With this positive electrode,
And when subjected to a charge-discharge cycle to a secondary battery having a structure in which the outermost peripheral end of the electrode group is the end of the negative electrode, the positive electrode located at a position away from the center of the electrode group, that is, both sides are separators. Since the position of the positive electrode facing the negative electrode with the negative electrode sandwiched is regulated by the negative electrode, the degree of swelling is small. However, since the position of the winding start end of the positive electrode is not regulated by the negative electrode, there is a problem that the degree of swelling increases. When the winding start end of the positive electrode swells, the thickness of the positive electrode near the winding start end becomes thicker toward the center of the electrode group, or the winding start end of the positive electrode bends toward the center of the electrode group. To do.
As a result, the distance between the vicinity of the winding start end of the positive electrode and the negative electrode facing the winding start end varies, so that the portion of the positive electrode that reacts with the negative electrode becomes local, and the capacity of the secondary battery decreases. There is a problem that the charge / discharge cycle life is shortened.
【0005】このようなことから、特開平3−1330
66号の公報には、最内周端及び最外周端に水素吸蔵合
金電極の端部がそれぞれ位置する構造を有する電極群を
備えることによって、ニッケル酸化物電極の全面に水素
吸蔵合金電極を対向させて前記ニッケル酸化物電極の膨
潤を抑制することが開示されている。前記電極群は、図
10に示す方法により作製される。図10(a)に示す
ように、中央部分に溝21が形成された巻芯22を用
い、帯状セパレータ23の中央部分を前記巻芯22の前
記21溝に挟み、前記巻芯22を例えば半時計回りに1
/2周回転させることにより前記セパレータ23でS字
状の袋を形成する。図10(b)に示すように、水素吸
蔵合金電極24の端部25を前記S字状の袋内に配置し
た後、前記巻芯22を1/2周回転させる。図10
(c)に示すように、前記電極24の両側に位置するセ
パレータ23のうち外側に位置するセパレータ23にニ
ッケル酸化物電極26をその端部27が前記電極24の
前記端部25と対向するように配置する。次いで、これ
らを捲回することにより図11に示す渦巻形電極群28
を作製する。From the above, Japanese Patent Laid-Open No. 3-1330
In the publication of Japanese Patent No. 66, an electrode group having a structure in which the end portions of the hydrogen storage alloy electrode are located at the innermost peripheral edge and the outermost peripheral edge, respectively, is provided so that the hydrogen storage alloy electrode faces the entire surface of the nickel oxide electrode. It is disclosed that the swelling of the nickel oxide electrode is suppressed. The electrode group is manufactured by the method shown in FIG. As shown in FIG. 10A, a winding core 22 having a groove 21 formed in the central portion is used, and the central portion of the strip-shaped separator 23 is sandwiched between the 21 grooves of the winding core 22 so that the winding core 22 is, for example, half. 1 clockwise
The S-shaped bag is formed by the separator 23 by rotating / 2 rounds. As shown in FIG. 10B, after the end portion 25 of the hydrogen storage alloy electrode 24 is placed in the S-shaped bag, the winding core 22 is rotated by 1/2 turn. Figure 10
As shown in (c), the nickel oxide electrode 26 is provided on the separator 23 located on the outer side of the separators 23 located on both sides of the electrode 24 so that its end portion 27 faces the end portion 25 of the electrode 24. To place. Next, by winding these, the spiral electrode group 28 shown in FIG.
Is prepared.
【0006】しかしながら、近年の高容量で、かつ高エ
ネルギー密度を有する電池の需要に応えるために、前述
した構造を有する二次電池において前記ニッケル酸化物
電極26の容量を高めたところ、それに比例して前記電
極26の膨潤度合いが大きくなった。その結果、前記電
極26の巻き始め端部27近傍が充放電サイクルの進行
に伴って膨潤するのをこの部分と対向している前記水素
吸蔵合金電極24によって抑制することが困難になっ
た。このため、前記ニッケル酸化物電極26において前
記水素吸蔵合金電極24と反応する箇所が局所的にな
り、前記二次電池の容量が低下した。また、前記セパレ
ータ23中の電解液が前記正極26へ移動するため、前
記セパレータ23中の電解液が著しく減少し、前記二次
電池の内部抵抗が上昇した。その結果、前記二次電池は
充放電サイクル寿命が著しく低下するという問題点があ
った。However, in order to meet the recent demand for a battery having a high capacity and a high energy density, when the capacity of the nickel oxide electrode 26 is increased in the secondary battery having the above-mentioned structure, it is proportional to the increase. As a result, the degree of swelling of the electrode 26 increased. As a result, it becomes difficult to suppress the swelling of the vicinity of the winding start end portion 27 of the electrode 26 due to the progress of the charging / discharging cycle by the hydrogen storage alloy electrode 24 facing this portion. Therefore, the nickel oxide electrode 26 locally reacts with the hydrogen storage alloy electrode 24, and the capacity of the secondary battery is reduced. Further, since the electrolytic solution in the separator 23 moves to the positive electrode 26, the electrolytic solution in the separator 23 is significantly reduced, and the internal resistance of the secondary battery is increased. As a result, the secondary battery has a problem that the charge / discharge cycle life is significantly reduced.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、充放
電サイクルの進行に伴って正極の巻き始め端部が膨潤す
るのが抑制されたアルカリ二次電池の製造方法を提供し
ようとするものである。An object of the present invention is to provide a method for producing an alkaline secondary battery in which the swelling of the winding start end of the positive electrode is suppressed as the charge / discharge cycle progresses. Is.
【0008】[0008]
【課題を解決するための手段】本発明の方法は、水酸化
ニッケルを含むペーストを集電体に充填した構造を有す
る正極と、負極と、セパレータと、アルカリ電解液とを
備えたアルカリ二次電池を製造し、中心を横切る溝を有
する巻芯を用い、前記セパレータの一部を前記巻芯の前
記溝で挟んだ後、前記巻芯を回転させることにより前記
セパレータでS字状の袋を形成する工程と、前記S字状
の袋内に前記負極の先端部を配置した後、所望の周角度
をもって捲回する工程と、前記負極の外側に位置するセ
パレータに前記正極をその先端部が前記負極の前記先端
部から前記捲回方向と反対方向に所望の周角度ずれるよ
うにして配置し、更に捲回することにより渦巻形電極群
を作製する工程とを具備したことを特徴とするものであ
る。The method of the present invention is an alkaline secondary battery comprising a positive electrode having a structure in which a paste containing nickel hydroxide is filled in a current collector, a negative electrode, a separator, and an alkaline electrolyte. A battery is manufactured, a winding core having a groove that crosses the center is used, a part of the separator is sandwiched by the grooves of the winding core, and then the winding core is rotated to form an S-shaped bag with the separator. Forming step, arranging the tip portion of the negative electrode in the S-shaped bag, and then winding the tip portion at a desired circumferential angle; A spirally wound electrode group is produced by arranging the negative electrode so as to deviate from the tip end portion in a direction opposite to the winding direction by a desired circumferential angle, and further winding the electrode. Is.
【0009】前記S字状の袋を形成する工程において、
前記セパレータの一部を前記巻芯の前記溝で挟んだ後、
前記巻芯を1/3周〜2/3周回転させることにより前
記セパレータでS字状の袋を形成することが好ましい。
前記巻芯の回転周を限定したのは次のような理由による
ものである。前記回転周を1/3周未満にすると、前記
セパレータのうち前記正極と前記負極との間に介装され
ていない部分が少なくなって前記電極群中の予備の電解
液の量が減少する恐れがある。一方、前記回転周が2/
3周を越えると、前記電極群の中心付近に存在するセパ
レータの容積が多くなり過ぎて前記正極及び前記負極の
容積が少なくなる恐れがある。In the step of forming the S-shaped bag,
After sandwiching a part of the separator in the groove of the winding core,
It is preferable to form an S-shaped bag with the separator by rotating the winding core 1/3 to 2/3.
The reason why the rotation circumference of the winding core is limited is as follows. When the rotation circumference is less than 1/3, the portion of the separator not interposed between the positive electrode and the negative electrode is reduced, and the amount of the spare electrolyte solution in the electrode group may be reduced. There is. On the other hand, the rotation circumference is 2 /
If it exceeds 3 turns, the volume of the separator existing near the center of the electrode group becomes too large, and the volume of the positive electrode and the negative electrode may be reduced.
【0010】前記負極の前記先端部と前記正極の前記先
端部との位置ずれ分に相当する周角度を60°〜120
°にすることが好ましい。これは次のような理由による
ものである。前記周角度を60°未満にすると、このよ
うな電極群は、正極を挟まずに負極同士が重なった部分
が低減するため、前記先端部が膨潤するのを抑制するこ
とが困難になる恐れがある。また、前記負極の先端部付
近とこれと対向する正極との密着性が低下する恐れがあ
るため、正極と負極との反応性が低下する恐れがある。
一方、前記周角度が120°を越えると、電池反応に関
与しない部分の電極全体に占める割合が増える恐れがあ
り、電池設計上不都合が生じる恐れがある。The circumferential angle corresponding to the positional deviation between the tip of the negative electrode and the tip of the positive electrode is 60 ° to 120.
It is preferable to set it to °. This is due to the following reasons. When the circumferential angle is less than 60 °, in such an electrode group, a portion where the negative electrodes are overlapped with each other without sandwiching the positive electrode is reduced, so that it may be difficult to suppress the swelling of the tip portion. is there. In addition, since the adhesion between the vicinity of the tip of the negative electrode and the positive electrode facing it may decrease, the reactivity between the positive electrode and the negative electrode may decrease.
On the other hand, if the circumferential angle exceeds 120 °, the ratio of the portion not involved in the battery reaction to the entire electrode may increase, which may cause inconvenience in battery design.
【0011】前記正極の先端部付近を二つ折りにした別
のセパレータで被覆することが好ましい。特に、前記二
つ折りのセパレータで被覆される正極の長さは、正極全
体の長さの10%〜50%にすることが好ましい。これ
は次のような理由によるものである。前記セパレータで
被覆される正極の長さを正極全体の長さの10%未満に
すると、充放電サイクルの進行に伴って前記正極の前記
先端部が膨潤するのを抑制する効果がみうけられない恐
れがある。一方、前記二つ折りのセパレータで被覆され
る正極の長さが正極全体の長さの50%を越えると、前
記電極群中のセパレータの占める容積が多くなり過ぎて
電池内絶対空隙が減少する恐れがあり、結果として前記
正極及び前記負極の容積が低減する恐れがある。より好
ましい前記別のセパレータで被覆される正極の長さは、
正極全体の長さの20%〜40%である。It is preferable to cover the vicinity of the tip of the positive electrode with another separator that is folded in two. In particular, the length of the positive electrode coated with the bi-fold separator is preferably 10% to 50% of the total length of the positive electrode. This is due to the following reasons. When the length of the positive electrode coated with the separator is less than 10% of the total length of the positive electrode, the effect of suppressing the swelling of the tip portion of the positive electrode as the charge / discharge cycle progresses may not be observed. There is. On the other hand, if the length of the positive electrode covered with the bi-fold separator exceeds 50% of the total length of the positive electrode, the volume occupied by the separator in the electrode group becomes too large, and the absolute void in the battery may decrease. As a result, the volumes of the positive electrode and the negative electrode may be reduced. More preferably, the length of the positive electrode coated with the other separator is
It is 20% to 40% of the total length of the positive electrode.
【0012】以下、本発明に係る方法で製造されるアル
カリ二次電池を図1を参照して説明する。前述した方法
により作製された渦巻形電極群1は、有底円筒状の容器
2内に収納されている。負極3は前記電極群1の最外周
に配置されて前記容器2と電気的に接触している。正極
4は帯状のセパレータ5を挟んで前記負極3と対向して
いる。アルカリ電解液は、前記容器2内に収容されてい
る。中央に穴6aを有する円形の封口板6は、前記容器
2の上部開口部に配置されている。リング状の絶縁性ガ
スケット7は、前記封口板6の周縁と前記容器2の上部
開口部内面の間に圧縮状態で配置されている。前記封口
板6は、前記絶縁ガスケット7の圧縮下において前記容
器2の上部開口部に気密に固定されている。正極リード
8は、一端が前記正極4に接続、他端が前記封口板6の
下面に接続されている。帽子形状をなす正極端子9は、
前記封口板6上に前記穴6aを覆うように取り付けられ
ている。ゴム製の安全弁10は、前記封口板6と前記正
極端子9で囲まれた空間内に前記穴6aを塞ぐように配
置されている。Hereinafter, the alkaline secondary battery manufactured by the method according to the present invention will be described with reference to FIG. The spiral electrode group 1 produced by the method described above is housed in a cylindrical container 2 having a bottom. The negative electrode 3 is arranged on the outermost periphery of the electrode group 1 and is in electrical contact with the container 2. The positive electrode 4 faces the negative electrode 3 with a strip-shaped separator 5 interposed therebetween. The alkaline electrolyte is contained in the container 2. A circular sealing plate 6 having a hole 6a in the center is arranged in the upper opening of the container 2. The ring-shaped insulating gasket 7 is arranged in a compressed state between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 2. The sealing plate 6 is airtightly fixed to the upper opening of the container 2 under the compression of the insulating gasket 7. The positive electrode lead 8 has one end connected to the positive electrode 4 and the other end connected to the lower surface of the sealing plate 6. The positive electrode terminal 9 having a hat shape is
It is attached on the sealing plate 6 so as to cover the hole 6a. The rubber safety valve 10 is arranged so as to close the hole 6a in the space surrounded by the sealing plate 6 and the positive electrode terminal 9.
【0013】前記正極4は、水酸化ニッケル粉末と、導
電剤と、結着剤と、水とを含むペーストを調製し、前記
ペーストを集電体に充填し、これを乾燥、加圧成形した
後、所望のサイズに切断することにより製造される。For the positive electrode 4, a paste containing nickel hydroxide powder, a conductive agent, a binder, and water was prepared, the current collector was filled with the paste, and the paste was dried and pressure-molded. Then, it is manufactured by cutting into a desired size.
【0014】前記導電剤としては、例えば一酸化コバル
ト、三酸化二コバルト、水酸化コバルト等のコバルト化
合物を挙げることができる。前記結着剤としては、例え
ばポリテトラフルオロエチレン、カルボキシメチルセル
ロース、メチルセルロース、ポリアクリル酸ナトリウ
ム、ポリビニルアルコールを挙げることができる。Examples of the conductive agent include cobalt compounds such as cobalt monoxide, dicobalt trioxide, and cobalt hydroxide. Examples of the binder include polytetrafluoroethylene, carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, and polyvinyl alcohol.
【0015】前記集電体としては、例えばニッケル、ス
テンレス等の耐アルカリ性金属や、耐アルカリ性のニッ
ケルメッキが施された樹脂などからなるスポンジ状、繊
維状、フェルト状の多孔質構造を有するものを挙げるこ
とができる。The current collector has a sponge-like, fiber-like, or felt-like porous structure made of, for example, an alkali-resistant metal such as nickel or stainless steel or a resin plated with alkali-resistant nickel. Can be mentioned.
【0016】前記負極3は、負極活物質に導電材を添加
し、結着剤及び水と共に混練してペーストを調製し、前
記ペーストを集電体に充填し、乾燥した後、成形するこ
とにより製造される。The negative electrode 3 is prepared by adding a conductive material to the negative electrode active material, kneading it with a binder and water to prepare a paste, filling the current collector with the paste, drying it, and then molding it. Manufactured.
【0017】前記負極活物質としては、例えば金属カド
ミウム、水酸化カドミウムなどのカドミウム化合物、水
素吸蔵合金を挙げることができる。中でも、前記水素吸
蔵合金は、前記カドミウム化合物を用いた場合よりも二
次電池の容量を向上できるため、好ましい。前記水素吸
蔵合金としては、格別制限されるものではなく、電解液
中で電気化学的に発生させた水素を吸蔵でき、かつ放電
時にその吸蔵水素を容易に放出できるものであればよ
い。例えばLaNi5 、MmNi5 (Mmとは、La,
Ce,Pr,Nd,Smなどのランタン系元素の混合物
であるミッシュメタルを意味する)、LnNi5 (L
n;ランタン富化したミッシュメタル)、及びこれらの
Niの一部をAl、Mn、Co、Ti、Cu、Zn、Z
r、Cr、Bのような元素で置換した多元素系のものを
挙げることができる。Examples of the negative electrode active material include cadmium compounds such as cadmium metal and cadmium hydroxide, and hydrogen storage alloys. Above all, the hydrogen storage alloy is preferable because it can improve the capacity of the secondary battery as compared with the case where the cadmium compound is used. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen electrochemically generated in the electrolytic solution and can easily release the stored hydrogen during discharge. For example, LaNi 5 and MmNi 5 (Mm is La,
Ce, Pr, Nd, Sm, etc. means a misch metal which is a mixture of lanthanum-based elements), LnNi 5 (L
n; lanthanum-enriched misch metal), and some of these Nis are Al, Mn, Co, Ti, Cu, Zn, Z
Examples thereof include multi-element type elements substituted with elements such as r, Cr and B.
【0018】前記導電材としては、例えばカーボンブラ
ック等を挙げることができる。前記結着剤としては、前
記正極4と同様なものを挙げることができる。前記集電
体としては、例えばパンチドメタル、エキスパンデッド
メタル、穿孔剛板、ニッケルネットなどの二次元基板
や、フェルト状金属多孔体や、スポンジ状金属多孔体な
どの三次元基板を挙げることができる。Examples of the conductive material include carbon black. The same binder as the positive electrode 4 can be used as the binder. Examples of the current collector include two-dimensional substrates such as punched metal, expanded metal, perforated rigid plate and nickel net, and three-dimensional substrates such as felt-like metal porous bodies and sponge-like metal porous bodies. You can
【0019】前記セパレータ5としては、例えば、ポリ
アミド繊維製不織布、ポリエチレンやポリプロピレンな
どのポリオレフィン繊維製不織布に親水性官能基を付与
したものを挙げることができる。なお、前記正極4の先
端部付近を二つ折りにした別のセパレータで被覆する場
合、この二つ折りのセパレータの材質としては前記セパ
レータ5と同様なものを挙げることができる。Examples of the separator 5 include a nonwoven fabric made of polyamide fiber and a nonwoven fabric made of polyolefin fiber such as polyethylene and polypropylene to which a hydrophilic functional group is added. When the vicinity of the tip of the positive electrode 4 is covered with another separator that is folded in two, the same material as that of the separator 5 can be used as the material of the separator that is folded in two.
【0020】前記アルカリ電解液としては、例えば水酸
化カリウム溶液、水酸化カリウムに水酸化ナトリウム及
び水酸化リチウムのいずれか一方または両者が添加され
た混合液を用いることができる。As the alkaline electrolyte, it is possible to use, for example, a potassium hydroxide solution or a mixed solution of potassium hydroxide with one or both of sodium hydroxide and lithium hydroxide added.
【0021】[0021]
【作用】本発明のアルカリ二次電池の製造方法によれ
ば、巻芯によって帯状のセパレータでS字状の袋を形成
し、前記S字状の袋内に負極の先端部を配置した後、前
記巻芯を所望の角度回転させる。前記負極の両側面に配
置されたセパレータのうち外側に位置するセパレータに
正極をその先端部が前記負極の前記先端部から所望の周
角度分遅れるように配置し、これらを捲回して渦巻形電
極群を作製することによって、前記正極の先端部、つま
り巻き始め端部よりも先に負極の巻き始め端部(先端
部)を配置することができる。従って、前記正極の巻き
始め端部より先に位置する最内周の負極と、2周目の負
極との間には前記正極が配置されていないため、前記最
内周の負極と前記2周目の負極とを前記セパレータを挟
んで重ねることができる。言い換えれば、前記負極の前
記巻き始め端部と前記正極の巻き始め端部との位置ずれ
分に相当する前記周角度内において、最内周の負極と2
周目の負極とをその間に正極を挟まずに重ねることがで
きる。その結果、この正極を挟まずに負極同士が重なっ
た部分を支点にして最内周の負極と2周目の負極とで前
記正極の巻き始め端部の近傍を挟むことができる。すな
わち、最内周の負極と2周目の負極とでクリップを作る
ことができ、そのクリップによって前記正極の巻き始め
端部の近傍を挟むことができる。前述した図11に示す
ように従来の方法によると、負極の巻き始め端部と正極
の巻き始め端部とが巻芯の中心から見て同位置に配置さ
れるため、前記正極の巻き始め端部よりも先の部分に前
述した負極同士が重なった部分を形成することができな
い。従って、前記正極の巻き始め端部の近傍は、最内周
の負極と2周目の負極とで支えられているだけであるた
め、前記正極の巻き始め端部の近傍が膨潤するのを押え
込む力が弱く、前記正極の巻き始め端部は充放電サイク
ルの進行に伴って膨潤する。本発明に係る方法による
と、前記正極の巻き始め端部の近傍は、その両側面が最
内周に位置する負極と2周目の負極とで押されているた
め、前記正極の厚さが充放電サイクルの進行に伴って厚
くなる、すなわち前記正極が厚さ方向に膨潤するのを抑
制することができる。また、前記正極の巻き始め端部の
前方には前述した負極同士が重なった部分が配置されて
いるため、この部分がストッパになり、前記正極の巻き
始め端部が充放電サイクルの進行に伴って電極群中央方
向へ曲り込むのを抑制することができる。その結果、正
極と負極との間の距離が変動するのを抑制することがで
きるため、前記二次電池の容量を向上することができ
る。また、前記セパレータ中の電解液が前記正極へ移動
するのを抑制することができるため、前記二次電池の内
部抵抗が上昇するのを抑えることができる。従って、前
記二次電池の充放電サイクル寿命を向上することができ
る。According to the method of manufacturing an alkaline secondary battery of the present invention, an S-shaped bag is formed by a strip-shaped separator with a winding core, and the tip of the negative electrode is placed in the S-shaped bag, The core is rotated by a desired angle. The positive electrode is placed on a separator located on the outer side of the separators arranged on both sides of the negative electrode such that the tip of the positive electrode lags the tip of the negative electrode by a desired circumferential angle, and these are wound to form a spiral electrode. By forming the group, the winding start end (tip) of the negative electrode can be arranged before the leading end of the positive electrode, that is, the winding start end. Therefore, since the positive electrode is not arranged between the negative electrode at the innermost circumference located ahead of the winding start end of the positive electrode and the negative electrode at the second circumference, the negative electrode at the innermost circumference and the second circumference. The negative electrode of the eye can be overlapped with the separator interposed therebetween. In other words, within the circumferential angle corresponding to the positional deviation between the winding start end of the negative electrode and the winding start end of the positive electrode, the innermost negative electrode and the negative electrode 2
The negative electrode of the circumference can be stacked without sandwiching the positive electrode therebetween. As a result, the vicinity of the winding start end of the positive electrode can be sandwiched between the negative electrode at the innermost periphery and the negative electrode at the second periphery with the overlapping portion of the negative electrodes as a fulcrum without sandwiching the positive electrode. That is, a clip can be formed by the innermost negative electrode and the second negative electrode, and the clip can sandwich the vicinity of the winding start end of the positive electrode. According to the conventional method, as shown in FIG. 11 described above, the winding start end of the negative electrode and the winding start end of the positive electrode are arranged at the same position as viewed from the center of the winding core. It is not possible to form a portion where the above-mentioned negative electrodes are overlapped with each other in a portion preceding the portion. Therefore, the vicinity of the winding start end of the positive electrode is supported only by the innermost circumference of the negative electrode and the second circumference of the negative electrode, so that the vicinity of the winding start end of the positive electrode is suppressed from swelling. Since the force of pushing is weak, the winding start end of the positive electrode swells as the charging / discharging cycle progresses. According to the method of the present invention, the vicinity of the winding start end of the positive electrode is pressed by the negative electrode having the innermost circumference on both side surfaces thereof and the negative electrode at the second circumference. It is possible to prevent the positive electrode from thickening as the charge / discharge cycle progresses, that is, the positive electrode from swelling in the thickness direction. Further, since the above-mentioned portion where the negative electrodes are overlapped with each other is arranged in front of the winding start end portion of the positive electrode, this portion serves as a stopper, and the winding start end portion of the positive electrode is accompanied by the progress of the charging / discharging cycle. It is possible to suppress bending of the electrode group toward the center. As a result, it is possible to prevent the distance between the positive electrode and the negative electrode from varying, so that the capacity of the secondary battery can be improved. Further, since the electrolytic solution in the separator can be prevented from moving to the positive electrode, it is possible to prevent the internal resistance of the secondary battery from increasing. Therefore, the charge / discharge cycle life of the secondary battery can be improved.
【0022】また、前記正極の前記巻き始め端部と前記
負極の前記巻き始め端部との位置ずれ分に相当する周角
度を60°〜120°にすることによって、前述した負
極同士が重なった部分を十分に確保することができる。
従って、前記正極の巻き始め端部の両側面に加わる押圧
力を向上することができ、かつ前記負極の重なり部の強
度を向上することができるため、前記正極の巻き始め端
部の充放電サイクルの進行に伴う膨潤を更に抑えること
ができる。また、前記周角度を前記範囲内にすることに
よって、前記正極の先端部分と、前記負極の先端部分
と、その間に介装されたセパレータとの密着性を向上す
ることができると共に負極全体を電池反応に関与させる
ことができる。その結果、前記周角度を60°〜120
°にすることによって、前記二次電池の充放電サイクル
寿命をより一層向上することができる。Further, by setting the circumferential angle corresponding to the positional deviation between the winding start end of the positive electrode and the winding start end of the negative electrode to be 60 ° to 120 °, the negative electrodes described above overlap each other. The part can be secured sufficiently.
Therefore, the pressing force applied to both sides of the winding start end of the positive electrode can be improved, and the strength of the overlapping portion of the negative electrode can be improved, so that the charging / discharging cycle of the winding start end of the positive electrode can be improved. It is possible to further suppress the swelling that accompanies the progress. Further, by setting the circumferential angle within the above range, the adhesion between the tip portion of the positive electrode, the tip portion of the negative electrode, and the separator interposed therebetween can be improved, and the entire negative electrode can be used as a battery. Can be involved in the reaction. As a result, the circumferential angle is 60 ° to 120.
By setting the angle to 0, the charge / discharge cycle life of the secondary battery can be further improved.
【0023】更に、前記正極の巻き始め端部付近を二つ
折りにした別のセパレータで被覆することによって、前
記正極の巻き始め端部付近は前記二つ折りのセパレータ
で挟まれ、更に前述した最内周の負極と2周目の負極と
で形成されたクリップによって挟まれる。このため、巻
き始め端部付近の正極両側面に加わる押圧力を向上する
ことができる。また、前記二つ折りのセパレータは、そ
の正極両側面と対向する部分がそれぞれ前記正極と前記
最内周の負極との間、前記正極と前記2周目の負極との
間に固定されている。その結果、前記二つ折りセパレー
タの巻き始め端部と対向する部分がこの両側面と対向す
る部分により巻芯の捲回方向に引っ張られるため、前記
二つ折りのセパレータによって前記正極の巻き始め端部
に押圧力を加えることができる。従って、巻き始め端部
近傍の正極両側面に加わる押圧力を向上することがで
き、かつ前記正極の巻き始め端部に押圧力を加えること
ができるため、前記正極の巻き始め端部が充放電サイク
ルの進行に伴って膨潤するのを防止することができる。
従って、正極と負極との間の距離を一定に維持すること
ができ、かつ前記セパレータ中の電解液が前記正極へ移
動するのを防止することができる。また、このように正
極の端部付近を二つ折りにしたセパレータで被覆するこ
とによって、セパレータの量を増やすことができるた
め、前記電極群中に蓄えられる電解液の量を多くするこ
とができる。セパレータの量を増やさないで電解液量の
みを増加させると、充放電初期に電極群は前記電解液全
てを吸収することができず、余分な電解液がこの電極群
の上部等にたまる。この二次電池において例えば過充電
等に起因して電池内にガスが発生し、防爆機能が作動す
ると、ガスと共に電極群の上部にたまった電解液が放出
される恐れがある。従って、前記二つ折りにしたセパレ
ータは、前記正極の巻き始め端部の膨潤を防止すること
ができ、かつ電解液のリザーバとして機能するため、安
全性を損なうことなく充放電サイクル寿命等の電池性能
を著しく向上することができる。Further, by covering the vicinity of the winding start end of the positive electrode with another separator which is folded in two, the vicinity of the winding start end of the positive electrode is sandwiched by the separator of the two folds, and further, the innermost portion described above. It is sandwiched by the clip formed by the negative electrode of the circumference and the negative electrode of the second circumference. Therefore, the pressing force applied to both side surfaces of the positive electrode near the winding start end can be improved. Further, the two-fold separator is fixed between the positive electrode and the innermost negative electrode, and between the positive electrode and the second-round negative electrode, respectively, at portions facing the positive electrode both side surfaces. As a result, since the portion facing the winding start end portion of the two-fold separator is pulled in the winding direction of the winding core by the portions facing the both side surfaces, the winding start end portion of the positive electrode is formed by the two-fold separator. A pressing force can be applied. Therefore, the pressing force applied to both side surfaces of the positive electrode near the winding start end can be improved, and the pressing force can be applied to the winding start end of the positive electrode, so that the winding start end of the positive electrode is charged and discharged. Swelling can be prevented as the cycle progresses.
Therefore, the distance between the positive electrode and the negative electrode can be maintained constant, and the electrolytic solution in the separator can be prevented from moving to the positive electrode. In addition, since the amount of the separator can be increased by covering the end portion of the positive electrode with the folded separator in this manner, the amount of the electrolytic solution stored in the electrode group can be increased. If only the amount of the electrolytic solution is increased without increasing the amount of the separator, the electrode group cannot absorb all of the electrolytic solution at the initial stage of charge and discharge, and excess electrolytic solution is accumulated on the upper part of the electrode group. When gas is generated in the secondary battery due to overcharge or the like in the secondary battery and the explosion-proof function is activated, the electrolytic solution accumulated on the upper part of the electrode group may be discharged together with the gas. Therefore, the bi-folded separator can prevent swelling of the winding start end of the positive electrode, and also functions as a reservoir for the electrolytic solution, so that battery performance such as charge / discharge cycle life can be maintained without impairing safety. Can be significantly improved.
【0024】また、前記正極の巻き始め端部付近を前記
二つ折りにしたセパレータで被覆することによって、正
極及び負極に発生したクラックによって内部短絡が生じ
るのを低減することができる。正極及び負極は柔軟性が
乏しく、特に正極は巻き始めの捲回半径が小さい時にク
ラックを生じる場合がある。その結果、このクラックの
部分が前記正極と前記負極の間に介装されているセパレ
ータを突き破って内部短絡を生じる場合がある。前記正
極の巻き始め端部付近に配置されるセパレータを二重に
することによって、前記正極や前記負極の巻き始め端部
付近に生じたクラックが前記正極と前記負極の間に介装
されているセパレータを突き破るのを抑制することがで
きるため、内部短絡を低減することができる。このた
め、歩留まりを向上することができる。By covering the vicinity of the winding start end of the positive electrode with the folded separator, it is possible to reduce the occurrence of internal short circuit due to cracks generated in the positive electrode and the negative electrode. The positive electrode and the negative electrode have poor flexibility, and in particular, the positive electrode may crack when the winding radius at the beginning of winding is small. As a result, the cracked portion may pierce the separator interposed between the positive electrode and the negative electrode to cause an internal short circuit. By doubling the separator arranged near the winding start end of the positive electrode, a crack generated near the winding start end of the positive electrode or the negative electrode is interposed between the positive electrode and the negative electrode. Since the breakthrough of the separator can be suppressed, the internal short circuit can be reduced. Therefore, the yield can be improved.
【0025】[0025]
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1 まず、水酸化ニッケル粉末100重量部及び一酸化コバ
ルト11重量部からなる混合物に、カルボキシメチルセ
ルロース0.2重量%と、ポリテトラフルオロエチレン
5重量%を添加し、これらに水30重量%を添加して混
練してペーストを調製した。前記各ペーストを集電体と
してのニッケルメッキ繊維基板に充填し、乾燥した後、
ローラプレスして圧延成形することにより正極を作製し
た。Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1 First, 0.2% by weight of carboxymethylcellulose and 5% by weight of polytetrafluoroethylene were added to a mixture consisting of 100 parts by weight of nickel hydroxide powder and 11 parts by weight of cobalt monoxide, and 30% by weight of water was added thereto. Was added and kneaded to prepare a paste. After filling each of the pastes into a nickel-plated fiber substrate as a current collector and drying,
A positive electrode was produced by roller pressing and rolling.
【0026】LaNi4.0 Co0.4 Mn0.3 Al0.3 の
組成からなる水素吸蔵合金粉末100重量部にポリテト
ラフルオロエチレン粉末0.5重量部と、カーボン粉末
1重量部と、結着剤としてカルボキシメチルセルロース
を0.2重量部添加し、水55重量部と共に混合するこ
とによって、ペーストを調製した。前記ペーストをパン
チドメタルに塗布、乾燥した後、加圧成形することによ
って負極を作製した。また、親水性官能基が付与された
ポリプロピレン繊維製不織布からなるセパレータを用意
した。100 parts by weight of a hydrogen storage alloy powder having a composition of LaNi 4.0 Co 0.4 Mn 0.3 Al 0.3 , 0.5 parts by weight of polytetrafluoroethylene powder, 1 part by weight of carbon powder, and 0 parts of carboxymethyl cellulose as a binder. A paste was prepared by adding .2 parts by weight and mixing with 55 parts by weight of water. The paste was applied to a punched metal, dried, and then pressure-molded to produce a negative electrode. In addition, a separator made of a polypropylene fiber non-woven fabric having a hydrophilic functional group was prepared.
【0027】次いで、図2(a)に示すように、中心を
横切る溝11を有する巻芯12を用い、前記帯状セパレ
ータ5の中央部分を前記巻芯12の前記溝に挟んだ。前
記巻芯12を半時計回りに1/2周回転させることによ
り図2(b)に示すように前記セパレータ5でS字状の
袋を形成した。前記負極3の端部3aを前記S字状の袋
内に配置した後、前記巻芯12を3/4周回転させた。Next, as shown in FIG. 2 (a), a core 12 having a groove 11 that traverses the center was used, and the central portion of the strip separator 5 was sandwiched between the grooves of the core 12. By rotating the winding core 12 by 1/2 counterclockwise, an S-shaped bag is formed by the separator 5 as shown in FIG. 2B. After the end portion 3a of the negative electrode 3 was placed in the S-shaped bag, the winding core 12 was rotated 3/4 round.
【0028】図2(c)に示すように、前記負極3の両
側面に配置されたセパレータ5のうち外側に位置するセ
パレータ5に前記正極4を配置した。前記正極4の端部
4aは、前記負極3の端部3aから巻芯の捲回方向と逆
の方向に所望の周角度(θ)ずれるように配置された。
前記周角度θ、つまり前記負極3の端部3aと前記巻芯
12の中心とを結ぶ線と、前記正極4の端部4aと前記
巻芯12の中心とを結ぶ線とのなす角は90°である。
その後、これらを捲回することにより図3に示す渦巻形
電極群1を作製した。As shown in FIG. 2C, the positive electrode 4 was placed on the outer separator 5 among the separators 5 placed on both sides of the negative electrode 3. The end 4a of the positive electrode 4 was arranged so as to be displaced from the end 3a of the negative electrode 3 in a desired circumferential angle (θ) in a direction opposite to the winding direction of the winding core.
The circumferential angle θ, that is, the angle formed by the line connecting the end 3a of the negative electrode 3 and the center of the winding core 12 and the line connecting the end 4a of the positive electrode 4 and the center of the winding core 12 is 90. °.
Then, by winding these, the spiral electrode group 1 shown in FIG. 3 was produced.
【0029】作製された電極群から前記巻芯を取り除い
た後、前記電極群を有底円筒形容器内に収納した。8.
0mol/lの水酸化カリウム水溶液からなるアルカリ
電解液を収容し、封口することにより前述した図1に示
す構造を有し、公称容量が1100mAhのAAサイズ
のニッケル水素二次電池を製造した。 実施例2 実施例1と同様な材質のセパレータ5から実施例1と同
様な方法によってS字状の袋を形成した。実施例1と同
様な構成の負極3の端部3aを前記S字状の袋内に配置
した後、前記巻芯12を2/3周回転させた。前記負極
3の外側に位置するセパレータ5に実施例1と同様な構
成の正極4をその端部4aが前記負極3の端部3aから
巻芯の捲回方向と逆の方向に60°ずれるようにして配
置した。その後、これらを捲回することにより図4に示
す渦巻形電極群1を作製した。After removing the winding core from the prepared electrode group, the electrode group was housed in a bottomed cylindrical container. 8.
An AA-sized nickel metal hydride secondary battery having a structure shown in FIG. 1 and having a nominal capacity of 1100 mAh was manufactured by accommodating and sealing an alkaline electrolyte composed of a 0 mol / l potassium hydroxide aqueous solution. Example 2 An S-shaped bag was formed from the separator 5 made of the same material as in Example 1 by the same method as in Example 1. After arranging the end portion 3a of the negative electrode 3 having the same configuration as in Example 1 in the S-shaped bag, the winding core 12 was rotated by 2/3. The positive electrode 4 having the same structure as that of the first embodiment is placed on the separator 5 located outside the negative electrode 3 such that the end portion 4a thereof deviates from the end portion 3a of the negative electrode 3 by 60 ° in the direction opposite to the winding direction of the winding core. I arranged it. Then, these were wound to produce the spiral electrode group 1 shown in FIG.
【0030】作製された電極群1と、実施例1と同様な
電解液とを用いて実施例1と同様な方法により前述した
図1に示す構造を有し、公称容量が1100mAhのA
Aサイズのニッケル水素二次電池を製造した。 実施例3 実施例1と同様な材質のセパレータから実施例1と同様
な方法によってS字状の袋を形成した。実施例1と同様
な構成の負極の端部を前記S字状の袋内に配置した後、
前記巻芯を5/6周回転させた。前記負極の外側に位置
するセパレータに実施例1と同様な構成の正極をその端
部が前記負極の端部から巻芯の捲回方向と逆の方向に1
20°ずれるようにして配置した。その後、これらを捲
回することにより渦巻形電極群を作製した。Using the produced electrode group 1 and the same electrolytic solution as in Example 1, the structure shown in FIG. 1 was used in the same manner as in Example 1 and the nominal capacity was 1100 mAh.
An A size nickel-hydrogen secondary battery was manufactured. Example 3 An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After arranging the end portion of the negative electrode having the same structure as in Example 1 in the S-shaped bag,
The core was rotated 5/6 rounds. A positive electrode having the same structure as that of the first embodiment is attached to the separator located outside the negative electrode, and the end of the positive electrode is placed in the direction opposite to the winding direction of the winding core from the end of the negative electrode.
They were arranged so as to be offset by 20 °. Then, these were wound to produce a spiral electrode group.
【0031】作製された電極群と、実施例1と同様な電
解液とを用いて実施例1と同様な方法により前述した図
1に示す構造を有し、公称容量が1100mAhのAA
サイズのニッケル水素二次電池を製造した。 実施例4 実施例1と同様な材質のセパレータから実施例1と同様
な方法によってS字状の袋を形成した。実施例1と同様
な構成の負極の端部を前記S字状の袋内に配置した後、
前記巻芯を1/12周回転させた。前記負極の外側に位
置するセパレータに実施例1と同様な構成の正極をその
端部が前記負極の端部から巻芯の捲回方向と逆の方向に
30°ずれるようにして配置した。その後、これらを捲
回することにより渦巻形電極群を作製した。AA having the structure shown in FIG. 1 and having the nominal capacity of 1100 mAh was prepared by the same method as in Example 1 using the prepared electrode group and the same electrolytic solution as in Example 1.
A nickel-hydrogen secondary battery of a size was manufactured. Example 4 An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After arranging the end portion of the negative electrode having the same structure as in Example 1 in the S-shaped bag,
The core was rotated 1/12 round. A positive electrode having the same structure as in Example 1 was placed on the separator located outside the negative electrode such that the end of the positive electrode was offset from the end of the negative electrode by 30 ° in the direction opposite to the winding direction of the winding core. Then, these were wound to produce a spiral electrode group.
【0032】作製された電極群と、実施例1と同様な電
解液とを用いて実施例1と同様な方法により前述した図
1に示す構造を有し、公称容量が1100mAhのAA
サイズのニッケル水素二次電池を製造した。 実施例5 実施例1と同様な材質のセパレータから実施例1と同様
な方法によってS字状の袋を形成した。実施例1と同様
な構成の負極の端部を前記S字状の袋内に配置した後、
前記巻芯を1周回転させた。前記負極の外側に位置する
セパレータに実施例1と同様な構成の正極をその端部が
前記負極の端部から巻芯の捲回方向と逆の方向に180
°ずれるようにして配置した。その後、これらを捲回す
ることにより渦巻形電極群を作製した。Using the prepared electrode group and the electrolytic solution similar to that of Example 1, the AA having the structure shown in FIG. 1 and the nominal capacity of 1100 mAh was obtained by the same method as in Example 1.
A nickel-hydrogen secondary battery of a size was manufactured. Example 5 An S-shaped bag was formed from a separator made of the same material as in Example 1 by the same method as in Example 1. After arranging the end portion of the negative electrode having the same structure as in Example 1 in the S-shaped bag,
The winding core was rotated once. A positive electrode having the same structure as in Example 1 was placed on the separator located outside the negative electrode, and the end portion of the positive electrode was 180 degrees from the end portion of the negative electrode in the direction opposite to the winding direction of the winding core.
They are arranged so that they are offset from each other. Then, these were wound to produce a spiral electrode group.
【0033】作製された電極群と、実施例1と同様な電
解液とを用いて実施例1と同様な方法により前述した図
1に示す構造を有し、公称容量が1100mAhのAA
サイズのニッケル水素二次電池を製造した。AA having the structure shown in FIG. 1 and having a nominal capacity of 1100 mAh was prepared in the same manner as in Example 1 using the prepared electrode group and the same electrolytic solution as in Example 1.
A nickel-hydrogen secondary battery of a size was manufactured.
【0034】このような方法により電極群を作製するこ
とによって、前述した図3及び図4に示すように、前記
負極3の端部3aを前記正極4の端部4aよりも捲回方
向に前記周角度θ分先行させることができるため、周角
度θ内の領域に位置する最内周の負極3と2周目の負極
3とを正極4を挟まずに重ねることができる。その結
果、この重なった部分を支点にして最内周に位置する負
極3と2周目の負極3とにより前記正極4の端部4a近
傍を挟むことができるため、前記端部4a近傍の正極両
側面に押圧力を加えることができる。従って、前記正極
4の端部4a近傍が充放電サイクルの進行に伴ってその
厚さ方向に膨潤するのを抑制することができる。また、
前記端部4aの直前に前記負極同士が重なった部分が配
置されているため、前記端部4aの位置をこの重なった
部分により規制することができる。このため、前記正極
4の端部4a近傍が充放電サイクルの進行に伴ってその
長さ方向に膨潤するのを抑制することができる。By preparing the electrode group by such a method, as shown in FIGS. 3 and 4, the end portion 3a of the negative electrode 3 is wound in the winding direction more than the end portion 4a of the positive electrode 4. Since they can be advanced by the circumferential angle θ, the innermost negative electrode 3 and the second negative electrode 3 located in the region within the circumferential angle θ can be overlapped without sandwiching the positive electrode 4. As a result, since the vicinity of the end portion 4a of the positive electrode 4 can be sandwiched by the negative electrode 3 located at the innermost circumference and the negative electrode 3 at the second circumference with the overlapping portion serving as a fulcrum, the positive electrode near the end portion 4a. Pressing force can be applied to both sides. Therefore, it is possible to prevent the vicinity of the end 4a of the positive electrode 4 from swelling in the thickness direction thereof as the charge / discharge cycle progresses. Also,
Since the overlapping portion of the negative electrodes is arranged immediately before the end portion 4a, the position of the end portion 4a can be restricted by the overlapping portion. Therefore, it is possible to prevent the vicinity of the end 4a of the positive electrode 4 from swelling in the lengthwise direction thereof as the charging / discharging cycle progresses.
【0035】以下に示す実験により本発明に係る方法に
より製造された二次電池の優れた特性が確認された。 比較例 実施例1と同様な構成の正極、負極、セパレータを用
い、前述した図10に示す正極24の端部25と負極2
6の端部27とが巻芯22の中心から見て同位置に配置
される方法によって前述した図11に示す渦巻形電極群
28を作製した。The following experiments confirmed the excellent characteristics of the secondary battery manufactured by the method according to the present invention. Comparative Example Using the positive electrode, the negative electrode, and the separator having the same configurations as in Example 1, the end portion 25 of the positive electrode 24 and the negative electrode 2 shown in FIG.
The spiral electrode group 28 shown in FIG. 11 described above was produced by a method in which the end portions 27 of 6 and 6 are arranged at the same position as viewed from the center of the winding core 22.
【0036】作製された電極群28と、実施例1と同様
な電解液とを用いて実施例1と同様な方法により前述し
た図1に示す構造を有し、公称容量が1100mAhの
AAサイズのニッケル水素二次電池を製造した。Using the prepared electrode group 28 and the same electrolytic solution as in Example 1, the structure shown in FIG. 1 was used in the same manner as in Example 1, and the nominal capacity was 1100 mAh. A nickel-hydrogen secondary battery was manufactured.
【0037】得られた実施例1〜5及び比較例の二次電
池について、電流値1.0Cの−ΔV充電制御で充電し
た後、0.2Cの電流で電池電圧が1.0Vになるまで
放電する充放電サイクルを1000回繰り返した。この
際の放電容量を測定し、これらの値から放電容量比を求
め(公称容量を基準にする)、その結果を図5に示す。Each of the obtained secondary batteries of Examples 1 to 5 and Comparative Example was charged by -ΔV charge control with a current value of 1.0 C, and then the battery voltage became 1.0 V at a current of 0.2 C. The charging / discharging cycle of discharging was repeated 1000 times. The discharge capacity at this time was measured, the discharge capacity ratio was determined from these values (based on the nominal capacity), and the result is shown in FIG.
【0038】図5から明らかなように、正極の先端部が
負極の先端部から捲回方向と逆の方向に所望の周角度分
ずれるように配置された実施例1〜5の二次電池は、長
期間に亘って放電容量が高いことがわかる。また、前記
周角度が60°〜120°である実施例1〜3の二次電
池は、前記周角度が30°である実施例4及び前記周角
度が180°である実施例5よりも長い期間、放電容量
が高いことがわかる。これに対し、正極の先端部と負極
の先端部とが巻芯の中心から見て同位置に配置された比
較例の二次電池は、実施例1〜5の二次電池に比べて放
電容量が低下するのが早いことがわかる。As is apparent from FIG. 5, the secondary batteries of Examples 1 to 5 in which the tip of the positive electrode is displaced from the tip of the negative electrode by a desired circumferential angle in the direction opposite to the winding direction, It can be seen that the discharge capacity is high over a long period of time. In addition, the secondary batteries of Examples 1 to 3 having the circumferential angle of 60 ° to 120 ° are longer than those of Example 4 having the circumferential angle of 30 ° and Example 5 having the circumferential angle of 180 °. It can be seen that the discharge capacity is high during the period. On the other hand, the secondary battery of the comparative example in which the tip of the positive electrode and the tip of the negative electrode are arranged at the same position when viewed from the center of the winding core has a discharge capacity higher than those of the secondary batteries of Examples 1 to 5. It can be seen that the value of is quickly reduced.
【0039】また、実施例1〜5及び比較例の二次電池
について、電流値1.0Cの−ΔV充電制御で充電した
後、0.2Cの電流で電池電圧が1.0Vになるまで放
電する充放電サイクルを1000回繰り返した。この際
の内部抵抗を測定し、これらの値から内部抵抗比を求め
(1サイクル目の内部抵抗を基準にする)を測定し、そ
の結果を図6に示す。Further, the secondary batteries of Examples 1 to 5 and Comparative Example were charged by -ΔV charge control with a current value of 1.0 C and then discharged at a current of 0.2 C until the battery voltage became 1.0 V. The charging / discharging cycle was repeated 1000 times. The internal resistance at this time was measured, the internal resistance ratio was calculated from these values (based on the internal resistance in the first cycle), and the result is shown in FIG.
【0040】図6から明らかなように、実施例1〜5の
二次電池は、長期間に亘って内部抵抗が低いことがわか
る。また、前記周角度が60°〜120°である実施例
1〜3の二次電池は、前記周角度が30°である実施例
4及び前記周角度が180°である実施例5よりも長い
期間、内部抵抗が低いことがわかる。これに対し、比較
例の二次電池は、実施例1〜5の二次電池に比べて内部
抵抗が上昇するのが早いことがわかる。 実施例6 実施例1と同様な方法によりセパレータ5でS字状の袋
を形成した後、実施例1と同様な負極3の端部3aを前
記S字状の袋内に配置した。ひきつづき、実施例1と同
様な回転周で巻芯12を回転させた。また、図7に示す
ように、実施例1と同様な構成の正極4の端部4aを実
施例1と同様な材質からなる二つ折りの別のセパレータ
13で被覆した。前記セパレータ13で被覆された正極
の長さは、正極全体の長さの20%に相当する。As is apparent from FIG. 6, the secondary batteries of Examples 1 to 5 have low internal resistance over a long period of time. In addition, the secondary batteries of Examples 1 to 3 having the circumferential angle of 60 ° to 120 ° are longer than those of Example 4 having the circumferential angle of 30 ° and Example 5 having the circumferential angle of 180 °. It can be seen that the internal resistance is low during the period. On the other hand, it can be seen that the secondary battery of the comparative example increases the internal resistance faster than the secondary batteries of Examples 1 to 5. Example 6 After forming an S-shaped bag with the separator 5 in the same manner as in Example 1, the end portion 3a of the negative electrode 3 similar to that in Example 1 was placed in the S-shaped bag. Subsequently, the winding core 12 was rotated on the same rotation circumference as in Example 1. Further, as shown in FIG. 7, the end portion 4a of the positive electrode 4 having the same configuration as that of Example 1 was covered with another two-folded separator 13 made of the same material as that of Example 1. The length of the positive electrode coated with the separator 13 corresponds to 20% of the total length of the positive electrode.
【0041】前記負極3の両側面に配置されたセパレー
タ5のうち外側に位置するセパレータ5に前記正極4を
配置した。前記正極4の外側端部14は、前記負極3の
端部3aから巻芯の捲回方向と逆の方向に所望の周角度
(θ)ずれるように配置された。前記周角度θは実施例
1と同様に90°である。その後、これらを捲回するこ
とにより渦巻形電極群1を作製した。The positive electrode 4 was placed on the outer separator 5 among the separators 5 placed on both sides of the negative electrode 3. The outer end portion 14 of the positive electrode 4 is arranged so as to be displaced from the end portion 3a of the negative electrode 3 by a desired circumferential angle (θ) in a direction opposite to the winding direction of the winding core. The circumferential angle θ is 90 ° as in the first embodiment. Then, the spirally wound electrode group 1 was produced by winding these.
【0042】作製された電極群1と、実施例1と同様な
電解液とを用いて実施例1と同様な方法により前述した
図1に示す構造を有し、公称容量が1100mAhのA
Aサイズのニッケル水素二次電池を製造した。Using the prepared electrode group 1 and the electrolytic solution similar to that of Example 1, the structure shown in FIG. 1 described above and the nominal capacity of 1100 mAh were obtained by the same method as in Example 1.
An A size nickel-hydrogen secondary battery was manufactured.
【0043】このような方法により電極群を作製するこ
とによって、前述した図7に示すように、前記正極4の
端部4a付近を前記別のセパレータ13で挟むことがで
き、更にこれを最内周の負極3と2周目の負極3とで形
成されたクリップによって挟むことができる。すなわ
ち、前記正極4の端部4a近傍は前記セパレータ13と
前記負極3とで二重に挟まれるため、前記端部4a近傍
の正極両側面に加わる押圧力を向上することができる。
このため、前記正極4の端部4a近傍が充放電サイクル
の進行に伴ってその厚さ方向に膨潤するのを防止するこ
とができる。また、前記セパレータ13の正極両側面と
対向する部分は、前記セパレータ5と前記正極4との間
に介装されて固定されている。その結果、前記セパレー
タ13の端部4aと対向する部分はこの正極両側面と対
向する部分により巻芯12の捲回方向に引っ張られるた
め、前記正極4の端部4aに押圧力を加えることができ
る。従って、前記正極4の端部4aは、その位置が前記
負極同士が重なった部分により規制され、かつ前記セパ
レータ13によって押圧されるため、充放電サイクルの
進行に伴ってその長さ方向に膨潤するのが防止される。By producing the electrode group by such a method, as shown in FIG. 7 described above, the vicinity of the end 4a of the positive electrode 4 can be sandwiched between the other separators 13, and further, the innermost portion can be formed. It can be sandwiched by a clip formed by the negative electrode 3 on the circumference and the negative electrode 3 on the second circumference. That is, since the vicinity of the end 4a of the positive electrode 4 is doubly sandwiched by the separator 13 and the negative electrode 3, the pressing force applied to both side surfaces of the positive electrode near the end 4a can be improved.
Therefore, it is possible to prevent the vicinity of the end portion 4a of the positive electrode 4 from swelling in the thickness direction thereof as the charging / discharging cycle progresses. Further, a portion of the separator 13 facing both side surfaces of the positive electrode is interposed and fixed between the separator 5 and the positive electrode 4. As a result, the portion of the separator 13 facing the end portion 4a is pulled in the winding direction of the winding core 12 by the portions of the separator 13 facing the both side surfaces of the positive electrode, so that a pressing force can be applied to the end portion 4a of the positive electrode 4. it can. Therefore, the end portion 4a of the positive electrode 4 is restricted in its position by the portion where the negative electrodes are overlapped with each other and is pressed by the separator 13, so that the end portion 4a swells in the lengthwise direction thereof as the charge / discharge cycle progresses. Is prevented.
【0044】以下に示す実験により実施例6の二次電池
の優れた特性が確認された。得られた実施例6の二次電
池について、前述したサイクル試験を行い、得られた放
電容量比を図8に示す。また、図8に比較例のデータを
併記する。The following experiment confirmed the excellent characteristics of the secondary battery of Example 6. The above-described cycle test was performed on the obtained secondary battery of Example 6, and the obtained discharge capacity ratio is shown in FIG. The data of the comparative example are also shown in FIG.
【0045】図8から明らかなように、正極の先端部が
負極の先端部から捲回方向と逆の方向に所望の周角度分
ずれるように配置され、かつ前記正極の先端部付近が二
つ折りの別のセパレータで被覆されている実施例6の二
次電池は、1000サイクルと著しく長い期間に亘って
放電容量が高いことがわかる。これに対し、正極の先端
部と負極の先端部とが巻芯の中心から見て同位置に配置
された比較例の二次電池は、実施例6の二次電池に比べ
て放電容量が低下するのが早いことがわかる。As is apparent from FIG. 8, the tip of the positive electrode is arranged so as to be displaced from the tip of the negative electrode by a desired circumferential angle in the direction opposite to the winding direction, and the vicinity of the tip of the positive electrode is folded in two. It can be seen that the secondary battery of Example 6 coated with another separator of No. 1 has a high discharge capacity over a remarkably long period of 1000 cycles. On the other hand, the secondary battery of the comparative example in which the tip of the positive electrode and the tip of the negative electrode are arranged at the same position when viewed from the center of the winding core has a lower discharge capacity than the secondary battery of Example 6. You can see that it is quick to do.
【0046】また、実施例6の二次電池について、前述
したサイクル試験を行い、得られた内部抵抗比を図9に
示す。また、図9に比較例のデータを併記する。図9か
ら明らかなように、実施例6の二次電池は、1000サ
イクルと著しく長い期間に亘って内部抵抗が低いことが
わかる。これに対し、比較例の二次電池は、実施例6の
二次電池に比べて内部抵抗が上昇するのが早いことがわ
かる。The cycle test described above was conducted on the secondary battery of Example 6, and the internal resistance ratios obtained are shown in FIG. Moreover, the data of the comparative example are also shown in FIG. As is clear from FIG. 9, the secondary battery of Example 6 has a low internal resistance over a remarkably long period of 1000 cycles. On the other hand, it can be seen that the secondary battery of the comparative example increases the internal resistance faster than the secondary battery of the example 6.
【0047】なお、前記実施例では、ニッケル水素二次
電池に適用した例を説明したが、ニッケルカドミウム二
次電池、ニッケル亜鉛二次電池にも同様に適用すること
ができる。In the above-mentioned embodiment, the example applied to the nickel-hydrogen secondary battery has been described, but the present invention can also be applied to the nickel-cadmium secondary battery and the nickel-zinc secondary battery in the same manner.
【0048】[0048]
【発明の効果】以上詳述したように本発明のアルカリ二
次電池の製造方法によれば、正極の先端部が充放電サイ
クルの進行に伴って膨潤するのを抑制することができ、
正極と負極との間の距離が変動するのを抑制することが
でき、セパレータ中のアルカリ電解液が前記正極へ移動
するのを抑えることができ、充放電サイクル寿命を向上
することができる等の顕著な効果を奏する。As described in detail above, according to the method for producing an alkaline secondary battery of the present invention, it is possible to prevent the tip portion of the positive electrode from swelling as the charge / discharge cycle progresses,
The distance between the positive electrode and the negative electrode can be suppressed from varying, the alkaline electrolyte in the separator can be prevented from moving to the positive electrode, and the charge / discharge cycle life can be improved. Has a remarkable effect.
【図1】本発明に係わる方法により製造されるアルカリ
二次電池を示す斜視図。FIG. 1 is a perspective view showing an alkaline secondary battery manufactured by a method according to the present invention.
【図2】本発明に係わる製造工程を示す断面図。FIG. 2 is a sectional view showing a manufacturing process according to the present invention.
【図3】実施例1において作製された渦巻形電極群を示
す断面図。FIG. 3 is a cross-sectional view showing a spiral electrode group manufactured in Example 1.
【図4】実施例2において作製された渦巻形電極群を示
す断面図。FIG. 4 is a cross-sectional view showing a spiral electrode group manufactured in Example 2.
【図5】実施例1〜5における充放電サイクルを100
0回繰り返した際の放電容量の変化を示す特性図。FIG. 5 shows 100 charge / discharge cycles in Examples 1 to 5.
The characteristic view which shows the change of discharge capacity at the time of repeating 0 times.
【図6】実施例1〜5における充放電サイクルを100
0回繰り返した際の内部抵抗の変化を示す特性図。FIG. 6 shows 100 charge / discharge cycles in Examples 1 to 5.
The characteristic view which shows the change of the internal resistance when repeating 0 times.
【図7】実施例6において作製された渦巻形電極群の要
部断面図。FIG. 7 is a cross-sectional view of a main part of a spiral electrode group manufactured in Example 6.
【図8】実施例6における充放電サイクルを1000回
繰り返した際の放電容量の変化を示す特性図。FIG. 8 is a characteristic diagram showing a change in discharge capacity when the charge / discharge cycle in Example 6 is repeated 1000 times.
【図9】実施例6における充放電サイクルを1000回
繰り返した際の内部抵抗の変化を示す特性図。FIG. 9 is a characteristic diagram showing changes in internal resistance when the charge / discharge cycle in Example 6 is repeated 1000 times.
【図10】従来の製造工程を示す断面図。FIG. 10 is a sectional view showing a conventional manufacturing process.
【図11】従来の方法により作製された渦巻形電極群を
示す断面図。FIG. 11 is a cross-sectional view showing a spiral electrode group manufactured by a conventional method.
3…負極、3a…先端部、4…正極、4a…先端部、5
…セパレータ、11…溝、12…巻芯。3 ... Negative electrode, 3a ... Tip part, 4 ... Positive electrode, 4a ... Tip part, 5
... separator, 11 ... groove, 12 ... winding core.
Claims (3)
に充填した構造を有する正極と、負極と、帯状のセパレ
ータと、アルカリ電解液とを備えたアルカリ二次電池の
製造方法において、 中心を横切る溝を有する巻芯を用い、前記帯状セパレー
タの一部を前記巻芯の前記溝で挟んだ後、前記巻芯を回
転させることにより前記セパレータでS字状の袋を形成
する工程と、 前記S字状の袋内に前記負極の先端部を配置した後、所
望の周角度をもって捲回する工程と、 前記負極の外側に位置するセパレータに前記正極をその
先端部が前記負極の前記先端部から前記捲回方向と反対
方向に所望の周角度ずれるようにして配置し、更に捲回
することにより渦巻形電極群を作製する工程とを具備し
たことを特徴とするアルカリ二次電池の製造方法。1. A method for producing an alkaline secondary battery, comprising: a positive electrode having a structure in which a paste containing nickel hydroxide is filled in a current collector; a negative electrode; a strip-shaped separator; and an alkaline electrolyte. Forming a S-shaped bag with the separator by rotating the winding core after sandwiching a part of the strip-shaped separator with the groove of the winding core using a winding core having a transverse groove; Placing the tip of the negative electrode in an S-shaped bag, and then winding the tip at a desired circumferential angle; and placing the positive electrode on a separator located outside the negative electrode and the tip of the negative electrode is the tip of the negative electrode. And a step of producing a spirally wound electrode group by arranging in a direction opposite to the winding direction with a desired circumferential angle deviation, and further winding the electrode group. .
先端部との位置ずれ分に相当する周角度を60°〜12
0°にすることを特徴とする請求項1記載のアルカリ二
次電池の製造方法。2. A circumferential angle corresponding to a positional deviation between the tip portion of the negative electrode and the tip portion of the positive electrode is 60 ° to 12 °.
The method for producing an alkaline secondary battery according to claim 1, wherein the method is 0 °.
した別のセパレータで被覆されていることを特徴とする
請求項1記載のアルカリ二次電池の製造方法。3. The method of manufacturing an alkaline secondary battery according to claim 1, wherein the vicinity of the tip of the positive electrode is covered with another separator that is folded in two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02689695A JP3706166B2 (en) | 1995-02-15 | 1995-02-15 | Manufacturing method of nickel metal hydride secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02689695A JP3706166B2 (en) | 1995-02-15 | 1995-02-15 | Manufacturing method of nickel metal hydride secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08222265A true JPH08222265A (en) | 1996-08-30 |
JP3706166B2 JP3706166B2 (en) | 2005-10-12 |
Family
ID=12206016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02689695A Expired - Fee Related JP3706166B2 (en) | 1995-02-15 | 1995-02-15 | Manufacturing method of nickel metal hydride secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3706166B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8563164B2 (en) * | 2005-09-27 | 2013-10-22 | Sanyo Electric Co., Ltd. | Cylindrical type alkaline storage battery |
JP2014170664A (en) * | 2013-03-04 | 2014-09-18 | Sanyo Electric Co Ltd | Battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025071361A1 (en) * | 2023-09-27 | 2025-04-03 | 주식회사 엘지에너지솔루션 | Electrode assembly, cylindrical battery, and battery pack and vehicle including same |
-
1995
- 1995-02-15 JP JP02689695A patent/JP3706166B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8563164B2 (en) * | 2005-09-27 | 2013-10-22 | Sanyo Electric Co., Ltd. | Cylindrical type alkaline storage battery |
JP2014170664A (en) * | 2013-03-04 | 2014-09-18 | Sanyo Electric Co Ltd | Battery |
Also Published As
Publication number | Publication date |
---|---|
JP3706166B2 (en) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000251871A (en) | Alkaline secondary battery | |
EP4478473A1 (en) | Zinc battery | |
JP3706166B2 (en) | Manufacturing method of nickel metal hydride secondary battery | |
JP2002025604A (en) | Alkaline secondary battery | |
JP3567021B2 (en) | Alkaline secondary battery | |
JP2002100396A (en) | Cylindrical alkaline secondary cell | |
JP3352338B2 (en) | Manufacturing method of alkaline storage battery | |
JP4413294B2 (en) | Alkaline secondary battery | |
JPH10247514A (en) | Nickel-hydrogen secondary battery | |
JP2001006724A (en) | Cylindrical alkaline secondary battery | |
JPH11149938A (en) | Nickel hydrogen secondary battery | |
JP2926288B2 (en) | Nickel-cadmium battery | |
JP2001176540A (en) | Nickel hydrogen secondary battery | |
JPH11297353A (en) | Manufacture of nickel-hydrogen secondary battery | |
JP2001068145A (en) | Rectangular alkaline secondary battery | |
JP2001006723A (en) | Alkaline secondary battery and manufacture of alkaline secondary battery | |
JPH10233229A (en) | Manufacture of alkaline storage battery | |
JP2000277101A (en) | Positive electrode for alkaline secondary battery and alkaline secondary battery | |
JP2000113902A (en) | Alkaline secondary battery | |
JPH10154525A (en) | Manufacture of alkaline storage battery | |
JP2001068148A (en) | Nickel - hydrogen secondary battery | |
JP2004063325A (en) | Cylindrical storage battery | |
JP2000268800A (en) | Alkaline secondary battery | |
JPH10116626A (en) | Manufacture of nickel hydrogen secondary battery | |
JP2000277142A (en) | Cylindrical alkaline secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050728 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080805 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |