[go: up one dir, main page]

JPH08220149A - Photovoltaic sensor - Google Patents

Photovoltaic sensor

Info

Publication number
JPH08220149A
JPH08220149A JP7051832A JP5183295A JPH08220149A JP H08220149 A JPH08220149 A JP H08220149A JP 7051832 A JP7051832 A JP 7051832A JP 5183295 A JP5183295 A JP 5183295A JP H08220149 A JPH08220149 A JP H08220149A
Authority
JP
Japan
Prior art keywords
temperature
electro
analyzer
polarizer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7051832A
Other languages
Japanese (ja)
Inventor
Masao Otsuka
正雄 大塚
Taku Furuta
卓 古田
Hidetsugu Koga
英嗣 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP7051832A priority Critical patent/JPH08220149A/en
Publication of JPH08220149A publication Critical patent/JPH08220149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE: To obtain a photovoltaic sensor in which stabilized temperature characteristics are ensured for the sensitivity of the sensor. CONSTITUTION: The photovoltaic sensor comprises a polarizer 3, a quarter wavelength plate 4, an electrooptic crystal 5, and an analyzer 6 arranged sequentially along an optical path. The electrooptic crystal 5 is composed of Bi12 GeO20 or Bi12 SiO20 and a relationship κc =|(π/2)κ1/4 | is set between the temperature coefficient κc of the electrooptic crystal 5 and that κ1/4 of the quarter wavelength plate 4 by regulating the angle of rotation dependent on the thickness of the electrooptic crystal 5 and the cutting direction thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁界環境の過酷な電
力分野等における電圧を高精度で測定するための光電圧
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical voltage sensor for measuring voltage with high accuracy in a field of electric power which is harsh in an electromagnetic field environment.

【0002】[0002]

【従来の技術】従来、この種の光電圧センサは、図9に
示すように構成されている。発光ダイオードなどの発光
素子からなる光源(図示せず)から放出される光は、光
ファイバ1によって導かれ、コリメータレンズ2aで平
行光となり、偏光子3で光を反射または透過した後直線
偏光3aとなる。この直線偏光3aは、1/4波長板4
を透過する際に、図示する互いに直交する直線偏光4
a,4bが90度の位相差を生じて円偏光となる。この
円偏光が電気光学素子5を通過すると、その結晶の表裏
に設けられた透明電極を介して電界が印加されることに
より生じる複屈折を利用して、光位相変調を行う。その
後、この光を検光子6を通過させることによりアナログ
変調を行い、コリメータレンズ2bで集光し、光ファイ
バ1bを介して検出器(図示せず)に入力し、アナログ
変調の度合いに応じた電圧を検出している(例えば、特
公平2−10383号)。
2. Description of the Related Art Conventionally, this type of optical voltage sensor is constructed as shown in FIG. Light emitted from a light source (not shown) including a light emitting element such as a light emitting diode is guided by the optical fiber 1, becomes parallel light by the collimator lens 2a, and is reflected or transmitted by the polarizer 3 and then linearly polarized light 3a. Becomes This linearly polarized light 3a is a quarter wavelength plate 4
Linearly polarized light 4 shown in FIG.
A and 4b generate a phase difference of 90 degrees and become circularly polarized light. When this circularly polarized light passes through the electro-optical element 5, the optical phase modulation is performed by utilizing the birefringence generated by applying an electric field through the transparent electrodes provided on the front and back surfaces of the crystal. After that, this light is passed through the analyzer 6 to be subjected to analog modulation, condensed by the collimator lens 2b, input to a detector (not shown) via the optical fiber 1b, and the analog modulation is performed according to the degree of analog modulation. The voltage is detected (for example, Japanese Patent Publication No. 2-10383).

【発明が解決しようとする課題】ところが、従来技術で
は、光電圧センサの温度変化に対する出力特性の変化が
大きく、このことが電圧を高精度測定する上で大きな障
害となっていた。例えば、従来の巻線形PT(Pote
ntial transformer)の確度階級1P
級と同等の使い方をするためには、定格電圧の70%か
ら110%の電圧範囲で比誤差を1.0%以下にする必
要がある。しかしながら、現状の光電圧センサでこの温
度範囲内に収めることは、構成部品である1/4波長
板、電気光学結晶などの温度特性を考慮すると難しい問
題があった。本発明は、センサ感度の安定した温度特性
が得られる光電圧センサの温度特性安定化方法を提供す
ることを目的とするものである。
However, in the prior art, the change in the output characteristics of the optical voltage sensor with respect to the temperature change is large, which has been a major obstacle to highly accurate voltage measurement. For example, the conventional wound type PT (Pote)
accuracy class 1P
In order to use it in the same way as the class, it is necessary to make the ratio error 1.0% or less in the voltage range of 70% to 110% of the rated voltage. However, there is a problem that it is difficult for the current optical voltage sensor to be within this temperature range in consideration of the temperature characteristics of the ¼ wavelength plate, the electro-optic crystal and the like which are the components. It is an object of the present invention to provide a method for stabilizing the temperature characteristic of an optical voltage sensor that can obtain a stable temperature characteristic of sensor sensitivity.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、光路に沿って順に配置した偏光子、1/
4波長板、電気光学結晶、検光子からなる光電圧センサ
において、前記電気光学結晶がBi12GeO20(以下B
GOと呼ぶ)またはBi12SiO20(以下BSOと呼
ぶ)のいずれか一方からなり、前記電気光学結晶の厚み
によって決まる旋光角と前記電気光学結晶のカット方向
とを調整することにより、前記電気光学結晶の温度係数
κc と前記1/4波長板の温度係数κ1/4 との関係を、
κc =|(π/2)κ1/4 | としたものである。ま
た、前記偏光子と前記検光子とを直交させて配置したと
き、前記温度係数κc の符号が正になるものである。ま
た、前記偏光子と前記検光子とを平行に配置したとき、
前記温度係数κc の符号が負になるものである。
In order to solve the above problems, the present invention provides a polarizer, which is arranged in order along an optical path, 1 /
In an optical voltage sensor including a four-wave plate, an electro-optical crystal, and an analyzer, the electro-optical crystal is Bi 12 GeO 20 (hereinafter referred to as B 12 GeO 20
GO) or Bi 12 SiO 20 (hereinafter referred to as BSO), and the electro-optic crystal is adjusted by adjusting the optical rotation angle determined by the thickness of the electro-optic crystal and the cutting direction of the electro-optic crystal. the relationship between the temperature coefficient kappa 1/4 of the temperature coefficient kappa c of the crystal the quarter-wave plate,
κ c = | (π / 2) κ 1/4 |. Further, when the polarizer and the analyzer are arranged so as to be orthogonal to each other, the temperature coefficient κ c has a positive sign. When the polarizer and the analyzer are arranged in parallel,
The sign of the temperature coefficient κ c becomes negative.

【0005】[0005]

【作用】光電圧センサは、図2に示すように、偏光子3
と検光子6が直交する方式と、偏光子と検光子が平行と
なる方式があるが、直交する方式と平行する方式の二つ
に分けて考える。偏光子と検光子が直交する場合の透過
光量Pv(V、T) は、電圧Vおよび温度Tの関数として次の
式(1)で表される。 PV(V,T)=(P0/2)[1-cos{ δ(V,T)+δ1/4(T)}] …(1) また、偏光子と検光子が平行である場合の透過光量P
P(V、T) は、同様に電圧Vおよび温度Tの関数として次
の数式(1)で表される。 PP(V,T)=(P0/2)[1+cos{ δ(V,T)+δ1/4(T)}] …(2) ここで、δ(V,T) は温度T(℃)、印加電圧Vの条件で
の電気光学結晶中で生じる位相差(リターデーション)
である。δ1/4(T)は温度T(℃)での1/4波長板の位
相差である。また、P0 はδ(V,T)+δ1/4(T)=0またはπ
における透過光量である。図3は、縦軸に透過光量P
v(V、T) および透過光量PP(V、T) を、横軸に位相差であ
るδ(V,T)+δ1/4(T)をおいて式(1)および式(2)の
関係をまとめたものである。図3に示すように、δ(V,
T)+δ1/4(T)が増加するにつれて、偏光子と検光子が直
交する場合の透過光量Pv(V、T) は増加し、平行である場
合の透過光量PP(V、T)は減少する。
The optical voltage sensor, as shown in FIG.
There is a method in which the analyzer 6 is orthogonal, and a method in which the polarizer and the analyzer are parallel, but two methods of orthogonal method and parallel method will be considered. The transmitted light amount P v (V, T) when the polarizer and the analyzer are orthogonal to each other is expressed by the following equation (1) as a function of the voltage V and the temperature T. P V (V, T) = The (P 0/2) [1 -cos {δ (V, T) + δ 1/4 (T)}] ... (1), the polarizer and analyzer are parallel When the amount of transmitted light P
Similarly, P (V, T) is expressed by the following equation (1) as a function of the voltage V and the temperature T. P P (V, T) = (P 0/2) [1 + cos {δ (V, T) + δ 1/4 (T)}] ... (2) where, δ (V, T) is the temperature Retardation that occurs in the electro-optic crystal under the conditions of T (° C) and applied voltage V
Is. δ 1/4 (T) is the phase difference of the quarter-wave plate at the temperature T (° C.). Also, P 0 is δ (V, T) + δ 1/4 (T) = 0 or π
Is the amount of transmitted light. In FIG. 3, the vertical axis indicates the amount of transmitted light P.
v (V, T) and the amount of transmitted light P P (V, T) are given by equations (1) and (2) with the horizontal axis representing the phase difference δ (V, T) + δ 1/4 (T). ) Is a summary of the relationship. As shown in FIG. 3, δ (V,
T) + δ 1/4 (T) increases, the amount of transmitted light P v (V, T) when the polarizer and analyzer are orthogonal to each other increases, and the amount of transmitted light P P (V, when parallel) T) decreases.

【0006】次に、式(1)、(2)で用いた位相差δ
(V,T)、δ1/4(T)の温度特性およびその大きさについて説
明する。電気光学結晶の位相差δ(V,T) の温度特性は温
度Tと一次式の関係で表されるものと仮定し、その温度
係数をκc(1/℃) とすると、δ(V,T) は式(3)で表さ
れる。 δ(V,T) = δ0(V)(1+ κcT) …(3) ここで、δ0(V)は温度零( ℃) における電気光学結晶の
位相差で、印加する電圧Vの関数である。また、1/4
波長板の位相差δ1/4(T)の温度特性は、温度Tの一次式
で表されるものと仮定し、その温度係数をκ1/4(1/℃)
とすると、δ1/4(T)は式(4)で表される。 δ1/4(T) =( π/2) (1+ κ1/4T) …(4) この場合、1/4波長板は温度零( ℃) のときの位相差
がπ/2(1/4波長に相当)となるように設定されて
いるものとする。
Next, the phase difference δ used in equations (1) and (2)
The temperature characteristics of (V, T) and δ 1/4 (T) and their sizes will be described. Assuming that the temperature characteristic of the phase difference δ (V, T) of the electro-optic crystal is expressed by the relationship of the temperature T and a linear expression, and its temperature coefficient is κ c (1 / ° C), δ (V, T T) is represented by equation (3). δ (V, T) = δ 0 (V) (1+ κ c T) (3) where δ 0 (V) is the phase difference of the electro-optic crystal at a temperature of zero (° C) and the applied voltage V Is a function of. Also, 1/4
The temperature characteristic of the phase difference δ 1/4 (T) of the wave plate is assumed to be represented by a linear expression of the temperature T, and its temperature coefficient is κ 1/4 (1 / ° C)
Then, δ 1/4 (T) is expressed by equation (4). δ 1/4 (T) = (π / 2) (1+ κ 1/4 T) (4) In this case, the 1/4 wave plate has a phase difference of π / 2 (at temperature zero (° C)). (Corresponding to 1/4 wavelength).

【0007】次に、偏光子と検光子が直交する場合の透
過光量Pv(V、T) の温度特性および平行である場合の透過
光量PP(V、T) の温度特性について説明する。透過光量Pv
(V、T) は式(3)と式(4)を式(1)に代入すること
により、次の式(5)で表される。 Pv(V、T) =(P0/2)[1+sin{δ0(V)(1+ κcT) + ( π/2) κ1/4T}] …(5) また同様に、式(3)、(4)を式(2)に代入すると
透過光量PP(V、T) は、次の式(6)によって表される。 PP(V、T) =(P0/2)[1-sin{δ0(V)(1+ κcT) + ( π/2) κ1/4T}] …(6) ここで、電気光学結晶で生じる位相差δ0(V)の値は、通
常10-2( rad)のオーダで使用され、また、κ1/4 は水
晶を使用した1/4波長板では10-4(1/ ℃)のオーダ
である。よって次の式(7)が成立する。 |δ0(V)(1+ κcT) + ( π/2) κ1/4T|≪1 …(7)
Next, the temperature characteristics of the transmitted light quantity P v (V, T) when the polarizer and the analyzer are orthogonal to each other and the temperature characteristics of the transmitted light quantity P P (V, T) when they are parallel to each other will be described. Amount of transmitted light P v
(V, T) is expressed by the following equation (5) by substituting equation (3) and equation (4) into equation (1). P v (V, T) = (P 0/2) [1 + sin {δ 0 (V) (1+ κ c T) + (π / 2) κ 1/4 T}] ... (5) Likewise By substituting the equations (3) and (4) into the equation (2), the transmitted light amount P P (V, T) is represented by the following equation (6). P P (V, T) = (P 0/2) [1-sin {δ 0 (V) (1+ κ c T) + (π / 2) κ 1/4 T}] ... (6) where The value of the phase difference δ 0 (V) generated in the electro-optic crystal is usually used in the order of 10 -2 (rad), and κ 1/4 is 10 -4 in the quarter-wave plate using quartz. It is on the order of (1 / ℃). Therefore, the following expression (7) is established. | δ 0 (V) (1+ κ c T) + (π / 2) κ 1/4 T | ≪1… (7)

【0008】式(7)が成立する条件で偏光子と検光子
が直交する構成では、式(5)の透過光量Pv(V、T) は、
温度Tの関数として次の式(8)の近似式で表すことが
できる。 Pv(V、T) ≒(P0/2)[{1+( π/2) κ1/4T}+δ0(V)(1+ κcT) ] …(8) 式(8)の右辺は、透過光量Pv(V、T) の温度特性が印加
電圧Vに無関係の第1項と、印加電圧Vの関数である第
2項に分けて考えることができることを示している。同
様に、偏光子と検光子が平行の構成での透過光量PP(V、
T) は、式(6)から温度Tの関数として次の式(9)
の近似式で表すことができる。 PP(V、T) ≒(P0/2)[{1-( π/2) κ1/4T}-δ0(V)(1+ κcT) ] …(9) 式(8)、(9)の第1項は、印加電圧Vに無関係な項
で、1/4波長板の温度の影響を表す項である。偏光子
と検光子が直交する場合と平行である場合では、この項
の( π/2) κ1/4Tの符号が逆になるので、1/4波長板
の温度変化の影響が二つの構成で逆になっている。一
方、式(8)、(9)の右辺の第2項は、印加電圧Vの
影響を表す項で、電気光学結晶としてポッケルス効果を
有するBGO,BSOを利用すると、δ0(V)が印加電圧
Vの一次に比例して増減する。これら二つの式を比較す
ると、係数の符号が逆になっているので、透過光量は印
加電圧に対し、位相が180度異なることがわかる。位
相が逆転するにもかかわらず、κcTの符号が等しいの
で、電気光学結晶の温度の影響は、これら二つの構成で
等しいことがわかる。
In the configuration in which the polarizer and the analyzer are orthogonal to each other under the condition that the formula (7) is satisfied, the transmitted light amount P v (V, T) in the formula (5) is
It can be expressed as an approximate expression of the following Expression (8) as a function of the temperature T. P v (V, T) ≒ (P 0/2) [{1+ (π / 2) κ 1/4 T} + δ 0 (V) (1+ κ c T)] ... (8) Equation (8 The right side of) indicates that the temperature characteristic of the transmitted light amount P v (V, T) can be divided into a first term that is independent of the applied voltage V and a second term that is a function of the applied voltage V. . Similarly, the transmitted light amount P P (V,
T) is calculated from the equation (6) as a function of the temperature T by the following equation (9).
Can be expressed by an approximate expression. P P (V, T) ≒ (P 0/2) [{1- (π / 2) κ 1/4 T} -δ 0 (V) (1+ κ c T)] ... (9) Equation (8 ) And (9), the first term is independent of the applied voltage V and represents the influence of the temperature of the quarter-wave plate. When the polarizer and the analyzer are orthogonal and parallel, the sign of (π / 2) κ 1/4 T in this term is opposite, so there are two effects of the temperature change of the quarter-wave plate. The configuration is reversed. On the other hand, the second term on the right side of the formulas (8) and (9) is a term representing the influence of the applied voltage V. When BGO or BSO having the Pockels effect is used as the electro-optic crystal, δ 0 (V) is applied. The voltage V increases or decreases in proportion to the first order. Comparing these two equations, it can be seen that the signs of the coefficients are opposite, and thus the phase of the amount of transmitted light differs by 180 degrees with respect to the applied voltage. It can be seen that the effects of temperature in the electro-optic crystal are equal for these two configurations, because the sign of κ c T is equal, despite the phase inversion.

【0009】次に、偏光子と検光子が直交および平行の
二つの構成で、光センサの変調度を求め、その結果から
変調度の温度特性を導出する。この場合の変調度は、そ
れぞれ式(8)、(9)の右辺の第2項を第1項で割る
ことによって求められる。すなわち、検光子と偏光子が
直交する構成での変調度mV(V,T)は温度Tの関数として
次の式(10)で求められる。 mV(V,T)={δ0(V)(1+ κcT)}/{1 + ( π/2) κ1/4T} …(10) また、同様に検光子と偏光子が平行な場合の変調度m
P(V,T)は温度Tの関数として次の式(11)で求められ
る。 mV(V,T)={- δ0(V)(1+ κcT)}/{1 - ( π/2) κ1/4T} …(11) ここで、これら変調度mV(V,T)、mV(V,T)を絶対値で表
し、センサ感度と呼ぶことにする。
Next, the modulation degree of the optical sensor is obtained in two configurations in which the polarizer and the analyzer are orthogonal and parallel, and the temperature characteristic of the modulation degree is derived from the result. The modulation degree in this case is obtained by dividing the second term on the right side of the equations (8) and (9) by the first term. That is, the degree of modulation m V (V, T) in the configuration of the polarizer and the analyzer are perpendicular is obtained by the following expression as a function of the temperature T (10). m V (V, T) = {δ 0 (V) (1+ κ c T)} / {1 + (π / 2) κ 1/4 T} ... (10) Similarly, the analyzer and the polarizer Modulation degree when is parallel
P (V, T) is obtained as a function of temperature T by the following equation (11). m V (V, T) = {- δ 0 (V) (1+ κ c T)} / {1 - (π / 2) κ 1/4 T} ... (11) where they modulation m V (V, T), represents m V (V, T) and the absolute value, will be referred to as sensor sensitivity.

【0010】次に、物理的な意味をより明確にするため
に、式(10)、(11)を次のように変形する。すな
わち、1/4波長板の温度変化( π/2) κ1/4Tが小さ
く、次の式(12)の条件がそれぞれ成立するものとす
る。 |( π/2) κ1/4T|≪1,|κcT|≪1 …(12) 式(12)が成立する条件では、偏光子と検光子が直交
する構成でのセンサ感度|mV(V,T)|は次の式(13)
で近似される。 |mV(V,T)|≒δ0(V){(1+( κc- (π/2) κ1/4)T}| …(13) 一方、同様に式(12)が成立する条件では、偏光子と
検光子が平行の時のセンサ感度|mP(V,T)|は次の式
(14)で近似される。 |mP(V,T)|≒δ0(V){(1+( κc+ (π/2) κ1/4)T}| …(14) 光センサ感度|m|として通常用いられるのは、|δ
0(V)|である。したがって、式(13)、(14)から
明らかであるように、ここで求めたセンサ感度は通常の
電圧の関数項δ0(V)に{} の温度の項が加わったこと
になる。また、式(13)と式(14)を比較すると、
二つの構成で1/4波長板の温度特性の影響が逆になる
ことがわかる。
Next, in order to make the physical meaning clearer, the equations (10) and (11) are modified as follows. That is, it is assumed that the temperature change (π / 2) κ 1/4 T of the quarter- wave plate is small and the condition of the following expression (12) is satisfied. | (Π / 2) κ 1/4 T | << 1, | κ c T | << 1 (12) Under the condition that Eq. (12) holds, the sensor sensitivity in the configuration in which the polarizer and the analyzer are orthogonal to each other | m V (V, T) | is the following equation (13)
Is approximated by. | M V (V, T) | ≒ δ 0 (V) {(1+ (κ c- (π / 2) κ 1/4 ) T} |… (13) On the other hand, similarly, the equation (12) holds. Under the condition, the sensor sensitivity | m P (V, T) | when the polarizer and the analyzer are parallel is approximated by the following equation (14): | m P (V, T) | ≈δ 0 ( V) {(1+ (κ c + (π / 2) κ 1/4 ) T} | ... (14) The optical sensor sensitivity | m | normally used is | δ
0 (V) | Therefore, as is clear from the equations (13) and (14), the sensor sensitivity obtained here is obtained by adding the {} temperature term to the normal voltage function term δ 0 (V). Also, comparing equation (13) and equation (14),
It can be seen that the effects of the temperature characteristics of the quarter-wave plate are reversed in the two configurations.

【0011】次に、二つの構成でセンサ感度の温度変化
を零にするためには、式(13)と式(14)の温度の
項である{}の中が零になればよい。よって、偏光子と
検光子が直交する場合には、次の式(15)が成立すれ
ばよい。 κc=( π/2) κ1/4 …(15) 一方、偏光子と検光子が平行の場合にセンサ感度の温度
変化を零とするためには、次の式(16)が成立すれば
よい。 κc=-(π/2) κ1/4 …(16) 式(15)は、偏光子と検光子が直交する場合のセンサ
感度の温度特性を安定化させる条件となり、式(16)
は偏光子と検光子が平行な場合のセンサ感度の温度特性
を安定化させる条件となる。
Next, in order to reduce the temperature change of the sensor sensitivity to zero in the two configurations, it suffices that the value of {} in the temperature terms of the equations (13) and (14) becomes zero. Therefore, when the polarizer and the analyzer are orthogonal to each other, the following expression (15) may be satisfied. κ c = (π / 2) κ 1/4 (15) On the other hand, in order to make the temperature change of the sensor sensitivity zero when the polarizer and the analyzer are parallel, the following equation (16) must hold. Good. κ c =-(π / 2) κ 1/4 (16) Equation (15) is a condition for stabilizing the temperature characteristic of the sensor sensitivity when the polarizer and the analyzer are orthogonal to each other.
Is a condition for stabilizing the temperature characteristic of the sensor sensitivity when the polarizer and the analyzer are parallel.

【0012】式(15)、(16)を成立させるために
は、電気光学結晶の温度係数κc または1/4波長板の
温度係数κ1/4 のいずれかを調整する必要がある。ここ
では、電気光学結晶としてBGOまたはBSOを使用し
た時のδ0(V)の温度係数κc の調整法を説明する。この
ため、まず、式(3)に対応する位相差δ0(V)について
説明する。電気光学結晶に印加する電圧をV、半波長電
圧をVh および電気光学結晶の厚みで決まる旋光角をΦ
0 (これらはそれぞれ零度(℃)における値である)、
更に結晶の方位に関するカット方向をθとすると、結晶
中で生じる位相差δ0(V)は、次の式(17)で表され
る。 δ0(V)=(πV/Vh)(sin Φ0 / Φ0 )cos( Φ0 +2θ) …(17) 次に、式(3)の温度係数κc について説明する。この
ためまず、半波長電圧Vh および旋光角Φ0 が温度Tと
一時の関係にあるものと仮定し、それぞれの温度係数が
κa ,κb とすれば、半波長電圧Vh および旋光角Φ0
は次の式(18)で表される。 Vh(T)=Vh0(1+κaT ), Φ0 (T)=Φ0 (1+ κb T) …(18) 式(18)が成立する条件で、式(3)の温度係数κc
は次の式(19)で表される。 κc =-( κa + κb)+ κbF( Φ0 , θ) …(19) ここで、F(Φ0 , θ) は旋光角Φ0 と結晶方位θによっ
て定まる関数で、次の式(20)で表される。 F(Φ0 , θ) =(Φ0 /sinΦ0 ){cos(2 Φ0 +2θ)/cos(Φ0 +2θ)} …(20) κa およびκb は物性値によって定まるので、κc を制
御するためには、F(Φ0 , θ) の値を変えて設計すれば
よい。図4に厚み(旋光角)をパラメータに、結晶の方
位であるカット方向θと|δ(V) | の関係を、式(1
7)を用いて計算した結果を示した。ただし、縦軸は|
δ(V) | の代わりにπV/Vhで規格化した規格化センサ感
度|m|n を用いている。また、旋光角Φ0 と結晶の厚
みdは比例する。また、図5にカット方向θとセンサ感
度の温度係数κc の関係を、式(19)、(20)を用
いて計算した結果を示した。このように、カット方向θ
と旋光角Φ0 に比例する結晶の厚みdによって|δ(V)
| およびκc を調整できることがわかる。なお、カット
方向の定義を図6に示す。
In order to satisfy the equations (15) and (16), it is necessary to adjust either the temperature coefficient κ c of the electro-optic crystal or the temperature coefficient κ 1/4 of the quarter wave plate. Here, a method of adjusting the temperature coefficient κ c of δ 0 (V) when BGO or BSO is used as the electro-optic crystal will be described. Therefore, first, the phase difference δ 0 (V) corresponding to the equation (3) will be described. The voltage applied to the electro-optic crystal is V, the half-wave voltage is V h, and the optical rotation angle determined by the thickness of the electro-optic crystal is Φ.
0 (these are the values at 0 degrees Celsius),
Further, when the cutting direction with respect to the crystal orientation is θ, the phase difference δ 0 (V) generated in the crystal is expressed by the following equation (17). δ 0 (V) = (πV / V h ) (sin Φ 0 / Φ 0 ) cos (Φ 0 + 2θ) (17) Next, the temperature coefficient κ c of the equation (3) will be described. For this reason, first, it is assumed that the half-wave voltage V h and the optical rotation angle Φ 0 have a temporary relationship with the temperature T, and if the respective temperature coefficients are κ a and κ b , the half-wave voltage V h and the optical rotation angle. Φ 0
Is expressed by the following equation (18). V h (T) = V h0 (1 + κ a T), Φ 0 (T) = Φ 0 (1+ κ b T) (18) Under the condition that equation (18) holds, Temperature coefficient κ c
Is expressed by the following equation (19). κ c =-(κ a + κ b ) + κ b F (Φ 0 , θ) (19) where F (Φ 0 , θ) is a function determined by the optical rotation angle Φ 0 and the crystal orientation θ. It is represented by the equation (20). F (Φ 0 , θ) = (Φ 0 / sinΦ 0 ) {cos (2 Φ 0 + 2θ) / cos (Φ 0 + 2θ)}… (20) κ a and κ b are determined by the physical properties, so κ In order to control c , the value of F (Φ 0 , θ) may be changed and designed. FIG. 4 shows the relationship between the cutting direction θ, which is the crystal orientation, and | δ (V) |
The result calculated using 7) is shown. However, the vertical axis is |
Instead of δ (V) |, the normalized sensor sensitivity | m | n normalized by πV / V h is used. The optical rotation angle Φ 0 is proportional to the crystal thickness d. Further, FIG. 5 shows a result of calculating the relationship between the cutting direction θ and the temperature coefficient κ c of the sensor sensitivity by using the equations (19) and (20). In this way, the cutting direction θ
And the crystal thickness d which is proportional to the angle of rotation Φ 0 | δ (V)
It can be seen that | and κ c can be adjusted. The definition of the cutting direction is shown in FIG.

【0013】[0013]

【実施例】以下、本発明を図に示す実施例について説明
する。 [実施例1]図1は本発明の実施例を示す構成図であ
る。図において、1は発光ダイオードなどの発光素子か
らなる光源(図示せず)から放出される光を導く光ファ
イバ、2aは光ファイバ1からの光を平行光とするコリ
メータレンズ、3は偏光ビームスプリッタからなる偏光
子で、光を反射させて直線偏光3aとする。4は1/4
波長板で、直線偏光3aが1/4波長板4を透過する際
に、互いに直交する直線偏光4a,4bとなり、90度
の位相差を生じて円偏光となる。5は電気光学素子で、
この円偏光が電気光学素子5を通過すると、その結晶の
表裏に設けられた透明電極を介して電界が印加されるこ
とにより生じる複屈折を利用して、光位相変調を行う。
6は偏光ビームスプリッタからなる偏光子で、偏光子3
と検光子6が直交する条件は、偏光子3には反射光(S
偏光)を用い、検光子6には透過光(P偏光)を用いる
構成とした。この場合、光電圧センサの取扱を容易にす
るために、検光子6で反射される偏光子3と平行な透過
光量PP(V,T) はコリメータレンズ2bで集光し、光ファ
イバ1bを介して検出器(図示せず)に入力される。検
光子6を通過した偏光子3と直交する透過光量PS(V,T)
はミラー7によって90度光路が曲げられ、コリメータ
レンズ2cで集光し、光ファイバ1cを介して検出器
(図示せず)に入力される。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is an optical fiber for guiding light emitted from a light source (not shown) including a light emitting element such as a light emitting diode, 2a is a collimator lens for collimating the light from the optical fiber 1, and 3 is a polarization beam splitter. Is used as a linearly polarized light 3a by reflecting light. 4 is 1/4
In the wave plate, when the linearly polarized light 3a passes through the quarter wavelength plate 4, it becomes linearly polarized lights 4a and 4b which are orthogonal to each other, and a phase difference of 90 degrees is generated to become circularly polarized light. 5 is an electro-optical element,
When this circularly polarized light passes through the electro-optical element 5, the optical phase modulation is performed by utilizing the birefringence generated by applying an electric field through the transparent electrodes provided on the front and back surfaces of the crystal.
Reference numeral 6 is a polarizer including a polarization beam splitter.
And the analyzer 6 are orthogonal to each other, the reflected light (S
Polarized light is used, and transmitted light (P-polarized light) is used for the analyzer 6. In this case, in order to facilitate the handling of the optical voltage sensor, the transmitted light amount P P (V, T) parallel to the polarizer 3 reflected by the analyzer 6 is condensed by the collimator lens 2b, and the optical fiber 1b is collected. It is input to a detector (not shown) via the. Amount of transmitted light that passes through the analyzer 6 and is orthogonal to the polarizer 3 P S (V, T)
The light path is bent 90 degrees by the mirror 7, condensed by the collimator lens 2c, and input to a detector (not shown) via the optical fiber 1c.

【0014】このように構成した光電圧センサを図7の
ブロック図に示す測定系で温度特性を測定した。この構
成で、光電圧センサ部と光源部とを光ファイバによって
接続し、別々の恒温槽に入れ、これらを独立に温度コン
トロールする構成とした。さらに、光源部と電圧センサ
部間の光ファイバの途中にビームスプリッタ(BS)を
挿入し、スペクトルアナライザにより波長の測定を行っ
た。ここで、光電圧センサの感度の温度特性の測定に際
しては、光電圧センサに60Hz、100ボルト一定電
圧(電圧安定度0.1%)を印加する条件に統一した。
なお、光電圧センサの温度特性は、応力および熱歪みに
大きく影響を受けるので、これらの影響を受けないよう
に特に配慮した。次に、測定データの処理方法を示す。
偏光子3と検光子6が直交する構成での光電圧センサの
感度の温度特性%m(T)を次の式(21)で定義す
る。すなわち、式(13)に該当するものとして式(2
1)によって%mV (T)を計算によって求める。 %mV(T)={|mV(100,T)|-|mV(100,20)|}/|mV(100),20)| ×100(%) …(21) 偏光子と検光子が平行する構成での%mP(T)も式(21)
と同様の方法で求める。ただし、式(21)で|mV(100,
T)| の代わりに|mP(100,T)| を用い、さらに、|mV(100,
20)|の代わりに|mP(100,20)|の実測値をそれぞれ使用す
る。
The temperature characteristic of the optical voltage sensor thus constructed was measured by the measuring system shown in the block diagram of FIG. With this configuration, the optical voltage sensor unit and the light source unit are connected by an optical fiber, placed in separate thermostats, and the temperature of these units is controlled independently. Further, a beam splitter (BS) was inserted in the middle of the optical fiber between the light source section and the voltage sensor section, and the wavelength was measured by the spectrum analyzer. Here, in measuring the temperature characteristic of the sensitivity of the optical voltage sensor, the conditions were applied such that a constant voltage of 60 Hz and 100 V (voltage stability 0.1%) was applied to the optical voltage sensor.
Since the temperature characteristics of the optical voltage sensor are greatly affected by stress and thermal strain, special consideration was given to avoid these effects. Next, a method of processing measurement data will be described.
The temperature characteristic% m (T) of the sensitivity of the photovoltage sensor in the configuration in which the polarizer 3 and the analyzer 6 are orthogonal to each other is defined by the following formula (21). That is, it is assumed that the expression (2
Determined by calculating the% m V (T) by 1). % m V (T) = {| m V (100, T) |-| m V (100,20) |} / | m V (100), 20) | × 100 (%)… (21) Polarizer The% m P (T) in the configuration in which
Obtain in the same way as. However, in equation (21), | m V (100,
Instead of T) |, use | m P (100, T) | and add | m V (100,
Instead of 20) |, use the measured values of | m P (100,20) | respectively.

【0015】式(13)、(14)の妥当性を次のよう
にして確認した。図8(a)にBGO結晶の厚みが2m
mおよびθ=−45度でカットした時の温度特性を示
す。この例では光源部の温度を一定にすることにより、
発光波長λを一定の条件に設定して測定した。なお、図
(a)には同一結晶で、しかも同時に測定した時の%m
V(T)および%mP(T)の特性を合わせて示した。このよう
に、%mV(T)は温度が上昇すると大きくなり、%mP(T)は温
度が上昇すると小さくなる。さらに、これら二つのセン
サ感度の温度特性は、温度とほぼ直線的な関係があり、
式(13)、(14)のように温度の一次式で近似でき
ることがわかる。一方、これらの二つのセンサ感度の温
度係数が図8(a)に示した%mV(T)、%mP(T)の勾配から
求められる。これら、%mV(T)、%mP(T)の勾配から求めら
れた温度係数は、式(13)、(14)の温度項に該当
する。したがって 次の式(22)が成立する。 κc-( π/2) κ1/4=-4.0×10-4,κc+( π/2) κ1/4=-8.5×10-4 …(22) 式(22)から、実際に用いた1/4波長板のκ1/4
電気光学結晶BGOの温度係数κc を求めることができ
る。この結果、κ1/4 、κc は次の式(23)に示すよ
うな値となる。 ( π/2) κ1/4=2.25×104(1/℃) ,κc=-6.5×10-4(1/ ℃) …(23) このように、%mV(T)および%mP(T)から、センサ感度の温
度特性が温度の一次式で表されるときの光電圧センサの
構成部品である1/4波長板の温度係数κ1/4と電気光
学結晶BGOの温度係数κc を求めることができる。
The validity of equations (13) and (14) was confirmed as follows. The thickness of the BGO crystal is 2 m in FIG.
The temperature characteristics when cut at m and θ = −45 degrees are shown. In this example, by keeping the temperature of the light source constant,
The emission wavelength λ was set to a constant condition for measurement. In addition, in Fig. (A),% m when measured at the same time for the same crystal
The characteristics of V (T) and% m P (T) are shown together. Thus,% m V (T) increases with increasing temperature and% m P (T) decreases with increasing temperature. Furthermore, the temperature characteristics of these two sensor sensitivities have a nearly linear relationship with temperature,
It can be seen that the temperature can be approximated by a linear expression like the expressions (13) and (14). On the other hand, the temperature coefficients of these two sensor sensitivities are obtained from the gradients of% m V (T) and% m P (T) shown in FIG. The temperature coefficients obtained from the gradients of% m V (T) and% m P (T) correspond to the temperature terms of the equations (13) and (14). Therefore, the following expression (22) is established. κ c- (π / 2) κ 1/4 = -4.0 × 10 -4 , κ c + (π / 2) κ 1/4 = -8.5 × 10 -4 … (22) From equation (22), It is possible to obtain κ 1/4 of the ¼ wavelength plate used in the above and the temperature coefficient κ c of the electro-optic crystal BGO. As a result, κ 1/4 and κ c have the values shown in the following equation (23). (π / 2) κ 1/4 = 2.25 × 10 4 (1 / ° C), κ c = -6.5 × 10 -4 (1 / ° C)… (23) Thus,% m V (T) and% From m P (T), when the temperature characteristic of the sensor sensitivity is expressed by a linear expression of temperature, the temperature coefficient κ 1/4 of the quarter-wave plate, which is a component of the optical voltage sensor, and the temperature of the electro-optic crystal BGO. The coefficient κ c can be obtained.

【0016】[実施例2]ここでは、式(19)のF(Φ
0 , θ) の値を調整することによって、電気光学結晶の
温度係数κc の値を調整した例を示す。光電圧センサの
温度係数を零とするためには、偏光子と検光子が直交す
る条件で、式(15)が、また平行の条件で式(16)
が成立しなければならない。よってここでは、電気光学
結晶の温度係数を調整することにより、1/4波長板の
温度係数に合わせ、温度特性の安定化を図った例を述べ
る。まず、図1に示す偏光子と検光子が直交する構成
で、光電圧センサの温度特性を安定化させるために、電
気光学結晶にBGO結晶を用い、その厚みを4mm、カ
ット方向をθ=−20度とし、温度係数κc を次の式
(24)に示す値に調整した。 κc=-2.25 ×10-4(1/ ℃) …(24) 図8(b)に偏光子と検光子が直交する構成で測定した
%mV(T)の測定結果を示す。直交する構成において、この
ように光電圧センサの温度変化をほぼ零にすることがで
きた。この条件で同時に測定を行った検光子と偏光子が
平行の構成についての%mP(T)の例についても図8(b)
に合わせて示してある。この場合の温度勾配は、理論通
り負の大きさになっており、しかもその温度係数である
その%mP(T)の勾配は2κc となっている。
[Embodiment 2] Here, F (Φ
An example in which the value of the temperature coefficient κ c of the electro-optic crystal is adjusted by adjusting the values of ( 0 , θ) will be shown. In order to make the temperature coefficient of the optical voltage sensor zero, the equation (15) is obtained under the condition that the polarizer and the analyzer are orthogonal to each other, and the equation (16) is obtained under the condition that they are parallel to each other.
Must be established. Therefore, here, an example in which the temperature coefficient of the electro-optic crystal is adjusted to match the temperature coefficient of the quarter-wave plate to stabilize the temperature characteristics will be described. First, in a configuration in which the polarizer and the analyzer shown in FIG. 1 are orthogonal to each other, a BGO crystal is used as an electro-optical crystal in order to stabilize the temperature characteristics of the optical voltage sensor, the thickness thereof is 4 mm, and the cutting direction is θ = −. The temperature coefficient was adjusted to 20 degrees and the temperature coefficient κ c was adjusted to the value shown in the following formula (24). κ c = -2.25 × 10 -4 (1 / ℃) (24) Measured in the configuration in which the polarizer and the analyzer are orthogonal to each other in Fig. 8 (b).
The measurement result of% m V (T) is shown. In the orthogonal configuration, the temperature change of the optical voltage sensor could be made almost zero in this way. Fig. 8 (b) also shows an example of% m P (T) for the configuration in which the analyzer and the polarizer were measured in parallel under these conditions.
Are also shown. The temperature gradient in this case has a negative magnitude theoretically, and its temperature coefficient,% m P (T), has a gradient of 2κ c .

【0017】[実施例3]次に、偏光子と検光子が平行
の構成で、センサ感度の温度特性を安定化させた例につ
いて述べる。この場合、電気光学結晶としてBGOを同
様に用いた。ただしその厚みを4mm、カット方向θ=
0度とし、電気光学結晶の温度係数を次の式(25)の
ように調整した。 κc=2.25×104(1/℃) …(24) 図8(c)に偏光子と検光子が平行の場合の温度特性%m
P(T)を示す。このように、電気光学結晶の温度係数を式
(25)の値に選ぶことによって、今度は平行の構成で
の光電圧センサの温度変化を小さく抑えることができ
た。一方、この条件で同時に測定した偏光子と検光子が
直交する構成での%mV(T)は、温度特性は正となり、しか
もその値は式(8)から明かのように、2κc に近い値
が得られることがこの実施例により確認できた。
[Embodiment 3] Next, an example will be described in which the polarizer and the analyzer are parallel to each other and the temperature characteristics of the sensor sensitivity are stabilized. In this case, BGO was similarly used as the electro-optic crystal. However, the thickness is 4 mm and the cutting direction is θ =
The temperature coefficient of the electro-optic crystal was adjusted to 0 °, and the temperature coefficient of the electro-optic crystal was adjusted according to the following formula (25). κ c = 2.25 × 10 4 (1 / ℃)… (24) Fig. 8 (c) shows the temperature characteristics% m when the polarizer and analyzer are parallel.
Indicates P (T). Thus, by selecting the temperature coefficient of the electro-optic crystal as the value of the equation (25), it was possible to suppress the temperature change of the optical voltage sensor in the parallel configuration this time. On the other hand,% m V in the configuration in which a polarizer and an analyzer was measured simultaneously in this condition is perpendicular (T), the temperature characteristic is positive, yet as its value either apparent from equation (8), the 2Kappa c It was confirmed by this example that a close value was obtained.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、光
電圧センサの電気光学結晶の厚みと結晶方位に関するカ
ット方向を最適に調整することによって、その温度特性
を1/4波長板の温度特性と一致させるようにして、光
電圧センサの温度変化を小さく抑えるので、温度特性の
安定した光電圧センサを提供できる。また、光電圧セン
サの温度特性の安定化のためには、電気光学結晶の設計
条件のみを調整することによって達成が可能であるの
で、新しく部品を追加することなく行える効果がある。
As described above, according to the present invention, the temperature characteristics of the electro-optical crystal of the optical voltage sensor can be adjusted to the ¼ wavelength plate by optimally adjusting the thickness and crystal orientation of the electro-optical crystal. Since the temperature variation of the optical voltage sensor is suppressed to be small by making the temperature characteristic coincide with the temperature characteristic, the optical voltage sensor having stable temperature characteristic can be provided. Further, since the temperature characteristics of the optical voltage sensor can be stabilized by adjusting only the design condition of the electro-optic crystal, there is an effect that it can be performed without adding new parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】 本発明の実施例の作用を示す説明図。FIG. 2 is an explanatory view showing the operation of the embodiment of the present invention.

【図3】 本発明の実施例の透過光量と位相差の関係を
示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between the amount of transmitted light and the phase difference according to the embodiment of the present invention.

【図4】 本発明の実施例のカット方向とセンサ感度の
関係を示す説明図。
FIG. 4 is an explanatory diagram showing a relationship between a cutting direction and sensor sensitivity according to the embodiment of the present invention.

【図5】 本発明の実施例のカット方向と電気光学結晶
の温度係数との関係を示す説明図。
FIG. 5 is an explanatory diagram showing the relationship between the cutting direction and the temperature coefficient of the electro-optic crystal in the example of the present invention.

【図6】 本発明の実施例の電気光学結晶のカット方向
を示す説明図。
FIG. 6 is an explanatory diagram showing a cutting direction of the electro-optic crystal according to the example of the present invention.

【図7】 本発明の実施例の測定装置の構成を示すブロ
ック図である。
FIG. 7 is a block diagram showing a configuration of a measuring apparatus according to an embodiment of the present invention.

【図8】 本発明の実施例の光電圧センサの温度特性を
示す説明図。
FIG. 8 is an explanatory diagram showing temperature characteristics of the optical voltage sensor according to the embodiment of the present invention.

【図9】 従来例の作用を示す説明図である。FIG. 9 is an explanatory diagram showing an operation of a conventional example.

【符号の説明】 1 光ファイバ、2a,2b,2c コリメータレン
ズ、3偏光子、4 1/4波長板、5 電気光学結晶、
6 検光子、7 ミラー
[Description of Reference Signs] 1 optical fiber, 2a, 2b, 2c collimator lens, 3 polarizer, 4 1/4 wavelength plate, 5 electro-optic crystal,
6 analyzers, 7 mirrors

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光路に沿って順に配置した偏光子、1/
4波長板、電気光学結晶、検光子からなる光電圧センサ
において、前記電気光学結晶がBi12GeO20またはB
12SiO20のいずれか一方からなり、前記電気光学結
晶の厚みによって決まる旋光角と前記電気光学結晶のカ
ット方向とを調整することにより、前記電気光学結晶の
温度係数κc と前記1/4波長板の温度係数κ1/4 との
関係を、κc =|(π/2)κ1/4 | としたことを特
徴とする光電圧センサ。
1. A polarizer arranged in order along an optical path, 1 /
An optical voltage sensor comprising a four-wave plate, an electro-optic crystal, and an analyzer, wherein the electro-optic crystal is Bi 12 GeO 20 or B.
i 12 SiO 20 and adjusting the optical rotation angle determined by the thickness of the electro-optic crystal and the cutting direction of the electro-optic crystal to obtain the temperature coefficient κ c of the electro-optic crystal and the ¼ An optical voltage sensor characterized in that the relationship with the temperature coefficient κ 1/4 of the wave plate is κ c = | (π / 2) κ 1/4 |.
【請求項2】 前記偏光子と前記検光子とを直交させて
配置したとき、前記温度係数κc の符号が正になる請求
項1記載の光電圧センサ。
2. The photovoltage sensor according to claim 1, wherein the temperature coefficient κ c has a positive sign when the polarizer and the analyzer are arranged orthogonally to each other.
【請求項3】 前記偏光子と前記検光子とを平行に配置
したとき、前記温度係数κc の符号が負になる請求項1
記載の光電圧センサ。
3. The temperature coefficient κ c has a negative sign when the polarizer and the analyzer are arranged in parallel.
The optical voltage sensor described.
JP7051832A 1995-02-15 1995-02-15 Photovoltaic sensor Pending JPH08220149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051832A JPH08220149A (en) 1995-02-15 1995-02-15 Photovoltaic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051832A JPH08220149A (en) 1995-02-15 1995-02-15 Photovoltaic sensor

Publications (1)

Publication Number Publication Date
JPH08220149A true JPH08220149A (en) 1996-08-30

Family

ID=12897846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051832A Pending JPH08220149A (en) 1995-02-15 1995-02-15 Photovoltaic sensor

Country Status (1)

Country Link
JP (1) JPH08220149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353494B1 (en) 1999-07-29 2002-03-05 Matsushita Electric Industrial Co., Ltd. Optical voltage sensor
CN109030904A (en) * 2018-07-13 2018-12-18 福州大学 A kind of temperature self-compensation method of longitudinal modulation optical voltage transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353494B1 (en) 1999-07-29 2002-03-05 Matsushita Electric Industrial Co., Ltd. Optical voltage sensor
CN109030904A (en) * 2018-07-13 2018-12-18 福州大学 A kind of temperature self-compensation method of longitudinal modulation optical voltage transformer

Similar Documents

Publication Publication Date Title
US4894608A (en) Electric current sensor using the faraday effect
JP3791975B2 (en) Homodyne interferometer and its reception method
EP0083196B1 (en) Voltage and electric field measuring device using light
US5715058A (en) Method and device for the optical determination of a physical quantity
US4539519A (en) Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect
RU2627021C2 (en) Fiber optic current sensor with spun fiber and temperature compensation
US4698497A (en) Direct current magneto-optic current transformer
US5811964A (en) Method and device for measuring an electrical alternating quanity with temperature compensation
JP2521395B2 (en) Optical voltage / electric field sensor
JPS6325307B2 (en)
JPH08220149A (en) Photovoltaic sensor
Vlokh et al. Study of the optical activity of ferroelectric lead germanate
JPH08220150A (en) Method for detecting voltage of photovoltaic sensor
JPS58140716A (en) Magnetic field-light transducer
JP3046874B2 (en) Optical voltage / electric field sensor
Shopa et al. Study of Optical Activity in La3Ga5SiO14 with High‐Accuracy Polarimetric Methods
KR860000389B1 (en) Electric field detector
JPH0835995A (en) Method for compensating temperature of vertical optical voltage sensor
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPH08128946A (en) Optical characteristic measuring method and measuring equipment
SU1173325A1 (en) Device for high-voltage measurement
JPH07248339A (en) Optical sensor
JP2782071B2 (en) Optical rotator
JP3494525B2 (en) Optical fiber current measuring device
JPS5928628A (en) Temperature sensor by light