JPH08219984A - Biochemical analyzer - Google Patents
Biochemical analyzerInfo
- Publication number
- JPH08219984A JPH08219984A JP7023632A JP2363295A JPH08219984A JP H08219984 A JPH08219984 A JP H08219984A JP 7023632 A JP7023632 A JP 7023632A JP 2363295 A JP2363295 A JP 2363295A JP H08219984 A JPH08219984 A JP H08219984A
- Authority
- JP
- Japan
- Prior art keywords
- absorbance
- reagent
- measurement
- measurement point
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002835 absorbance Methods 0.000 claims abstract description 105
- 238000005259 measurement Methods 0.000 claims abstract description 80
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000012742 biochemical analysis Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims description 2
- 239000004816 latex Substances 0.000 abstract description 6
- 229920000126 latex Polymers 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 4
- 230000036039 immunity Effects 0.000 abstract 1
- 238000013500 data storage Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 4
- 238000013075 data extraction Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、反応セルにサンプルと
試薬を分注して反応させ時間の経過にしたがって複数の
吸光度を測定し単位時間当たりの吸光度の変化量を求め
る生化学分析装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biochemical analyzer for dispensing a sample and a reagent into a reaction cell, reacting them, measuring a plurality of absorbances over time, and obtaining the amount of change in absorbance per unit time. .
【0002】[0002]
【従来の技術】臨床や化学、製薬等の分野で使用され、
血清や尿等のサンプルの分析を行う生化学分析装置で
は、透明な反応セルの中に血清等の検体と所定の試薬と
を混合して発色反応を行わせ、光源から白色光を照射し
てその透過光を分光器で分光し、その色素による吸光度
を求めてから、吸光度に基づき測定すべき物質の濃度を
求めている。2. Description of the Related Art Used in clinical, chemical and pharmaceutical fields,
In a biochemical analyzer that analyzes a sample such as serum or urine, a sample such as serum and a predetermined reagent are mixed in a transparent reaction cell to cause a color reaction, and white light is emitted from a light source. The transmitted light is dispersed by a spectroscope, the absorbance by the dye is determined, and then the concentration of the substance to be measured is determined based on the absorbance.
【0003】測定対象の物質の濃度を求める方法として
は、従来よりエンドポイント法EPA(End Point
Assay) とリアクションレート法RRA(Reaction R
ateAssay) の2種類の方法が採用されている。そのう
ち、EPAは、発色反応により生成される色素の量が反
応時間の経過に伴って飽和する場合に用いられる方法で
あり、検体と試薬とを充分反応させた後の最終吸光度を
測定し測定対象物質の濃度を求める。これに対してRR
Aは、検体中の酵素活性を測定する場合のように発色反
応により生成される色素の量が反応時間の経過と共に増
大していく場合に用いられる方法であり、この場合には
反応中に測定した吸光度yに対して、最小二乗法により
一次関数y=a+btを近似し、その結果として求めら
れる係数bの値、つまり単位時間当たりの吸光度の変化
量に基づいて測定対象物質の濃度を求める。As a method for obtaining the concentration of the substance to be measured, the end point method EPA (End Point) has been conventionally used.
Assay) and reaction rate method RRA (Reaction R)
ateAssay) two types of methods are adopted. Among them, EPA is a method used when the amount of the dye produced by the color reaction is saturated with the lapse of reaction time, and the final absorbance after sufficiently reacting the sample and the reagent is measured and measured. Find the concentration of a substance. On the other hand, RR
A is a method used when the amount of the dye produced by the color development reaction increases with the elapse of the reaction time, as in the case of measuring the enzyme activity in the sample. In this case, the measurement is performed during the reaction. The linear function y = a + bt is approximated to the absorbance y by the least squares method, and the concentration of the substance to be measured is determined based on the value of the coefficient b obtained as a result, that is, the amount of change in the absorbance per unit time.
【0004】図4は各測定点の吸光度と湾曲部の除去を
説明するための図、図5はRRAを採用した生化学分析
装置の従来例を示す図である。RRAでは、図4に示す
ように反応セルに第1試薬R1と検体Sを分注して測定
点における吸光度の測定を行い、さらに第2試薬R2
を分注した後、反応時間tの経過と共に所定の時間間隔
で測定点〜○10の測定点における吸光度の測定を行
う。このとき、従来は、ある吸光度を越えると反応が飽
和する現象が生じるため、この湾曲部を上記係数bを求
める際のデータから除去するための処理を行っている。
これが限界吸光度Aであり、限界吸光度Aを越える測定
点の吸光度を自動的に削除して、残りの測定点の吸光度
により最小二乗法による単位時間当たりの吸光度の変化
量bを算出している。図4(a)の例は、吸光度を縦
軸、時間に対応する各測定点を横軸に示し、検体イ〜ニ
の各測定点における吸光度を示したものであり、湾曲部
の測定点の吸光度を除去するため限界吸光度Aを用いる
と、検体イ、ロが測定点〜○10の8点、検体ハが測定
点〜の6点、検体ニが測定点〜の3点の吸光度
により最小二乗法による単位時間当たりの吸光度の変化
量bを算出する。また、検体ごとに濁りがあってそれぞ
れの吸光度が異なるので、図4(b)に示すように限界
吸光度Aに検体ブランクの吸光度as を上乗せ限界吸光
度A′を用いるようにしている。このような限界吸光度
A→A′の調整によって、高濃度域の検体の測定領域を
測定点まで拡大することができ、正確度の高い測定を
可能にしている。なお、検体ブランクの吸光度as は、
図4(b)に示すように予め測定され既知の第1試薬ブ
ランクの吸光度を測定点の吸光度より差し引くことに
よって求められる。FIG. 4 is a diagram for explaining the absorbance at each measurement point and removal of the curved portion, and FIG. 5 is a diagram showing a conventional example of a biochemical analyzer employing RRA. In RRA, as shown in FIG. 4, the first reagent R1 and the sample S are dispensed into the reaction cell to measure the absorbance at the measurement point, and the second reagent R2 is further measured.
After dispensing, the absorbance at the measurement points to the measurement points of ∘10 is measured at predetermined time intervals as the reaction time t elapses. At this time, conventionally, a phenomenon occurs in which the reaction is saturated when the absorbance exceeds a certain level. Therefore, processing for removing this curved portion from the data when obtaining the coefficient b is performed.
This is the limit absorbance A, and the absorbance at the measurement points exceeding the limit absorbance A is automatically deleted, and the change b in the absorbance per unit time by the least square method is calculated from the absorbances at the remaining measurement points. In the example of FIG. 4A, the absorbance is shown on the vertical axis, the measurement points corresponding to time are shown on the horizontal axis, and the absorbance at each measurement point of the samples a to d is shown. If the limit absorbance A is used to remove the absorbance, the minimum absorptivity will be the minimum of two due to the absorbances of the samples a and b at 8 points from the measurement point to ○ 10, 6 at the sample c at the measurement point and 3 points at the sample d The amount of change b in the absorbance per unit time is calculated by the multiplication method. Further, since each of the absorbance had turbidity for each sample are different, so that use of the FIG. 4 (b) plus the absorbance a s of sample blank limit absorbance A as shown in limits absorbance A '. By adjusting the limit absorbance A → A ′ in this way, the measurement region of the sample in the high concentration region can be expanded to the measurement point, and highly accurate measurement is possible. The absorbance a s of the sample blank is
As shown in FIG. 4 (b), it is determined by subtracting the absorbance of the known first reagent blank that is measured in advance from the absorbance at the measurement point.
【0005】RRAを採用した生化学分析装置の従来例
を示したのが図5であり、分光器を備えた検出部31か
らの測定データを測定データ32に格納すると、有効デ
ータ抽出部33で限界吸光度34と比較して限界吸光度
を越える測定点の吸光度を削除して、残りの測定点の吸
光度を有効データ格納部35に格納する。そして、吸光
度演算部36で最小二乗法による単位時間当たりの吸光
度の変化量bを算出して、濃度演算部37で濃度に換算
している。FIG. 5 shows a conventional example of a biochemical analyzer employing RRA. When the measurement data from the detector 31 having a spectroscope is stored in the measurement data 32, the effective data extractor 33 As compared with the limit absorbance 34, the absorbance at the measurement point exceeding the limit absorbance is deleted, and the absorbances at the remaining measurement points are stored in the valid data storage unit 35. Then, the absorbance calculation unit 36 calculates the change amount b of the absorbance per unit time by the least squares method, and the concentration calculation unit 37 converts it into the concentration.
【0006】[0006]
【発明が解決しようとする課題】図6は従来の生化学分
析装置の問題を説明するための図であり、41は反応セ
ル、42は光源、43は検出器、44は検体、R1は第
1試薬、R2は第2試薬を示す。先に述べたように測定
点では、検体と第1の試薬を分注した時点での吸光度
を測定するため、そのときに既に測定液量が規定量以
上、例えば240μリットル以上必要とされる。しか
し、例えばラテックス免疫測定用の試薬の場合には、測
定液量が規定量以下、例えば180μリットル以下のた
め、図6(a)の光源42と検出器43との間の2本の
点線で示す測定領域が検体44と第1の試薬R1で満た
されず、図6(b)に示すように第2の試薬を分注して
初めて光源42と検出器43との間の測定領域が測定液
量で満たされる。そのため、測定点においては、検体
と第1の試薬の正確な吸光度、つまり検体ブランクの吸
光度の測定ができず、上記のように検体ごとに限界吸光
度の調整を行うことができない。その結果、高濃度域の
検体について、測定領域を拡大することができず、測定
の精度を上げることができないという問題が生じる。FIG. 6 is a diagram for explaining the problem of the conventional biochemical analyzer, in which 41 is a reaction cell, 42 is a light source, 43 is a detector, 44 is a sample, and R1 is a first sample. 1 reagent, R2 shows a 2nd reagent. As described above, at the measurement point, the absorbance at the time when the sample and the first reagent are dispensed is measured, and therefore, at that time, the measurement liquid amount is already required to be a specified amount or more, for example, 240 μl or more. However, in the case of a reagent for latex immunoassay, for example, since the amount of the measurement liquid is less than a specified amount, for example, 180 μl or less, two dotted lines between the light source 42 and the detector 43 in FIG. The measurement region shown is not filled with the sample 44 and the first reagent R1, and the measurement region between the light source 42 and the detector 43 is not measured until the second reagent is dispensed as shown in FIG. 6B. Filled with quantity. Therefore, at the measurement point, the exact absorbance of the sample and the first reagent, that is, the absorbance of the sample blank cannot be measured, and the limiting absorbance cannot be adjusted for each sample as described above. As a result, there is a problem that the measurement region cannot be expanded and the measurement accuracy cannot be improved for the sample in the high concentration region.
【0007】本発明は、上記の課題を解決するものであ
って、ラテックス免疫測定用の試薬のように測定液量が
少ない測定の場合にも、正確な測定が可能な生化学分析
装置を提供することを目的とするものである。The present invention solves the above problems and provides a biochemical analyzer capable of performing accurate measurement even in the case of measurement with a small amount of measurement liquid such as a reagent for latex immunoassay. The purpose is to do.
【0008】[0008]
【課題を解決するための手段】そのために本発明は、反
応セルに検体と試薬を分注して反応させ時間の経過にし
たがって複数の測定点で吸光度を測定し単位時間当たり
の吸光度の変化量を求める生化学分析装置において、測
定した吸光度の抽出を行うための閾値を設定する閾値設
定手段と、基準の測定点を設定し該基準の測定点の吸光
度と各測定点の吸光度との差が閾値の範囲内にある測定
点の吸光度を抽出する抽出手段と、該抽出手段で抽出さ
れた測定点の吸光度により最小二乗法による単位時間当
たりの吸光度の変化量を算出する演算手段とを備えたこ
とを特徴とするものである。To this end, the present invention is designed to dispense a specimen and a reagent into a reaction cell and cause them to react with each other. The absorbance is measured at a plurality of measurement points over time, and the amount of change in the absorbance per unit time is measured. In the biochemical analyzer for obtaining, the threshold setting means for setting the threshold for extracting the measured absorbance, and the difference between the absorbance of the reference measurement point and the absorbance of each measurement point by setting the reference measurement point An extraction means for extracting the absorbance at the measurement point within the threshold range, and an operation means for calculating the amount of change in the absorbance per unit time by the least square method by the absorbance at the measurement point extracted by the extraction means were provided. It is characterized by that.
【0009】[0009]
【作用】本発明の生化学分析装置では、測定した吸光度
の抽出を行うための閾値を設定する閾値設定手段と、基
準の測定点を設定し該基準の測定点の吸光度と各測定点
の吸光度との差が閾値の範囲内にある測定点の吸光度を
抽出する抽出手段と、該抽出手段で抽出された測定点の
吸光度により最小二乗法による単位時間当たりの吸光度
の変化量を算出する演算手段とを備えたので、ラテック
ス試薬等のように検体自身の吸光度の測定ができない場
合であっても、測定領域の拡大が可能となり、正確度の
高い測定が可能となる。In the biochemical analyzer of the present invention, the threshold setting means for setting the threshold for extracting the measured absorbance, the reference measurement point is set, and the absorbance at the reference measurement point and the absorbance at each measurement point are set. An extracting means for extracting the absorbance of a measurement point whose difference between the two is within a threshold range, and a computing means for calculating the amount of change in the absorbance per unit time by the least squares method based on the absorbance of the measurement point extracted by the extracting means. Since it is provided with, the measurement area can be expanded and the measurement can be performed with high accuracy even when the absorbance of the sample itself cannot be measured such as with a latex reagent.
【0010】[0010]
【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る生化学分析装置の1実施例
を示す図であり、1は検出部、2は測定データ格納部、
3は有効データ抽出部、4は閾値格納部、5は有効デー
タ格納部、6は吸光度演算部、7は濃度演算部を示す。
検出部1は、反応セルにサンプルと試薬を分注して反応
させ時間の経過にしたがって複数の検出タイミングで吸
光度を測定し、その測定データをデジタル信号に変換し
て出力するものであり、測定データ格納部2は、複数の
検出タイミングで測定された検出部1からの吸光度の測
定データを格納するものである。閾値格納部4は、単位
時間当たりの吸光度の変化量を演算する際に対象となる
吸光度データを抽出するための閾値を格納するものであ
り、閾値は、試薬のロットごとに異なるため、試薬ロッ
トに合わせて予め設定され、試薬のロットが更新される
と書き換えられる有効データ抽出部3は、基準として設
定した測定点の吸光度とそれ以降の各測定点の吸光度の
差を閾値と比較し、その差が閾値を超えた場合にその測
定点以降を削除し、残った測定点のデータを単位時間当
たりの吸光度の変化量を求めるための有効データとして
抽出するものであり、その有効データを格納するのが有
効データ格納部5である。吸光度演算部6は、有効デー
タ格納部5に格納された有効データを使って最小二乗法
で単位時間当たりの吸光度の変化量を求めるものであ
り、求めた吸光度の変化量に基づいて濃度の換算を行う
のが濃度演算部7である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing one embodiment of a biochemical analyzer according to the present invention, in which 1 is a detection unit, 2 is a measurement data storage unit,
3 is an effective data extraction unit, 4 is a threshold value storage unit, 5 is an effective data storage unit, 6 is an absorbance calculation unit, and 7 is a concentration calculation unit.
The detection unit 1 dispenses a sample and a reagent into a reaction cell, causes them to react with each other, measures the absorbance at a plurality of detection timings over time, converts the measurement data into a digital signal, and outputs the digital signal. The data storage unit 2 stores the measurement data of the absorbance from the detection unit 1 measured at a plurality of detection timings. The threshold storage unit 4 stores a threshold for extracting the target absorbance data when calculating the amount of change in absorbance per unit time. Since the threshold differs for each reagent lot, the reagent lot The effective data extraction unit 3 that is preset according to the above, and is rewritten when the reagent lot is updated, compares the difference between the absorbance at the measurement point set as a reference and the absorbance at each subsequent measurement point with a threshold value, and When the difference exceeds the threshold value, the data after the measurement point is deleted, and the data at the remaining measurement points is extracted as valid data for obtaining the amount of change in absorbance per unit time, and the valid data is stored. Is the valid data storage unit 5. The absorbance calculation unit 6 calculates the amount of change in absorbance per unit time by the least squares method using the valid data stored in the valid data storage unit 5, and converts the concentration based on the obtained amount of change in absorbance. The density calculation unit 7 performs the above.
【0011】次に、動作を説明する。図2は本発明に係
る生化学分析装置の動作を説明するための図である。検
出部1からの測定データを測定データ格納部2に格納
し、スタートがかかると、まず、分析条件より閾値を決
定する(ステップS11)。次に測定データ格納部2か
ら測定データを順次読み出して基準測定点、例えばの
吸光度と測定点〜○10の吸光度との差を算出する(ス
テップS12)。続いて吸光度の差と閾値とを比較し
(ステップS13)、吸光度の差が閾値より大きくなけ
れば、演算対象の有効データとして有効データ格納部5
に格納し(ステップS14)、ステップS12に戻り次
の測定点の吸光度について同様の処理を繰り返し行う。
そして吸光度の差が閾値より大きくなれば、有効データ
格納部5に格納した有効データに基づき最小二乗法で単
位時間当たりの吸光度の変化量を算出し(ステップS1
5)、その吸光度の変化量に基づいて濃度の換算を行う
(ステップS16)。Next, the operation will be described. FIG. 2 is a diagram for explaining the operation of the biochemical analyzer according to the present invention. The measurement data from the detection unit 1 is stored in the measurement data storage unit 2, and when the measurement is started, first, the threshold value is determined from the analysis conditions (step S11). Next, the measurement data is sequentially read from the measurement data storage unit 2 and the difference between the reference measurement point, for example, the absorbance and the absorbance of the measurement point to ∘10 is calculated (step S12). Subsequently, the difference in absorbance and the threshold value are compared (step S13). If the difference in absorbance is not larger than the threshold value, the valid data storage unit 5 is set as valid data to be calculated.
(Step S14), the process returns to step S12, and the same process is repeated for the absorbance at the next measurement point.
Then, if the difference in absorbance becomes larger than the threshold value, the amount of change in absorbance per unit time is calculated by the least square method based on the valid data stored in the valid data storage unit 5 (step S1).
5) Then, the concentration is converted based on the amount of change in the absorbance (step S16).
【0012】図3は本発明に係る生化学分析装置のシス
テム構成概要を示す図であり、11はカップ搬送部、1
2はサンプルピペット、13はサンプリングバルブ、1
4は切り換えバルブ、15は保冷庫、16は試薬ポン
プ、17は試薬切り換えバルブ、18は回転反応器、1
9は検出部、20は分析器、21はデータ処理部を示
す。FIG. 3 is a diagram showing an outline of the system configuration of the biochemical analyzer according to the present invention, in which 11 is a cup transport unit and 1
2 is a sample pipette, 13 is a sampling valve, 1
4 is a switching valve, 15 is a cool box, 16 is a reagent pump, 17 is a reagent switching valve, 18 is a rotary reactor, 1
Reference numeral 9 is a detection unit, 20 is an analyzer, and 21 is a data processing unit.
【0013】図3において、回転反応器18は、その円
周上に30〜40個の反応セルを設置し、例えば1ステ
ップ12秒で回転させながら反応セルの洗浄、セルブラ
ンクの測定を行うものである。回転反応器18の各反応
セルに対しては、カップ搬送部11からサンプルピペッ
ト12を通して一定量(1μリットル〜10μリットル
程度)の血清や尿等のサンプル(検体)を秤量してサン
プリングバルブ13に導き、ここから第1試薬とサンプ
ルを分注し、さらに第2試薬の分注も行う。このように
して回転反応器18を使って透明な反応セルの中に血清
等の検体と所定の試薬とを混合して発色反応を行わせる
と、検出部19で光源から白色光を照射してその透過光
を分光器で分光する。検出部19の測定データは、分析
部20でアナログ信号からデジタル信号に変換され、デ
ータ処理部21で処理されそのデータがメモリへ記憶さ
れ、CRTに表示され、或いはプリンタから出力され
る。このデータ処理部21が図1に示すように構成さ
れ、先に説明したようにデータ処理部21では、まず閾
値を用いて有効データを抽出した後、その色素による吸
光度の単位時間当たりの変化量を求めてから、その吸光
度の変化量に基づき測定すべき物質の濃度を求めてい
る。In FIG. 3, the rotary reactor 18 has 30 to 40 reaction cells installed on the circumference thereof, and performs cleaning of the reaction cells and measurement of cell blanks while rotating in one step and 12 seconds, for example. Is. For each reaction cell of the rotary reactor 18, a fixed amount (about 1 μl to 10 μl) of a sample (specimen) such as serum or urine is weighed from the cup carrier 11 to the sampling valve 13. The first reagent and the sample are dispensed from this, and the second reagent is also dispensed. In this way, when a sample such as serum and a predetermined reagent are mixed in a transparent reaction cell using the rotary reactor 18 to cause a color reaction, a white light is emitted from the light source in the detection unit 19. The transmitted light is separated by a spectroscope. The measurement data of the detection unit 19 is converted from an analog signal to a digital signal by the analysis unit 20, processed by the data processing unit 21, and the data is stored in the memory, displayed on the CRT, or output from the printer. The data processing unit 21 is configured as shown in FIG. 1. As described above, the data processing unit 21 first extracts effective data using a threshold value, and then changes the absorbance per unit time of the dye. Then, the concentration of the substance to be measured is calculated based on the amount of change in the absorbance.
【0014】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、吸光度の差を閾値と比較して判断し逐一
有効データをメモリに格納したが、吸光度の差を閾値と
比較して有効データの範囲を検出し、その範囲の有効デ
ータを吸光度の変化量を算出する際にメモリから順次読
みだすようにしてもよい。また、基準測定点の吸光度と
各測定点の吸光度との差を求めて閾値と比較したが、基
準測定点の吸光度に閾値を加えて各測定点の吸光度との
比較を行うようにしてもよい。It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-mentioned embodiment, the difference in absorbance is compared with the threshold value to determine the effective data stored in the memory one by one, but the difference in the absorbance is compared with the threshold value to detect the range of effective data, and the effective data in that range May be sequentially read from the memory when calculating the amount of change in absorbance. Further, although the difference between the absorbance at the reference measurement point and the absorbance at each measurement point is obtained and compared with a threshold value, the threshold value may be added to the absorbance at the reference measurement point to make a comparison with the absorbance at each measurement point. .
【0015】[0015]
【発明の効果】以上の説明から明らかなように、本発明
によれば、基準計測点の吸光度から閾値の範囲内の測定
点の吸光度を採るようにしたので、第1試薬量が規定量
に達せずに測定点で検体の吸光度の測定ができないよ
うな、例えばラテックス試薬等でも測定領域の拡大がで
きる。しかも、基準測定点と閾値で設定するので、検体
の吸光度が測定できなくても、正確度の高い測定と測定
領域の拡大ができる。As is apparent from the above description, according to the present invention, since the absorbance at the measurement point within the threshold range is taken from the absorbance at the reference measurement point, the first reagent amount becomes the specified amount. The measurement area can be expanded even with a latex reagent, for example, in which the absorbance of the sample cannot be measured at the measurement point without reaching it. Moreover, since the reference measurement point and the threshold are set, even if the absorbance of the sample cannot be measured, highly accurate measurement and expansion of the measurement region can be performed.
【図1】 本発明に係る生化学分析装置の1実施例を示
す図である。FIG. 1 is a diagram showing one embodiment of a biochemical analyzer according to the present invention.
【図2】 本発明に係る生化学分析装置の動作を説明す
るための図である。FIG. 2 is a diagram for explaining the operation of the biochemical analyzer according to the present invention.
【図3】 本発明に係る生化学分析装置のシステム構成
概要を示す図である。FIG. 3 is a diagram showing an outline of a system configuration of a biochemical analyzer according to the present invention.
【図4】 測定点の吸光度と湾曲部の除去を説明するた
めの図である。FIG. 4 is a diagram for explaining absorbance at a measurement point and removal of a curved portion.
【図5】 RRAを採用した生化学分析装置の従来例を
示す図である。FIG. 5 is a diagram showing a conventional example of a biochemical analysis device employing RRA.
【図6】 従来の生化学分析装置の問題を説明するため
の図である。FIG. 6 is a diagram for explaining a problem of a conventional biochemical analyzer.
1…検出部、2…測定データ格納部、3…有効データ抽
出部、4…閾値格納部、5…有効データ格納部、6…吸
光度演算部、7…濃度演算部DESCRIPTION OF SYMBOLS 1 ... Detection part, 2 ... Measurement data storage part, 3 ... Effective data extraction part, 4 ... Threshold value storage part, 5 ... Effective data storage part, 6 ... Absorbance calculation part, 7 ... Concentration calculation part
Claims (2)
せ時間の経過にしたがって複数の測定点で吸光度を測定
し単位時間当たりの吸光度の変化量を求める生化学分析
装置において、測定した吸光度の抽出を行うための閾値
を設定する閾値設定手段と、基準の測定点を設定し該基
準の測定点の吸光度と各測定点の吸光度との差が閾値の
範囲内にある測定点の吸光度を抽出する抽出手段と、該
抽出手段で抽出された測定点の吸光度により最小二乗法
による単位時間当たりの吸光度の変化量を算出する演算
手段とを備えたことを特徴とする生化学分析装置。1. A biochemical analyzer for dispensing a sample and a reagent into a reaction cell and reacting them to measure the absorbance at a plurality of measurement points over time and obtain the change amount of the absorbance per unit time. Threshold setting means for setting a threshold for extracting the absorbance, and a reference measurement point is set, and the absorbance at the measurement point where the difference between the absorbance at the reference measurement point and the absorbance at each measurement point is within the threshold range A biochemical analysis device, comprising: an extracting unit that extracts the above-mentioned value; and a calculating unit that calculates the amount of change in the absorbance per unit time by the least-squares method based on the absorbance at the measurement points extracted by the extracting unit.
ともない閾値を設定し直しすることを特徴とする請求項
1記載の生化学分析装置。2. The biochemical analyzer according to claim 1, wherein the threshold setting means resets the threshold when the reagent lot is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02363295A JP3357494B2 (en) | 1995-02-13 | 1995-02-13 | Biochemical analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02363295A JP3357494B2 (en) | 1995-02-13 | 1995-02-13 | Biochemical analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08219984A true JPH08219984A (en) | 1996-08-30 |
JP3357494B2 JP3357494B2 (en) | 2002-12-16 |
Family
ID=12115968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02363295A Expired - Fee Related JP3357494B2 (en) | 1995-02-13 | 1995-02-13 | Biochemical analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3357494B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128575A1 (en) * | 2009-05-08 | 2010-11-11 | 株式会社 日立ハイテクノロジーズ | Automatic analysis device and analysis method |
JP2010261876A (en) * | 2009-05-11 | 2010-11-18 | Hitachi High-Technologies Corp | Automatic analyzer |
DE112009002702T5 (en) | 2008-11-17 | 2013-03-28 | Hitachi High-Technologies Corporation | Automatic analyzer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6468642A (en) * | 1987-09-09 | 1989-03-14 | Toshiba Corp | Reaction rate measuring method |
JPS6488234A (en) * | 1987-09-30 | 1989-04-03 | Shimadzu Corp | Rate analytical method |
JPH06194313A (en) * | 1992-12-24 | 1994-07-15 | Jeol Ltd | Reactive measurement method |
-
1995
- 1995-02-13 JP JP02363295A patent/JP3357494B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6468642A (en) * | 1987-09-09 | 1989-03-14 | Toshiba Corp | Reaction rate measuring method |
JPS6488234A (en) * | 1987-09-30 | 1989-04-03 | Shimadzu Corp | Rate analytical method |
JPH06194313A (en) * | 1992-12-24 | 1994-07-15 | Jeol Ltd | Reactive measurement method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112009002702T5 (en) | 2008-11-17 | 2013-03-28 | Hitachi High-Technologies Corporation | Automatic analyzer |
US8936754B2 (en) | 2008-11-17 | 2015-01-20 | Hitachi High-Technologies Corporation | Automatic analysis device |
WO2010128575A1 (en) * | 2009-05-08 | 2010-11-11 | 株式会社 日立ハイテクノロジーズ | Automatic analysis device and analysis method |
JP2010261822A (en) * | 2009-05-08 | 2010-11-18 | Hitachi High-Technologies Corp | Automatic analyzer and analysis method |
US9310388B2 (en) | 2009-05-08 | 2016-04-12 | Hitachi High-Technologies Corporation | Automatic analyzer and analysis method |
JP2010261876A (en) * | 2009-05-11 | 2010-11-18 | Hitachi High-Technologies Corp | Automatic analyzer |
WO2010131413A1 (en) * | 2009-05-11 | 2010-11-18 | 株式会社 日立ハイテクノロジーズ | Automatic analysis device |
CN102422144A (en) * | 2009-05-11 | 2012-04-18 | 株式会社日立高新技术 | Automatic analysis device |
US9488667B2 (en) | 2009-05-11 | 2016-11-08 | Hitachi High-Technologies Corporation | Automatic analyzer |
Also Published As
Publication number | Publication date |
---|---|
JP3357494B2 (en) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5324635A (en) | Method and apparatus for automatic measurement of fluorescence | |
US6797518B1 (en) | Analysis method with sample quality measurement | |
JP2001004633A (en) | Automatic analyzer | |
JPH0746111B2 (en) | Sample analysis method and automatic analyzer using the same | |
JPH0627115A (en) | Method and apparatus for measuring blood coagulation time | |
US4309112A (en) | Rate measurement analyzer | |
US5288374A (en) | Method and apparatus for electrochemical analysis and an aqueous solution for use therein | |
JPH08219984A (en) | Biochemical analyzer | |
JP4045211B2 (en) | Automatic analyzer | |
JP3206999B2 (en) | Method for detecting sample dilution error and apparatus for detecting sample dilution error using the same | |
JP2977692B2 (en) | Rotary reactor measurement method | |
JP2604043B2 (en) | Automatic analyzer | |
JP7229363B2 (en) | automatic analyzer | |
JPH047956B2 (en) | ||
JP2727510B2 (en) | Rate analysis method | |
JPS6060558A (en) | Analyzing method for plural measurements | |
JP2892678B2 (en) | Automatic analyzer | |
JP2518124B2 (en) | Biochemical automatic analyzer | |
JPS61110060A (en) | Automatic remeasurement processing system for automatic analyzers | |
JPS62226059A (en) | Automatic chemical analyzer | |
JPH02278155A (en) | Automatic biochemical analyzer | |
JPH057488A (en) | Rate type automatic analyzer | |
JPH0154667B2 (en) | ||
Hales et al. | The semiautomatic determination of whole blood CO2 content | |
JPH0634638A (en) | Automatic chemical analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020918 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101004 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101004 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111004 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121004 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121004 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131004 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131004 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |