[go: up one dir, main page]

JPH082194B2 - Linear synchronous motor controller - Google Patents

Linear synchronous motor controller

Info

Publication number
JPH082194B2
JPH082194B2 JP58180185A JP18018583A JPH082194B2 JP H082194 B2 JPH082194 B2 JP H082194B2 JP 58180185 A JP58180185 A JP 58180185A JP 18018583 A JP18018583 A JP 18018583A JP H082194 B2 JPH082194 B2 JP H082194B2
Authority
JP
Japan
Prior art keywords
synchronous motor
moving body
linear synchronous
speed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180185A
Other languages
Japanese (ja)
Other versions
JPS6074991A (en
Inventor
照男 小豆沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58180185A priority Critical patent/JPH082194B2/en
Publication of JPS6074991A publication Critical patent/JPS6074991A/en
Publication of JPH082194B2 publication Critical patent/JPH082194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Control Of Linear Motors (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、リニア同期電動機、特に超電導電磁石等
を使用した誘導反発型の磁気浮上鉄道に代表される、高
速鉄道システムにおける車両の駆動制御システムとして
用いられるリニア同期電動機制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a drive control system for a vehicle in a high-speed railway system represented by a linear synchronous motor, particularly an induction repulsion type magnetic levitation railway using a superconducting electromagnet or the like. The present invention relates to a linear synchronous motor control device used as.

〔従来技術とその問題点〕[Prior art and its problems]

超電導電磁石等を使用した誘導反発型をはじめとする
磁気浮上鉄道では、完全非接触で車両の支持、案内、駆
動が可能である。特に、その低振動・低騒音と言った低
公害性と、非粘着駆動による高速性に注目すると、磁気
浮上鉄道の利点が最大限に発揮されるのは超高速鉄道で
あると言える。
In a magnetic levitation railway such as an induction repulsion type that uses a superconducting electromagnet, it is possible to support, guide, and drive a vehicle in a completely non-contact manner. Especially, paying attention to its low pollution and low noise and high speed due to non-adhesive drive, it can be said that the advantages of the magnetic levitation railway are maximized in the ultra-high speed railway.

磁気浮上鉄道における走行抵抗は、低速度域でピーク
をもち、高速になるにつれて減少していく磁気抗力と、
速度の自乗にほゞ比例する空気抵抗によって大部分が決
定される。従って、車両を超高速で運転するためには、
大きな空気抵抗に打ち勝って車両を駆動するのに充分な
容量の電源が必要となる。更に、電力の供給に当って
は、営業路線をいくつかの区間に分けて、各区間毎に専
用の発電所を設置するか、各区間毎に変電所を設置して
商用電力系統からの電力の供給を受けることになる。前
者の発電所設置方式は、発電所の運転効率や人件費等の
点から実現には難点があり、後者の変電所を介しての商
用電力系統からの受電方式がより現実的な方式であると
考えられている。しかしながら、この方式においては、
車両の長さ、即ち、界磁の長さが有限長であること、及
び一き電セクションに含まれる電機子コイルの数、即
ち、電機子の長さが有限長であるという、リニア同期電
動機の特異性によるいわゆるセクション渡りによって車
両の走行中に、電源力率が変動するために、商用電力系
統に接続されている他の需要家へ悪影響を及ぼすことに
なる。
The running resistance of a magnetic levitation railway has a peak in the low speed range and a magnetic drag force that decreases as the speed increases,
The air resistance, which is approximately proportional to the square of the velocity, is largely determined. Therefore, in order to drive the vehicle at ultra high speed,
A power supply with sufficient capacity to overcome the large air resistance and drive the vehicle is required. In addition, when supplying electricity, divide the business line into several sections and install a dedicated power station for each section, or install a substation for each section to generate electricity from the commercial power grid. Will be supplied. The former power station installation method is difficult to realize from the viewpoint of operating efficiency of the power station and labor costs, etc., and the latter method of receiving power from the commercial power system via the substation is a more realistic method. It is believed that. However, in this scheme,
A linear synchronous motor in which the length of the vehicle, that is, the length of the magnetic field is finite, and the number of armature coils included in the one-stroke section, that is, the length of the armature is finite. Due to the so-called section crossing due to the peculiarity of the above, the power source power factor fluctuates during traveling of the vehicle, which adversely affects other consumers connected to the commercial power system.

第1図は、リニア同期電動機の電圧ベクトル図を示
す。電機子回路の誘起電圧cから内部力率角γだけ遅
れて電機子電流iaが流れ、電機子回路のインピーダンス
降下と誘起電圧のベクトル和によって電機子回路の端子
電圧sが決定され、この時内部相差角はδとなる。従
来の浮上式鉄道用のリニア同期電動機の制御装置を第2
図に示す。即ち、リニア同期電動機1で駆動された車両
の位置を検出位置検知装置2の出力信号から車両の走行
速度を求め、目標速度との比較を行って目標速度に達す
る為に必要とされる推力を推力演算部3で計算し、その
推力を得る為に必要な電機子電流の絶対値を電流絶対値
指令演算部4で求める、一方、車両の位置検知信号から
リニア同期電動機電機子回路の誘起電圧の位相を位相基
準演算部5で求め、目標速度の速度演算結果とから車両
が脱調することなしに走行可能な電機子電流の周波数指
令値を周波数演算部6で求め、誘起電圧と同相で前記周
波数かつ単位大きさの電流波形(通常は正弦波)を単位
電流波形演算部7の計算により求め、この出力と上記電
流絶対値とを乗算器8で乗算し、その結果を電力変換器
9の電流制御回路への電流指令信号とすることにより、
リニア同期電動機1に所定の推力を発生する電流を供給
し、速度演算部10で得られる車両速度を目標速度に近づ
けるような制御を行っていた。
FIG. 1 shows a voltage vector diagram of a linear synchronous motor. The armature current ia flows from the induced voltage c of the armature circuit by an internal power factor angle γ, and the terminal voltage s of the armature circuit is determined by the vector sum of the impedance drop of the armature circuit and the induced voltage. The phase difference angle is δ. Second conventional linear synchronous motor controller for levitating railway
Shown in the figure. That is, the position of the vehicle driven by the linear synchronous motor 1 is detected. The traveling speed of the vehicle is obtained from the output signal of the position detection device 2, and the traveling speed of the vehicle is compared with the target speed to determine the thrust required to reach the target speed. The absolute value of the armature current calculated to obtain the thrust by the thrust calculation unit 3 is calculated by the current absolute value command calculation unit 4, while the induced voltage of the linear synchronous motor armature circuit is calculated from the vehicle position detection signal. Is calculated by the phase reference calculation unit 5, and the frequency calculation value of the armature current that the vehicle can travel without stepping out is calculated by the frequency calculation unit 6 from the speed calculation result of the target speed, and in phase with the induced voltage. The current waveform of the frequency and unit magnitude (usually a sine wave) is obtained by the calculation of the unit current waveform calculation unit 7, and this output is multiplied by the current absolute value by the multiplier 8, and the result is obtained by the power converter 9 Current finger to the current control circuit of By the signal,
The linear synchronous motor 1 is supplied with a current for generating a predetermined thrust to perform control such that the vehicle speed obtained by the speed calculator 10 approaches the target speed.

このような従来の装置では、第1図において、内部力
率γ=0とすることになり、所定の推力を発生する為に
必要とされる電流の絶対値そのものは小さくすることが
できるが、力率が悪くなるという欠点をもっている。
In such a conventional device, the internal power factor γ = 0 in FIG. 1, and the absolute value of the current required to generate a predetermined thrust can be reduced, It has the drawback that the power factor becomes worse.

例えば、軌道上を走行する磁気浮上列車11を駆動する
場合は、第3図に示すように、軌道上に並べられた電機
子コイル群12を一定の長さ毎にき電セクション13として
分け、2台の電力変換器14の出力をセクション切換器15
によって、車両の走行に対応して切換えて給電を行う、
いわゆる複合給電方式で行なわれる。この給電方式で
は、車両が2つの隣接したき電セクション13に跨って走
行するいわゆるセクション渡り時には、電機子回路の誘
起電圧は車両速度によって変化するだけでなく、車両の
セクション13内における位置によって大きく変化する。
従って、従来のリニア同期電動機制御装置では、力率が
車両の速度及びき電セクション内での車両の位置によっ
ても力率が大きく変化することになり、電力変換器の一
次側である商用電力系統17更には、その系統に接続され
ている他の需要家18へも多大の悪影響を及ぼすことにな
る。
For example, when driving a magnetic levitation train 11 traveling on a track, as shown in FIG. 3, the armature coil groups 12 arranged on the track are divided into feeding sections 13 at fixed intervals, The outputs of the two power converters 14 are connected to the section switch 15
To switch and supply power according to the running of the vehicle.
The so-called combined power feeding method is used. In this power feeding method, when the vehicle travels across two adjacent feeder sections 13, the voltage induced in the armature circuit changes not only with the vehicle speed but also with the position in the section 13 of the vehicle. Change.
Therefore, in the conventional linear synchronous motor control device, the power factor greatly changes depending on the speed of the vehicle and the position of the vehicle in the feeding section, and the commercial power system that is the primary side of the power converter. Furthermore, it will have a great adverse effect on other customers 18 connected to the grid.

〔発明の目的〕[Object of the Invention]

この発明は、上述のような従来装置の欠点を改良した
もので、移動体の速度、及び移動体のき電セクション内
の位置に拘らず、常に高い電源力率のもとに運転するこ
とのできるリニア同期電動機制御装置を提供することを
目的とする。
The present invention is an improvement over the drawbacks of the conventional device as described above, and it is possible to always operate at a high power source power factor regardless of the speed of the moving body and the position of the moving body in the feeding section. It is an object of the present invention to provide a linear synchronous motor control device that can be used.

〔発明の概要〕[Outline of Invention]

本発明はリニア同期電動機で駆動される移動体の位置
を検出する移動体位置検出装置と、この移動体位置検出
装置の出力信号から前記移動体の走行速度を演算する速
度演算部と、この速度演算部の出力信号として得られた
前記移動体の走行速度と目標速度とから得られる前記移
動体の推力をもとに、前記移動体の走行速度を目標速度
に一致させるためのリニア同期電動機の機械出力を演算
する機械出力演算部と、この機械出力を得るためのリニ
ア同期電動機の電機子電流の絶対値と内部力率角の組み
合わせを演算する内部力率角演算部と、前記移動体位置
検出装置の出力信号から電機子電流の位相基準の演算を
行い、前記内部力率角演算部の演算結果に相当する位相
だけ前記位相基準からずれた位相を持ち、かつ前記速度
演算部の出力信号から求めた周波数で単位大きさの電流
波形を発生する単位電流波形演算部と、この単位電流波
形演算部の出力信号と前記電機子電流の絶対値とを乗算
する乗算部と、この乗算部出力信号を電流制御回路の電
流指令値信号とする電力変換部と、この電力変換部で駆
動されるリニア同期電動機とで構成されるリニア同期電
動機制御装置において、前記位置検出装置の出力信号か
ら前記移動体のき電セクション内における位置を求めて
電機子回路に発生する誘起電圧を求め、このき電セクシ
ョンに対応するリニア同期電動機が発生すべき機械出力
を得るとともに、このリニア同期電動機に電力を供給す
る電力変換部の力率を最大にする条件を満足する電機子
電流の絶対値と内部力率角の組み合わせを前記移動体の
き電セクション内における位置及び移動体速度の関数と
して求め、その結果を用いて、前記電力変換部の電流制
御回路への電流指令信号を得るように構成したリニア同
期電動機制御装置である。
The present invention relates to a moving body position detecting device for detecting the position of a moving body driven by a linear synchronous motor, a speed calculating unit for calculating a traveling speed of the moving body from an output signal of the moving body position detecting device, and this speed. Based on the thrust of the moving body obtained from the running speed of the moving body and the target speed obtained as the output signal of the arithmetic unit, a linear synchronous motor for matching the running speed of the moving body to the target speed A mechanical output calculation unit that calculates a mechanical output, an internal power factor angle calculation unit that calculates a combination of an absolute value of an armature current of a linear synchronous motor and an internal power factor angle for obtaining the mechanical output, and the moving body position. The phase reference of the armature current is calculated from the output signal of the detection device, and the output signal of the speed calculation section has a phase deviated from the phase reference by a phase corresponding to the calculation result of the internal power factor angle calculation section. Or A unit current waveform calculation unit that generates a current waveform of a unit magnitude at the obtained frequency, a multiplication unit that multiplies the output signal of this unit current waveform calculation unit and the absolute value of the armature current, and this multiplication unit output signal In a linear synchronous motor control device configured by a power conversion unit that outputs a current command value signal of a current control circuit and a linear synchronous motor driven by the power conversion unit, the moving object is output from the output signal of the position detection device. The position in the feeding section is obtained to find the induced voltage generated in the armature circuit, and the mechanical output to be generated by the linear synchronous motor corresponding to this feeding section is obtained and the linear synchronous motor is supplied with power. The combination of the absolute value of the armature current and the internal power factor angle satisfying the condition for maximizing the power factor of the power conversion unit is set in the position and transfer in the feeder section of the moving body. Determined as a function of the body speed, with the result, a linear synchronous motor control device configured to obtain a current signal to the current control circuit of the power conversion unit.

〔発明の効果〕〔The invention's effect〕

上述のように、本発明によれば、リニア同期電動機を
駆動する電力変換器の制御回路の一部に、若干の演算機
能を追加するだけで、常に電源力率を最大に保つ運転制
御が可能となる。特に浮上式鉄道の駆動に用いられてい
るリニア同期電動機においては、電力変換器の一次側に
おける無効電力を補償するために、大容量のコンデンサ
や、無効電力吸収のための装置として、電力変換器本体
とほとんど変わらないような大きさの大型かつ、高価な
装置が設置されていた。従って、本発明による省スペー
ス効果、コスト低域の効果、制御装置の部品点数の減少
に伴う信頼性の向上等、主として人を乗せる交通システ
ムや高級な搬送システムへの適用を考慮した場合に本発
明の効果は非常に大である。
As described above, according to the present invention, it is possible to perform operation control that always keeps the power supply power factor to the maximum by adding a slight arithmetic function to a part of the control circuit of the power converter that drives the linear synchronous motor. Becomes In particular, in a linear synchronous motor used to drive a levitation railway, in order to compensate the reactive power on the primary side of the power converter, a large-capacity capacitor or a device for absorbing the reactive power is used as a power converter. A large and expensive device with a size almost the same as the main body was installed. Therefore, the present invention is mainly applied to a transportation system for carrying a person or a high-class transportation system, such as a space saving effect, a low cost effect according to the present invention, and an improvement in reliability due to a decrease in the number of parts of a control device. The effect of the invention is very large.

〔発明の実施例〕Example of Invention

以下、本発明の実施例について詳細に説明する。尚、
従来の構成と同一部分については同一符号を付して説明
する。第4図は、本発明の装置を示し、その構成は、リ
ニア同期電動機1で駆動される移動体例えば第3図の車
両11の位置を検出する車両位置検知装置2と、この位置
検知装置の出力信号から車両の走行速度を演算する速度
演算部10と、この速度演算部10の出力信号である前記移
動体の移動速度および目標速度を用いて得られた推力演
算部3からの出力信号と、セクション内位置演算部22か
らの出力信号(列車のセクション内位置,列車全体が受
ける機械出力,列車長などを関数とした信号)をそれぞ
れ入力することにより、リニア同期電動機1の機械出力
Pmを算出する機械出力演算部19と、この演算の結果で得
られた機械出力が得られるようなリニア同期電動機1の
電機子電流の絶対値と内部力率角の組み合わせを演算す
る内部力率角演算部20と、上記車両位置検知装置2の出
力信号から電機子電流の位相基準を位相基準演算部5で
演算を行い、上記内部力率角演算部20の演算結果に相当
する位相だけ上記位相基準からずれた位相をもち、か
つ、速度演算部10の出力信号から周波数演算部6で求め
た周波数で、単位大きさの電流波形を発生する単位電流
波形演算部21と、この単位電流波形演算部21の出力信号
と電流絶対値演算部23の出力信号とを乗算する乗算器8
と、この乗算器8の出力信号を電流制御回路の電流指令
信号とする電力変換器9と、車両位置検知装置2の出力
信号でき電セクション内の位置を演算するセクション内
位置演算部22とで構成されており、このリニア同期電動
機制御装置は、車両位置検知装置2の出力信号から車両
のき電セクション内における位置をき電セクション内位
置演算部22で求めて電機子回路に発生する誘起電圧を求
め、このき電セクションに対応するリニア同期電動機1
が発生すべき機械出力が得られ、かつ、リニア同期電動
機1に電力を供給している電力変換器9等の電源の力率
を最大にする条件を満足するような電機子電流絶対値と
内部力率角の組み合わせを、車両のき電セクション内に
おける位置及び車両速度の関数として求め、その結果を
用いて、電力変換器の電流制御回路への電流指令信号を
得るように構成されている。なお、電流絶対値演算部23
では、機械出力演算結果から、例えばリニア同期電動機
1の構成等で決定される誘起電圧係数と、電気子巻線の
相数を乗算したもので機械出力指令値を徐算する等の演
算が行われる。
Hereinafter, examples of the present invention will be described in detail. still,
The same parts as those of the conventional configuration will be described with the same reference numerals. FIG. 4 shows an apparatus according to the present invention, the structure of which is a vehicle position detection apparatus 2 for detecting the position of a moving body driven by the linear synchronous motor 1, for example, the vehicle 11 in FIG. A speed calculation unit 10 for calculating the traveling speed of the vehicle from the output signal, and an output signal from the thrust calculation unit 3 obtained using the moving speed and the target speed of the moving body, which are the output signals of the speed calculation unit 10. , By inputting the output signals from the intra-section position calculation unit 22 (signals as a function of the intra-section position of the train, the mechanical output received by the entire train, the train length, etc.), the mechanical output of the linear synchronous motor 1
A mechanical output calculation unit 19 that calculates Pm, and an internal power factor that calculates a combination of the absolute value of the armature current and the internal power factor angle of the linear synchronous motor 1 that gives the mechanical output obtained as a result of this calculation. The phase reference calculation unit 5 calculates the phase reference of the armature current from the output signals of the angle calculation unit 20 and the vehicle position detection device 2, and only the phase corresponding to the calculation result of the internal power factor angle calculation unit 20 is calculated. A unit current waveform calculation unit 21 having a phase deviated from the phase reference and generating a unit-size current waveform at the frequency calculated by the frequency calculation unit 6 from the output signal of the speed calculation unit 10, and this unit current waveform Multiplier 8 for multiplying the output signal of the calculation unit 21 and the output signal of the absolute current value calculation unit 23
And a power converter 9 that uses the output signal of the multiplier 8 as a current command signal of the current control circuit, and an intra-section position calculation unit 22 that calculates the position in the power section based on the output signal of the vehicle position detection device 2. This linear synchronous motor control device determines the position in the feeder section of the vehicle from the output signal of the vehicle position detection device 2 in the feeder section position calculation unit 22 and generates an induced voltage in the armature circuit. The linear synchronous motor corresponding to this feeder section 1
The absolute value of the armature current and the internal value that satisfy the conditions for maximizing the power factor of the power source such as the power converter 9 that supplies power to the linear synchronous motor 1. The combination of power factor angles is determined as a function of position in the feeder section of the vehicle and vehicle speed, and the result is used to obtain a current command signal to the current control circuit of the power converter. The absolute current value calculation unit 23
Then, from the mechanical output calculation result, for example, a calculation is performed such that the electromotive force coefficient determined by the configuration of the linear synchronous motor 1 and the number of phases of the armature winding are multiplied to gradually divide the mechanical output command value. Be seen.

次に本発明装置の動作について説明する。 Next, the operation of the device of the present invention will be described.

第1図に示したリニア同期電動機の電圧ベクトル図に
おいて、電機子電流、誘起電圧、電機子回路の端子電圧
は、それぞれ(1),(2),(3)式のように表わせ
る。 =Iaej(wt−γ) (1) =ec(x)・ejwt (2) =Esej(wt+δ) (3) 但し、xはき電セクション内の車両位置、lは車両
(列車)長、Lはき電セクション長である。
In the voltage vector diagram of the linear synchronous motor shown in FIG. 1, the armature current, the induced voltage, and the terminal voltage of the armature circuit can be expressed as in equations (1), (2), and (3), respectively. a = I a e j (wt -γ) (1) c = e c (x) · e jwt (2) s = E s e j (wt + δ) (3) However, x is the vehicle position in the feeder section, l is the vehicle (train) length, and L is the feeder section length.

また、第1図中Ra,Laはそれぞれ電機子回路の抵抗,
インダクタンスである。
Ra and La in Fig. 1 are the resistance of the armature circuit,
It is the inductance.

第1図においては、以下の電圧方程式が成立つ。 In FIG. 1, the following voltage equation holds.

Es cosδ=e c(x)+RaIa cosγ+ωLaIa sinγ…(5
a) Es sinδ=−RaIa sinγ+ωLaIa cosγ …(5b) ここで(電源)力率を1とするには cosψ=cos(δ+γ)=1 ∴δ=−γ …(5c) なお、δは内部相差角(sとcの位相差),γは内
部力率角(cとaの位相差)である。(5c)式を用
いてを(5a),(5b)式を書き直すと、 Es cosγ=e c(x)+RaIa cosγ+ωLaIa sinγ…(6
a) −Es sinγ=−RaIa sinγ+ωLaIa cosγ …(6b) (6a)×sinγ+(6b)×cosγの操作により(6c)式が
得られる。
Es cos δ = ec (x) + RaIa cos γ + ωLa Ia sin γ ... (5
a) Es sin δ = -RaIa sin γ + ωLaIa cos γ (5b) Here, to set the (power supply) power factor to 1, cos ψ = cos (δ + γ) = 1 ∴ δ = -γ (5c) Note that δ is the internal phase difference angle. (The phase difference between s and c), γ is the internal power factor angle (the phase difference between c and a). Rewriting Eqs. (5a) and (5b) using Eq. (5c), Es cos γ = ec (x) + RaIa cos γ + ωLaIa sin γ ... (6
a) −Es sin γ = −RaIa sin γ + ωLa Ia cos γ (6b) (6a) × sin γ + (6b) × cos γ Equation (6c) is obtained.

e c(x)sinγ+ωLaIa=0 …(6c) また、リニア同期電動機が3相の場合、その機械出力
Pmは(7a)式で与えられる。
ec (x) sinγ + ωLaIa = 0 (6c) When the linear synchronous motor has three phases, its mechanical output
Pm is given by equation (7a).

e c(x)は電動機形状,寸法により決まる速度に比
例したxの関数、Pmはシステム仕様から与えられる値で
ある。したがって、(6c),(7a)式を連立してIa,γ
を求めると、次式のようになる。
ec (x) is a function of x proportional to the speed determined by the motor shape and dimensions, and Pm is a value given from the system specifications. Therefore, the equations (6c) and (7a) are combined and Ia, γ
When is calculated, the following formula is obtained.

ここで、車両が二つのセクションに跨って走行するセ
クション渡り時には、一方のセクションからは、当該セ
クションに属している車両(列車)の長さの全車両(列
車)長に対する割合に比例して駆動力を得るものとすれ
ば、当該セクションに対応するリニア同期電動機が発生
する機械出力Pm(x)は、車両(列車)全体の機械出力
PmTを用いて表わすと次式のようになる。
When crossing a section where a vehicle travels across two sections, drive from one section in proportion to the ratio of the length of the vehicle (train) belonging to the section to the total length of the train (train). If the force is to be obtained, the mechanical output Pm (x) generated by the linear synchronous motor corresponding to the section is the mechanical output of the entire vehicle (train).
When expressed using Pm T , it becomes as follows.

(4),(8)式を(7b),(7c)式に代入すること
により、所定の機械出力PmTを発生し、かつ、力率が最
大となるような電機子電流の絶対値Iaと、内部力率角γ
の組み合わせが求められる。
By substituting Eqs. (4) and (8) into Eqs. (7b) and (7c), the absolute value Ia of the armature current that generates the predetermined mechanical output Pm T and maximizes the power factor is obtained. And the internal power factor angle γ
Is required.

以下、第4図に示した制御ブロック図に基づいて本発
明の動作を説明する。
The operation of the present invention will be described below with reference to the control block diagram shown in FIG.

まず、車両などの移動体の位置を検出する移動体位置
検出装置2の出力信号から速度演算部10で移動体の走行
速度を求めた値と目標速度を推力演算部3の入力信号と
する。推力演算部3には予め走行速度に対する走行抵抗
が関数や表などの形で用意されており、実走行速度なら
びに目標速度に対する走行抵抗を求め、移動体を目標速
度まで加速するのに必要な推力Fの指令値を演算する。
機械出力演算部19では、推力演算部3で求めた推力Fの
指定値と目標速度vとを乗算することによって求めた車
両(列車)全体の機械出力PmTと、車両位置検知器2の
出力信号から、セクション内位置演算部22において求め
たセクション内の車両位置xを用いて(8)式から機械
出力(Pm(x)(=Fv(x)))の指令値を求める。求
められた機械出力指令値は、電流絶対値指令値を演算す
る電流絶対値演算部4と、内部力率角(電流位相)指令
値γを演算する内部力率角演算部20に出力する。
First, the value obtained by calculating the traveling speed of the moving body by the speed calculating unit 10 from the output signal of the moving body position detecting device 2 for detecting the position of the moving body such as a vehicle and the target speed are used as the input signals of the thrust calculating unit 3. The thrust calculation unit 3 is prepared in advance with the running resistance to the running speed in the form of a function or a table. The thrust required to accelerate the moving body to the target speed by obtaining the running resistance to the actual running speed and the target speed. Calculate the command value of F.
In the mechanical output calculation unit 19, the mechanical output PmT of the entire vehicle (train) obtained by multiplying the designated value of the thrust F obtained by the thrust calculation unit 3 and the target speed v and the output signal of the vehicle position detector 2 Then, using the vehicle position x in the section obtained by the in-section position calculation unit 22, the command value of the mechanical output (Pm (x) (= Fv (x))) is obtained from the equation (8). The obtained machine output command value is output to the current absolute value calculation unit 4 that calculates the current absolute value command value and the internal power factor angle calculation unit 20 that calculates the internal power factor angle (current phase) command value γ.

一方、位相基準演算部5は、車両位置検出機2の出力
信号からリニア同期電動機の界磁の位置情報を求め、単
位電流波形演算部21に出力する。単位電流波形演算部21
は、予め振幅が単位量(例えばL)の単位電流波形(た
とえば正弦波)を位相に対する関数や表などの形で用意
しておき、位相基準演算部5で求められた電動機界磁位
置(位相)に対して、内部力率角(位相)指令演算部20
で求めた位相指令分だけ位相をずらした単位電流波形
(例えば正弦波)を演算する。乗算器8では、電流絶対
値演算部4の出力と単位電流波形演算部2の出力を乗算
して電流(瞬時値)指令値を求め、電力変換器電流制御
回路9に入力し、リニア同期電動機1の電機子電流を所
望の値に制御することによって移動体の速度が目標速度
と一致するように制御する。
On the other hand, the phase reference calculation unit 5 obtains the position information of the magnetic field of the linear synchronous motor from the output signal of the vehicle position detector 2 and outputs it to the unit current waveform calculation unit 21. Unit current waveform calculator 21
Is a unit current waveform (for example, sine wave) whose amplitude is a unit amount (for example, L) is prepared in advance in the form of a function or a table for the phase, and the motor field position (phase ), The internal power factor angle (phase) command calculator 20
A unit current waveform (for example, a sine wave) whose phase is shifted by the phase command obtained in step 3 is calculated. The multiplier 8 multiplies the output of the current absolute value calculation unit 4 and the output of the unit current waveform calculation unit 2 to obtain a current (instantaneous value) command value, and inputs it to the power converter current control circuit 9 to input the linear synchronous motor. By controlling the armature current of No. 1 to a desired value, the speed of the moving body is controlled to match the target speed.

第4図に示した本発明の実施例において、車両が二つ
のき電セクションにまたがって走行する場合に、一き電
セクション内に含まれる車両の長さの全車両長に対する
比率に対して、電源力率、無効電力、皮相電力がどのよ
うに変わるかを、第5図,第6図,第7図にそれぞれ実
線で示す。これらの図中に破線で示した曲線は、内部力
率角γを常に0に保つように制御した従来の制御装置の
各特性を示すものである。従来の装置に比して、電源力
率の向上、無効電力の大巾減少、皮相入力の減少等、特
に浮上式鉄道の駆動に要する電源容量は非常に大きいこ
とを考慮すると本発明の改善効果は明白である。
In the embodiment of the invention shown in FIG. 4, when the vehicle travels over two feeder sections, the ratio of the length of the vehicle contained in the feeder section to the total vehicle length is: How the power source power factor, the reactive power, and the apparent power change is shown by solid lines in FIGS. 5, 6, and 7, respectively. Curves shown by broken lines in these figures show respective characteristics of the conventional control device in which the internal power factor angle γ is controlled so as to always be kept at zero. Compared with the conventional device, the improvement effect of the present invention considering the fact that the power supply capacity required for driving the levitation railway is very large, such as improvement of power supply power factor, reduction of reactive power, decrease of apparent input, etc. Is obvious.

【図面の簡単な説明】[Brief description of drawings]

第1図はリニア同期電動機の電圧ベクトル図、第2図は
従来のリニア同期電動機制御装置を説明するための制御
ブロック図、第3図はリニア同期電動機への従来の給電
方式を説明する説明図、第4図は本発明のリニア同期電
動機制御装置を説明するための制御ブロック図、第5図
は本発明による電源力率改善の効果を示すための特性
図、第6図は本発明による無効電力減少の効果を説明す
るための特性図、第7図は本発明による皮相電力減少の
効果を示すための特性図である。 1……リニア同期電動機、2……車両位置検知装置、3
……推力演算部、5……位相基準演算部、6……周波数
演算部、8……乗算器、9……電力変換器、10……速度
演算部、19……機械演算部、20……内部力率角演算部、
21……単位電流波形演算部、22……セクション内位置演
算部、23……電流絶対値演算部。
FIG. 1 is a voltage vector diagram of a linear synchronous motor, FIG. 2 is a control block diagram for explaining a conventional linear synchronous motor control device, and FIG. 3 is an explanatory diagram for explaining a conventional power feeding system to the linear synchronous motor. FIG. 4 is a control block diagram for explaining the linear synchronous motor control device of the present invention, FIG. 5 is a characteristic diagram for showing the effect of power source power factor improvement by the present invention, and FIG. 6 is an invalidity by the present invention. FIG. 7 is a characteristic diagram for explaining the effect of power reduction, and FIG. 7 is a characteristic diagram for showing the effect of apparent power reduction according to the present invention. 1 ... Linear synchronous motor, 2 ... Vehicle position detection device, 3
...... Thrust calculation unit, 5 ...... Phase reference calculation unit, 6 …… Frequency calculation unit, 8 …… Multiplier, 9 …… Power converter, 10 …… Speed calculation unit, 19 …… Machine calculation unit, 20 ・ ・ ・... Internal power factor angle calculator,
21 …… Unit current waveform calculator, 22 …… Section position calculator, 23 …… Absolute current value calculator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リニア同期電動機で駆動される移動体の位
置を検出する移動体位置検出装置と、この移動体位置検
出装置の出力信号から前記移動体の走行速度を演算する
速度演算部と、この速度演算部の出力信号として得られ
た前記移動体の走行速度と目標速度とから前記移動体の
推力を求め、この推力と前記目標速度とに基づいて前記
移動体の走行速度を目標速度に一致させるためのリニア
同期電動機の機械出力を演算する機械出力演算部と、こ
の機械出力を得るためのリニア同期電動機の電機子電流
の絶対値と内部力率角の組み合わせを演算する内部力率
角演算部と、前記移動体位置検出装置の出力信号から電
機子電流の位相基準の演算を行い、前記内部力率角演算
部の演算結果に相当する位相だけ前記位相基準からずれ
た位相を持ち、かつ前記速度演算部の出力信号から求め
た周波数で単位大きさの電流波形を発生する単位電流波
形演算部と、この単位電流波形演算部の出力信号と前記
電機子電流の絶対値とを乗算する乗算部と、この乗算部
出力信号を電流制御回路の電流指令値信号とする電力変
換部と、この電力変換部で駆動されるリニア同期電動機
とで構成されるリニア同期電動機制御装置において、 前記位置検出装置の出力信号から前記移動体のき電セク
ション内における位置を求めて電機子回路に発生する誘
起電圧を求め、このき電セクションに対応するリニア同
期電動機が発生すべき機械出力を得るとともに、このリ
ニア同期電動機に電力を供給する電力変換部の力率を最
大にする条件を満足する電機子電流の絶対値と内部力率
角の組み合わせを前記移動体のき電セクション内におけ
る位置及び移動体速度の関数として求め、その結果を用
いて、前記電力変換部の電流制御回路への電流指令信号
を得るように構成したことを特徴とするリニア同期電動
機制御装置。
1. A moving body position detecting device for detecting a position of a moving body driven by a linear synchronous motor, and a speed calculating section for calculating a traveling speed of the moving body from an output signal of the moving body position detecting device. The thrust of the moving body is obtained from the running speed and the target speed of the moving body obtained as the output signal of the speed calculation unit, and the running speed of the moving body is set to the target speed based on the thrust and the target speed. A mechanical output calculation unit that calculates the mechanical output of the linear synchronous motor for matching, and an internal power factor angle that calculates the combination of the absolute value of the armature current of the linear synchronous motor and the internal power factor angle to obtain this mechanical output. A calculation unit and a calculation of the phase reference of the armature current from the output signal of the moving body position detection device, having a phase deviated from the phase reference by a phase corresponding to the calculation result of the internal power factor angle calculation unit, Or A unit current waveform calculation unit that generates a current waveform of a unit magnitude at a frequency obtained from the output signal of the speed calculation unit, and a multiplication that multiplies the output signal of the unit current waveform calculation unit and the absolute value of the armature current. In the linear synchronous motor control device including a power conversion unit that uses the output signal of the multiplication unit as a current command value signal of the current control circuit, and a linear synchronous motor that is driven by the power conversion unit. The position in the feeder section of the moving body is obtained from the output signal of the device to obtain the induced voltage generated in the armature circuit, and the mechanical output to be generated by the linear synchronous motor corresponding to this feeder section is obtained. The combination of the absolute value of the armature current and the internal power factor angle satisfying the condition that maximizes the power factor of the power conversion unit that supplies power to the linear synchronous motor is determined by the feeding sensor of the moving body. Determined as a function of the position and the moving body speed in the Deployment, using the result, the linear synchronous motor control device characterized by being configured to obtain a current signal to the current control circuit of the power conversion unit.
JP58180185A 1983-09-30 1983-09-30 Linear synchronous motor controller Expired - Lifetime JPH082194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180185A JPH082194B2 (en) 1983-09-30 1983-09-30 Linear synchronous motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180185A JPH082194B2 (en) 1983-09-30 1983-09-30 Linear synchronous motor controller

Publications (2)

Publication Number Publication Date
JPS6074991A JPS6074991A (en) 1985-04-27
JPH082194B2 true JPH082194B2 (en) 1996-01-10

Family

ID=16078868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180185A Expired - Lifetime JPH082194B2 (en) 1983-09-30 1983-09-30 Linear synchronous motor controller

Country Status (1)

Country Link
JP (1) JPH082194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332495C (en) * 2004-06-03 2007-08-15 台达电子工业股份有限公司 How to balance the motor

Also Published As

Publication number Publication date
JPS6074991A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
US3904942A (en) System for operating a self-propelled track bound vehicle with a linear synchronous motor
US8827058B2 (en) Inductively receiving electric energy for a vehicle
JP2739606B2 (en) Magneto-electric vehicle operation device
CN101622782B (en) Controller of electric vehicle
CN103972972A (en) Charging apparatus and electric vehicle including the same
JPS61218304A (en) Conveyance system
JP2003528555A (en) Electric Telher with non-contact power transmission
US3827371A (en) Linear and rotary motor driving system for electric car
US3863574A (en) Power supply for high speed vehicles
US3914669A (en) System for attenuating vertical oscillations of a suspended track bound propulsion vehicle
JP4975496B2 (en) Superconducting magnetic levitation system with propulsion levitation guide and roadbed
Kang et al. Long stator linear doubly-fed motor for high-speed maglev integrated suspension, propulsion and contactless power supply
JP3329873B2 (en) Low-press elevator equipment
JPH082194B2 (en) Linear synchronous motor controller
CN104767446A (en) A Control Method of Air Gap Flux and Current Phasor Angle of Hybrid Excitation Synchronous Motor
US3998305A (en) Arrangement in current supply systems
CN1847046A (en) Drives for vehicles moving along tracks, especially maglev trains
CN108974055A (en) The multi-modal optimization drive control method of suspension type maglev train system
JPH082193B2 (en) Linear synchronous motor controller
JP3841613B2 (en) Speed electromotive force phase selector
US20230147692A1 (en) Method and system device for multiple load-bearing of linear motor for magnetic levitation transportation
Slemon et al. A linear synchronous motor for high-speed ground transport
JPS5843104A (en) Contactless current collector for floating railway train
JP3998666B2 (en) Derailment detector
SLEMON An experimental study of a homopolar linear synchronous motor