JPH08217561A - Light-weight calcium silicate formed body and its production - Google Patents
Light-weight calcium silicate formed body and its productionInfo
- Publication number
- JPH08217561A JPH08217561A JP4775195A JP4775195A JPH08217561A JP H08217561 A JPH08217561 A JP H08217561A JP 4775195 A JP4775195 A JP 4775195A JP 4775195 A JP4775195 A JP 4775195A JP H08217561 A JPH08217561 A JP H08217561A
- Authority
- JP
- Japan
- Prior art keywords
- calcium silicate
- weight
- strength
- raw material
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000378 calcium silicate Substances 0.000 title claims abstract description 24
- 229910052918 calcium silicate Inorganic materials 0.000 title claims abstract description 24
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000002994 raw material Substances 0.000 claims abstract description 35
- 239000002002 slurry Substances 0.000 claims abstract description 16
- 239000005909 Kieselgur Substances 0.000 claims abstract description 15
- 239000011398 Portland cement Substances 0.000 claims abstract description 12
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 12
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 10
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 10
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 10
- 235000011116 calcium hydroxide Nutrition 0.000 claims abstract description 10
- 230000003746 surface roughness Effects 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 3
- 239000004917 carbon fiber Substances 0.000 claims abstract description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 229920002972 Acrylic fiber Polymers 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000012784 inorganic fiber Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- -1 polypropylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 29
- 239000000377 silicon dioxide Substances 0.000 abstract description 11
- 239000010881 fly ash Substances 0.000 abstract description 8
- 230000009471 action Effects 0.000 abstract description 6
- 230000008014 freezing Effects 0.000 abstract description 6
- 238000007710 freezing Methods 0.000 abstract description 6
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 6
- 239000011229 interlayer Substances 0.000 abstract description 5
- 229920000609 methyl cellulose Polymers 0.000 abstract description 4
- 239000001923 methylcellulose Substances 0.000 abstract description 4
- 239000002562 thickening agent Substances 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000013055 pulp slurry Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- 238000010521 absorption reaction Methods 0.000 description 19
- 239000011159 matrix material Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical compound [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000004575 stone Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 239000004568 cement Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000004566 building material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- SHFGJEQAOUMGJM-UHFFFAOYSA-N dialuminum dipotassium disodium dioxosilane iron(3+) oxocalcium oxomagnesium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Na+].[Na+].[Al+3].[Al+3].[K+].[K+].[Fe+3].[Fe+3].O=[Mg].O=[Ca].O=[Si]=O SHFGJEQAOUMGJM-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000010451 perlite Substances 0.000 description 3
- 235000019362 perlite Nutrition 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/18—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
- C04B28/186—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0016—Granular materials, e.g. microballoons
- C04B20/002—Hollow or porous granular materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
- C04B2111/00336—Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/29—Frost-thaw resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はセメント、消石灰等を原
料として得られる軽量珪酸カルシウム成形体及びその製
造方法に係り、軽量で、不燃性、耐凍害性、さらには表
面平滑性、加工性に優れ、建築用内外装材等の用途に幅
広く使用可能なものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight calcium silicate compact obtained by using cement, slaked lime, etc. as a raw material, and a method for producing the same, and is lightweight, nonflammable, frost resistance, surface smoothness and workability. The present invention relates to a material that is excellent and can be widely used for applications such as interior and exterior materials for construction.
【0002】[0002]
【従来の技術】セメント等を原料とする珪酸カルシウム
成形体は、従来より広く建築用材料として使用されてい
る。この種の成形体には、軽量性、加工性、表面平滑
性、耐火性、不燃性、耐久性、耐凍害性、耐水性等が求
められる。すなわち、建築物の高層化に対応して軽量化
が要求され、さらに、防耐火性能も同時に要求され、ま
た、建築デザインの多様化から、加工性や塗装のための
表面平滑性が優れていることも近年求められつつあり、
そして、外装材の場合、風雨や紫外線に耐えることや、
耐水性、耐凍害性等の性能も必要とされる。2. Description of the Related Art Calcium silicate compacts made of cement or the like have been widely used as building materials. A molded article of this type is required to have light weight, workability, surface smoothness, fire resistance, nonflammability, durability, frost damage resistance, water resistance and the like. That is, it is required to reduce the weight in response to the increase in the number of buildings, and at the same time, it is required to have fireproof performance, and due to the diversification of architectural design, it has excellent workability and surface smoothness for painting. Is being sought after in recent years,
And in the case of exterior materials, it can withstand weather and ultraviolet rays,
Performance such as water resistance and frost damage resistance is also required.
【0003】とくに、耐凍害性については、素材の強度
と、素材の吸水性あるいは耐水性と、素材中の自由水凍
結時の体積膨張による内部発生応力を緩和する力との関
係が深い。これは建材中の自由水の凍結時における体積
膨張と融解時における収縮の繰り返しによる微細亀裂の
拡大が、材料の崩壊につながるからである。In particular, with respect to frost damage resistance, there is a close relationship between the strength of the material, the water absorption or water resistance of the material, and the force that relieves the internally generated stress due to volume expansion when free water in the material is frozen. This is because the expansion of fine cracks due to repeated volume expansion during freezing of free water in building materials and contraction during freezing leads to material collapse.
【0004】このため、耐凍害性を得るために、材料自
身が吸水しないように、材料表面に耐水加工を施した
り、材料内の気泡を制御して、材料内の亀裂伝播を抑止
する等の対策が講じられてきた。しかしながら、軽量化
と耐凍害性さらには加工性、表面平滑性、不燃性等の全
てを満足するものは非常に少ない。Therefore, in order to obtain frost resistance, the surface of the material is treated to be water resistant so that the material itself does not absorb water, and bubbles in the material are controlled to prevent crack propagation in the material. Measures have been taken. However, there are very few that satisfy all of weight reduction, frost resistance, workability, surface smoothness, nonflammability, and the like.
【0005】この種の珪酸カルシウム成形体は、原料と
して、通常ポルトランドセメントのような水硬性セメン
トに、珪石等の珪酸質源、及び必要に応じて軽量骨材、
補強繊維等を加えている。しかし、軽量骨材に関して
は、次のような問題がある。従来より使用されているパ
ーライトやシラスバルーン等の無機軽量骨材の多くは、
機械的強度が弱く、混合中や成形中にその多くが粉砕さ
れてしまい、その効果を発揮することが難しい。さらに
は、これらの軽量骨材のなかには中空閉鎖型でないもの
も多く、吸水率の高いものが多いため、これら軽量骨材
の使用量の増加とともに、成形体の吸水率は増してしま
い、また、材料のマトリックス強度も小さくなることか
ら、耐凍害性の面で劣ってしまっていた。This kind of calcium silicate compact is generally used as a raw material in a hydraulic cement such as Portland cement, a siliceous source such as silica stone, and if necessary, a lightweight aggregate,
Reinforcing fibers are added. However, there are the following problems regarding the lightweight aggregate. Most of the inorganic lightweight aggregates such as perlite and shirasu balloon that have been used conventionally are
The mechanical strength is weak, and most of them are crushed during mixing and molding, and it is difficult to exert their effects. Furthermore, many of these lightweight aggregates are not hollow closed type, and many have high water absorption rate, so the water absorption rate of the molded body increases as the usage amount of these lightweight aggregates increases, and, Since the matrix strength of the material was also small, it was inferior in terms of frost damage resistance.
【0006】一方、発泡スチレン等を始めとする有機系
軽量骨材は、かさ比重が極端に低いため、原料スラリー
中に浮遊してしまい、均一混合が難しい。また、材料の
マトリックス強度も、有機軽量骨材の使用量の増加とと
もに小さくなり、さらには、耐熱性が低いため、高温養
生が難しく、そのため、寸法変化量が大きく、生産サイ
クル時間も長く、耐熱性、不燃性の問題も残ってしまっ
ている。On the other hand, organic lightweight aggregates such as foamed styrene have an extremely low bulk specific gravity, and thus float in the raw material slurry, making uniform mixing difficult. In addition, the matrix strength of the material also decreases with the increase in the amount of organic lightweight aggregate used. Furthermore, since the heat resistance is low, it is difficult to cure at high temperature. Therefore, the dimensional change is large, the production cycle time is long, and the heat resistance The problems of sex and incombustibility have also remained.
【0007】[0007]
【発明が解決しようとする課題】上述したように、従来
の珪酸カルシウム成形体は、様々な問題を抱えていた。
本発明は、上述したような問題を解決するもので、軽量
でありながら、マトリックス強度が強く、また吸水率も
小さく、耐凍害性に優れ、さらに、表面平滑性、不燃性
も備えた軽量珪酸カルシウム成形体を提供しようとする
ものである。As described above, the conventional calcium silicate compact has various problems.
The present invention is to solve the above-mentioned problems, while being lightweight, it has a high matrix strength, a low water absorption rate, excellent frost damage resistance, and further has surface smoothness and nonflammability. It is intended to provide a calcium compact.
【0008】[0008]
【課題を解決するための手段】珪酸カルシウム成形体に
おいて、凍害を引き起こす材料面よりの要因は、前述の
通り、マトリックス強度と、吸水性あるいは耐水性と、
自由水凍結時の体積膨張による内部発生応力を緩和する
力にある。すなわち、材料中に内部応力を発生させる源
である自由水量を少なくし、また、自由水が膨張した時
の圧力を緩和させる独立気泡量を多くさせ、さらにマト
リックス強度をあげることにより、材料自身の耐凍害性
を向上させることが可能である。また、建築用材料に
は、当然ある程度の硬さが求められ、塗装等の表面処理
を考慮した場合には、表面の平滑性等も要求される。In the calcium silicate compact, factors affecting the freezing damage are, as described above, the matrix strength and the water absorption or water resistance.
It is a force to relieve internally generated stress due to volume expansion when free water is frozen. That is, by reducing the amount of free water that is a source of generating internal stress in the material, increasing the amount of closed cells that relaxes the pressure when the free water expands, and further increasing the matrix strength, the material itself It is possible to improve frost damage resistance. Further, the building material is naturally required to have a certain degree of hardness, and when the surface treatment such as painting is taken into consideration, the smoothness of the surface is also required.
【0009】本発明の軽量珪酸カルシウム成形体は、か
さ比重が0.4〜0.9、次の式(1)に示す予測独立
気泡率が15%以上、The lightweight calcium silicate compact of the present invention has a bulk specific gravity of 0.4 to 0.9, a predicted closed cell ratio of 15% or more as shown in the following formula (1),
【0010】[0010]
【数2】 [Equation 2]
【0011】層間強度が5kgf/cm2 以上で、なお
かつJIS規格B0601による平均線表面粗さが10
μm以下である。(請求項1)The interlayer strength is 5 kgf / cm 2 or more, and the average line surface roughness according to JIS standard B0601 is 10 or more.
μm or less. (Claim 1)
【0012】このため、この珪酸カルシウム成形体は、
建築材料として軽量化、加工し易さ、耐火性、不燃性、
耐久性、耐凍害性、耐水性等において非常に優れた材料
といえる。すなわち、かさ比重が0.4より小さいと、
マトリックス強度が不足するため、対凍害性が劣り、か
さ比重が0.9より大きいと、マトリックスが硬くなっ
て加工性が悪くなり、また、軽量化の面でも劣る。ま
た、層間強度が5kgf/cm2 より小さいと、マトリ
ックス強度が不足し、やはり耐凍害性が劣る。そして、
予測独立気泡率が15%より小さいと、吸水率が高くな
るとともに、自由水凍結時の膨張圧を緩和させる力が不
足するので、同じ様に耐凍害性が劣る。Therefore, this calcium silicate compact is
Lightweight as building material, easy to process, fire resistant, non-combustible,
It can be said to be an extremely excellent material in terms of durability, frost resistance and water resistance. That is, if the bulk density is less than 0.4,
Since the matrix strength is insufficient, the frost damage resistance is inferior, and when the bulk specific gravity is more than 0.9, the matrix becomes hard and the workability deteriorates, and the weight reduction is also inferior. If the interlaminar strength is less than 5 kgf / cm 2 , the matrix strength will be insufficient and the frost resistance will be poor. And
If the predicted closed cell rate is less than 15%, the water absorption rate becomes high, and the ability to relieve the expansion pressure during freezing of free water is insufficient.
【0013】ここで、上記の式(1)で示される予測独
立気泡率とは、次に示す式(2)から導かれたもので、
式(2)は、JIS規格A5403の石綿スレート中の
吸水率試験による吸水率から材料中の水が侵入した空隙
の割合を求め、この浸水空隙割合を材料中の空隙割合か
ら引いて、水が侵入しない空隙の割合を求め、この非浸
水空隙割合を全体の空隙割合で除したものを、予測独立
気泡率として求めるものである。したがって、この予測
独立気泡率は、凍結融解抵抗の大事なファクターである
自由水量と自由水凍結時の膨張圧を緩和する力とを同時
に示す指標となるものである。なお、上記の式(1)で
は、水の比重を1としてある。Here, the predicted closed cell rate shown in the above equation (1) is derived from the following equation (2),
The formula (2) is the water absorption rate in the asbestos slate of JIS standard A5403, and the water absorption rate in the material is calculated from the water absorption rate. The ratio of voids that do not penetrate is calculated, and this non-water-immersed void ratio is divided by the total void ratio to obtain the predicted closed cell ratio. Therefore, this predicted closed cell rate is an index that simultaneously indicates the amount of free water, which is an important factor of freeze-thaw resistance, and the force that relieves the expansion pressure when free water is frozen. In the above formula (1), the specific gravity of water is 1.
【0014】[0014]
【数3】 (Equation 3)
【0015】さらに、平均線表面粗さが10μmより大
きい場合、表面の平滑性に劣り、見た目が悪く、塗料塗
布に悪影響が出る。Further, when the average line surface roughness is larger than 10 μm, the smoothness of the surface is inferior, the appearance is bad, and the coating material coating is adversely affected.
【0016】上述した本発明の軽量珪酸カルシウム成形
体は、次の様な製造方法により作成することができる。
すなわち、ポルトランドセメントを15〜40重量%、
消石灰を10〜20重量%、珪藻土を10〜35重量
%、活性シリカ及びアルミニウムを多量に含みポゾラン
作用を持つ粒径が200μm以下の高強度中空閉鎖型バ
ルーンを15〜55重量%を主原料とし、さらにCaO
/SiO2 のモル比を0.45〜0.80に調製した原
料を、湿式混合し、得られた原料スラリーを成形、この
成形体をオートクレーブにおいて水熱合成することで、
得られる。(請求項2) また、上述した製造方法において、原料にパルプを5〜
7重量%添加すること(請求項3)、原料に耐アルカリ
性の補強繊維を添加すること(請求項4)ができる。The above-mentioned lightweight calcium silicate compact of the present invention can be produced by the following manufacturing method.
That is, 15 to 40% by weight of Portland cement,
The main raw material is 10 to 20% by weight of slaked lime, 10 to 35% by weight of diatomaceous earth, 15 to 55% by weight of a high-strength hollow closed type balloon having a pozzolanic action and having a particle size of 200 μm or less, which contains a large amount of activated silica and aluminum. , More CaO
By mixing the raw materials prepared by adjusting the molar ratio of / SiO 2 to 0.45 to 0.80 by wet mixing, forming the obtained raw material slurry, and hydrothermally synthesizing this formed body in an autoclave,
can get. (Claim 2) Moreover, in the above-mentioned manufacturing method, 5 to 5 pulp is used as a raw material.
It is possible to add 7% by weight (claim 3) or to add alkali resistant reinforcing fibers to the raw material (claim 4).
【0017】上述した製造方法において、パルプ、補強
繊維等を除く原料のCaO/SiO2 のモル比は0.4
5〜0.80が望まい。この範囲を外れると、マトリッ
クッス強度が低下するため、耐凍害性、曲げ強度、層間
強度は低下する。In the above-mentioned manufacturing method, the CaO / SiO 2 molar ratio of the raw materials excluding pulp, reinforcing fibers, etc. is 0.4.
5 to 0.80 is desirable. If it is out of this range, the matrix strength is lowered, so that the frost damage resistance, the bending strength and the interlayer strength are lowered.
【0018】本発明の軽量珪酸カルシウム成形体の製造
方法においては、珪酸質源として、珪藻土と、高強度中
空閉鎖型バルーンとを主として用いる。このうち高強度
中空閉鎖型バルーンには、活性シリカ及びアルミニウム
を多量に含んでいてポゾラン作用を持つものを使用す
る。たとえば、化学成分において、SiO2 を50%以
上、Al2 O3 を30%以上含むものを用いる。する
と、水熱合成中にそれらが溶出し、成形体中に生成され
るトバモライトを容易に安定化させる。また、このバル
ーンには、成形体中に独立した気泡(連続気泡ではな
い)を形成させる作用を求めているため、水熱合成中の
初期に全てが溶出してしまうものは適当でなく、さらに
混合や成形時の圧力に十分耐える強度持ったものである
ことが必要である。In the method for producing a lightweight calcium silicate compact of the present invention, diatomaceous earth and a high-strength hollow closed balloon are mainly used as the siliceous source. Among them, the high-strength hollow closed balloon used is one containing a large amount of activated silica and aluminum and having a pozzolanic action. For example, as the chemical components, those containing 50% or more of SiO 2 and 30% or more of Al 2 O 3 are used. Then, they are eluted during the hydrothermal synthesis and easily stabilize the tobermorite formed in the molded body. In addition, since this balloon is required to have an action of forming independent bubbles (not continuous bubbles) in the molded body, it is not appropriate that all are eluted during the initial stage of hydrothermal synthesis. It must have sufficient strength to withstand the pressure during mixing and molding.
【0019】この高強度中空閉鎖型バルーンの使用には
耐凍害性を向上させる目的がある。凍害を起こす要因に
は前述の通り、とくに自由水の増大(吸水率の増大)、
マトリックス強度の不足、さらには自由水凍結時の膨張
圧を緩衝させるための独立した気泡量の不足等が材料面
より上げられる。このバルーンを用いることにより前述
の問題は改善できる。バルーン自身は中空閉鎖型のため
吸水率は下がり、また独立した気泡量は増え、またポゾ
ラン反応により安定なトバモライトが生成されるため、
マトリックス強度は増大する。このため、対凍害性には
非常に貢献できる。また、この時生成されるトバモライ
ト(Si→Al置換量が多い)は、結晶が大きく、材料
自身の比表面積を小さくする働きもこのバルーンには期
待できる。このため、吸水時の寸法変化量も良好な結果
を示す。The use of this high-strength hollow closed-type balloon has the purpose of improving frost resistance. As mentioned above, the factors that cause frost damage are increased free water (increased water absorption),
Insufficient matrix strength, and further, insufficient amount of independent bubbles for buffering expansion pressure during freezing of water, etc. are raised from the material standpoint. The use of this balloon can alleviate the above-mentioned problems. Since the balloon itself is a hollow closed type, the water absorption rate decreases, the number of independent bubbles increases, and the pozzolanic reaction produces stable tobermorite,
The matrix strength increases. Therefore, it can greatly contribute to frost damage resistance. In addition, the tobermorite (which has a large amount of Si → Al substitution) generated at this time has large crystals, and the action of reducing the specific surface area of the material itself can also be expected for this balloon. For this reason, the amount of dimensional change during water absorption also shows good results.
【0020】ここで用いる高強度中空閉鎖型バルーンと
しては、活性シリカ及びアルミニウムを多量に含んでポ
ゾラン反応を持つことが必要であるが、これを満足する
ものとしては、フライアッシュバルーンがある。なかで
も、セラミック質のフライアッシュバルーン、たとえ
ば、秩父小野田(株)の商品名「マイクロセルズ」は、
とくに高強度で、Al2 O3 の含有量も高いため、非常
に望ましい。The high-strength hollow closed balloon used here is required to contain a large amount of activated silica and aluminum to have a pozzolanic reaction, and a fly ash balloon is one that satisfies this. Among them, ceramic fly ash balloons, such as Chichibu Onoda Co., Ltd.'s product name "Microcells",
It is particularly desirable because it has a high strength and a high Al 2 O 3 content.
【0021】この「マイクロセルズ」は、オーストラリ
ア産フライアッシュバルーンで、灰分が約30%以上の
石炭を燃料とする石炭火力発電所で発生するフライアッ
シュから分離されるもので、化学成分は、SiO2 が6
0%弱、Al2 O3 が38%強で、この他に、Fe2 O
3 が0.4%程度、CaOが0.2%程度、TiO2が
1%程度で、相組成はムライトが約55%、ガラスが約
45%で、セラミック質ということができる。なお、こ
れとは別に、イギリス、アメリカ、中国等のフライアッ
シュバルーンもあり、これも使用することができるが、
上述したオーストラリア産の「マイクロセルズ」とは、
化学成分が異なり、強度も低い。たとえば、イギリス産
のフライアッシュバルーンは、化学成分は、SiO2 、
Al2 O3 の他に、Fe2 O3が比較的に多く、Na2
OやKa2 Oも含まれており、強度も小さい。The "microcells" are fly ash balloons produced in Australia, which are separated from fly ash generated in a coal-fired power plant that uses coal with an ash content of about 30% or more. 2 is 6
A little less than 0%, Al 2 O 3 is a little over 38%, and in addition to this, Fe 2 O 3
3 is about 0.4%, CaO is about 0.2%, TiO 2 is about 1%, and the phase composition is about 55% for mullite and about 45% for glass, and it can be said that it is a ceramic material. In addition to this, there are fly ash balloons from the United Kingdom, the United States, China, etc., which can also be used,
The Australian "microcells" mentioned above,
Different chemical composition and low strength. For example, British fly ash balloons have a chemical composition of SiO 2 ,
Fe 2 O 3 is relatively large in addition to Al 2 O 3 , and Na 2
It also contains O and Ka 2 O, and has low strength.
【0022】この高強度中空閉鎖型バルーンの使用量
は、パルプ、補強繊維等を除く原料の15〜55重量%
が望ましい。15重量%以下では独立気泡量が少なく
(予測独立気泡率が15%以下になってしまう)、耐凍
害性が不十分である。また、55重量%以上では組成
上、原料のCaO/SiO2 のモル比0.45以上の確
保が難しい。The amount of this high-strength hollow closed balloon used is 15 to 55% by weight of the raw material excluding pulp, reinforcing fibers and the like.
Is desirable. If it is 15% by weight or less, the amount of closed cells is small (the predicted closed cell rate becomes 15% or less), and the frost damage resistance is insufficient. Further, when the content is 55% by weight or more, it is difficult to secure a CaO / SiO 2 molar ratio of 0.45 or more as a raw material in view of the composition.
【0023】珪藻土の使用は次の作用を目的とする。上
述した高強度中空閉鎖型バルーンは、ガラス質の物が多
く、水熱合成時のSi溶出速度が遅い。さらに、Al2
O3の存在により、SiO2 含有量が比較的に少なくな
っていることから、珪酸質をバルーンだけに頼ると、珪
酸質が絶対的に不足してしまう。この不足分を珪藻土か
らのSi溶出量で補い、遊離石灰を残存させずに水熱合
成を行わせることによって、基材の緻密度を向上させる
ことができる。つまり最終製品における仕上げの平滑度
を向上させることができる。The use of diatomaceous earth has the following effects. The high-strength hollow closed-type balloon described above has many glassy substances and has a low Si elution rate during hydrothermal synthesis. In addition, Al 2
Since the content of SiO 2 is relatively low due to the presence of O 3 , if the silica is relied solely on the balloon, the silica will be absolutely insufficient. By supplementing this deficiency with the amount of Si eluted from diatomaceous earth and performing hydrothermal synthesis without leaving free lime, the compactness of the base material can be improved. That is, the smoothness of the finish in the final product can be improved.
【0024】また、珪藻土は吸水性を有するため、原料
スラリーの成形時に成形体の保形性を向上させることが
できる。 この珪藻土の使用配合量は、パルプ、補強繊
維等を除く原料の10〜35重量%が望ましい。35重
量%より多い使用量では、過剰の珪酸カルシウム鉱物
(トバモライト)を生成させてしまうことにより、最終
製品が硬くなり、加工性が劣化し、曲げ強度も低下す
る。逆に10重量%未満の場合は、成形時の圧力が極端
に大きくなり、保形性の確保も難しい。Further, since diatomaceous earth has water absorbability, it is possible to improve the shape-retaining property of the formed body when forming the raw material slurry. The amount of diatomaceous earth used is preferably 10 to 35% by weight of the raw materials excluding pulp and reinforcing fibers. If the amount used is more than 35% by weight, an excessive amount of calcium silicate mineral (tobermorite) is produced, so that the final product becomes hard, the workability deteriorates, and the bending strength also decreases. On the other hand, if it is less than 10% by weight, the pressure during molding becomes extremely large, and it is difficult to secure the shape retention.
【0025】なお、本発明の製造方法においては、珪酸
質源として、珪藻土と、強度中空閉鎖型バルーンとを主
として用いるが、製品に影響のない範囲で、他の珪酸質
源、たとえば、フライアッシュ、珪砂、珪石等を併用す
ることができる。In the production method of the present invention, diatomaceous earth and a strong hollow closed type balloon are mainly used as the siliceous source, but other siliceous sources such as fly ash can be used as long as they do not affect the product. , Silica sand, silica stone, etc. can be used together.
【0026】本発明の製造方法では、カルシウム源とし
て、ポルトランドセメント、消石灰を主として使用す
る。In the production method of the present invention, Portland cement and slaked lime are mainly used as the calcium source.
【0027】ポルトランドセメントの使用目的はつぎの
とおりである。本発明の製造方法においては、原料スラ
リーの成形後、24時間以上室内において成形体を放置
した後、オートクレーブにおいて水熱合成することが望
ましい。成形後直ぐに成形体を水熱合成すると、成形体
が膨張してしまい、成形層の間でクラック等が発生し、
最終製品の緻密さを失ってしまう。このため、成形後、
24時間以上室内において放置することにより、ある程
度合成を行い、成形体の強度を上げておく必要がある。
この合成を行うためポルトランドセメントが必要であ
る。The purpose of using Portland cement is as follows. In the production method of the present invention, it is preferable that after forming the raw material slurry, the formed body is allowed to stand in a room for 24 hours or more and then hydrothermally synthesized in an autoclave. When the molded body is hydrothermally synthesized immediately after molding, the molded body expands and cracks occur between the molded layers,
You lose the precision of the final product. Therefore, after molding,
It is necessary to raise the strength of the molded body by performing the synthesis to some extent by leaving it in the room for 24 hours or more.
Portland cement is required for this synthesis.
【0028】このことから、セメントの使用配合量は、
パルプ、補強繊維等を除く原料の15〜40重量%が望
ましい。15重量%未満ではオートクレーブにおける成
形体の強度が不十分であり、40重量%より多いと組成
上、CaO/SiO2 のモル比0.80以下の確保が難
しい。From this, the amount of cement used is
15-40% by weight of the raw material excluding pulp, reinforcing fibers, etc. is desirable. If it is less than 15% by weight, the strength of the molded article in the autoclave is insufficient, and if it is more than 40% by weight, it is difficult to secure a CaO / SiO 2 molar ratio of 0.80 or less due to its composition.
【0029】消石灰の作用は、ポルトランドセメントよ
りのカルシウム源の不足を補い、ポゾラン反応を促進さ
せるものである。使用量としては、パルプ、補強繊維等
を除く原料の10〜20重量%が望ましい。10重量%
未満ではカルシウム源が不足し、CaO/SiO2 のモ
ル比0.45以下の確保が難しく、またオートクレーブ
養生前の生板の強度発現性や製品の緻密さも劣化する。
また、20重量%より多いとセメントの使用量が減り、
生板の強度が小さい。The action of slaked lime supplements the lack of calcium source than Portland cement and promotes the pozzolanic reaction. The amount used is preferably 10 to 20% by weight of the raw materials excluding pulp, reinforcing fibers and the like. 10% by weight
If the amount is less than the above, the calcium source will be insufficient, it will be difficult to secure a CaO / SiO 2 molar ratio of 0.45 or less, and the strength development of the green plate before curing in the autoclave and the compactness of the product will deteriorate.
If it is more than 20% by weight, the amount of cement used decreases,
The strength of the raw plate is small.
【0030】なお、本発明の製造方法においては、カル
シウム源として、ポルトランドセメント、消石灰を主と
して用いるが、製品に影響のない範囲で、他のカルシウ
ム質源、たとえば、スラグ等を併用することができる。In the production method of the present invention, although Portland cement and slaked lime are mainly used as the calcium source, other calcium-based sources such as slag can be used in combination as long as it does not affect the product. .
【0031】また、原料に配合する補強繊維としては、
アルカリに対し強いものであれば、いかなる繊維も使用
することができる。例えば、耐アリカリガラス繊維、カ
ーボン繊維、ロックウール繊維等の無機繊維、アクリル
繊維、ポリプロピレン繊維等の有機繊維が使用できる。
また、パルプは原料の湿式混合中におけるバルーンの浮
遊防止に寄与するので、使用が望ましく、このパルプの
使用量は5%から7%が望ましい。5%未満では加工性
が悪化し、7%より多いと不燃性が低下する。As the reinforcing fiber to be mixed with the raw material,
Any fiber that is strong against alkali can be used. For example, inorganic fibers such as alkali-resistant glass fiber, carbon fiber and rock wool fiber, and organic fibers such as acrylic fiber and polypropylene fiber can be used.
In addition, since pulp contributes to prevent floating of balloons during wet mixing of raw materials, it is desirable to use the pulp, and the amount of this pulp used is desirably 5% to 7%. If it is less than 5%, the workability is deteriorated, and if it is more than 7%, the incombustibility is lowered.
【0032】また、この種の珪酸カルシウム成形体製造
の常法にしたがって、各種の混和材料、添加剤、たとえ
ば、増粘剤、消泡剤等を配合することができる。たとえ
ば、増粘剤は、原料スラリーの材料分離を防ぐ目的で広
く用いられているが、この増粘剤には一般的なものが使
用でき、たとえば、メチルセルロース、ポリエチレンオ
キサイト、ヒドロキシエチルエルセルロース、カルボキ
シメチルセルロース、ポリアクリル酸ナトリウム等があ
げられる。In addition, various admixture materials and additives such as thickeners and defoaming agents can be blended according to a conventional method for producing this type of calcium silicate compact. For example, a thickener is widely used for the purpose of preventing the material separation of the raw material slurry, but a common thickener can be used, for example, methyl cellulose, polyethylene oxide, hydroxyethyl ell cellulose, Examples include carboxymethyl cellulose and sodium polyacrylate.
【0033】上述したような原料から原料スラリーを作
成し、さらに必要に応じて、パルプや補強繊維を加えた
上で、原料スラリーを成形し、成形体をオートクレーブ
により養生することにより軽量珪酸カルシウム成形体を
得ることができる。なお、上述した方法により製造した
軽量珪酸カルシウム成形体は、原料にアルミニウムニウ
ムを含有しているため、安定鉱物であるトバモライトを
マトリックスとする。A raw material slurry is prepared from the above-mentioned raw materials, and if necessary, pulp and reinforcing fibers are added thereto, the raw material slurry is molded, and the molded body is aged by an autoclave to form a lightweight calcium silicate molding. You can get the body. Since the lightweight calcium silicate compact manufactured by the above-mentioned method contains aluminumnium as a raw material, tobermorite, which is a stable mineral, is used as a matrix.
【0034】本発明の軽量珪酸カルシウム成形体は従来
の珪酸カルシウム成形体(例えば特開平4−30504
1号に示されている珪酸カルシウム板)と比較し、軽量
でありながら耐凍害性に優れ、曲げ強度などの強度面も
同等以上であり、加工性(例えば切削加工、釘打ち、ネ
ジ打ち)にも優れている。The lightweight calcium silicate compact of the present invention is a conventional calcium silicate compact (for example, JP-A-4-30504).
Compared with the calcium silicate plate shown in No. 1), it is lighter in weight, yet has excellent frost damage resistance, and has the same or better strength in terms of bending strength, etc., and has workability (eg cutting, nailing, screwing). Is also excellent.
【0035】[0035]
【実施例】次に実施例を挙げてさらに詳細な説明を述べ
るが、本発明は以下に示す実施例に何ら制約を受けるも
のではない。まず、パルプ固形濃度3%のスラリーをパ
ルパーにおいて作成する。このスラリーに、表1に示す
実施例1〜7の配合割合及び表2に示す比較例1〜8の
配合割合となるように、ポルトランドセメント、 消石
灰、珪藻土、珪石、高強度中空閉鎖型バルーン(マイク
ロセルズ)、パーライトを加えて、ミキサーで混合した
後、この原料スラリーを自由粉砕機に通し、さらに、オ
ムニミキサーにおいてこの原料スラリーにガラス繊維を
混合する。EXAMPLES Next, more detailed description will be given with reference to examples, but the present invention is not limited to the examples shown below. First, a slurry having a pulp solid concentration of 3% is prepared in a pulper. In this slurry, Portland cement, slaked lime, diatomaceous earth, silica stone, high-strength hollow closed-type balloon (with a blending ratio of Examples 1 to 7 shown in Table 1 and a blending ratio of Comparative Examples 1 to 8 shown in Table 2 ( Microcells) and perlite are added and mixed with a mixer, and then the raw material slurry is passed through a free pulverizer, and further, glass fibers are mixed with the raw material slurry in an omni mixer.
【0036】そして、この原料スラリーに対し、その固
形分に対して0.4重量部のメチルセルロースを添加
し、所定のプレス圧力で脱水プレス成形し、成形体を1
20時間室内に放置した後、成形体をオートクレーブに
より養生(180℃、10気圧、12時間)し、この
後、105℃で24時間乾燥し、板状の珪酸カルシウム
成形体を得た。Then, 0.4 parts by weight of methyl cellulose was added to the raw material slurry with respect to its solid content, and dehydration press molding was carried out at a predetermined pressing pressure to obtain a molded body.
After being left in the room for 20 hours, the molded body was cured by an autoclave (180 ° C., 10 atmospheric pressure, 12 hours) and then dried at 105 ° C. for 24 hours to obtain a plate-shaped calcium silicate molded body.
【0037】[0037]
【表1】 [Table 1]
【0038】[0038]
【表2】 [Table 2]
【0039】なお、ここで用いた原料は次の通りであ
る。 ポルトランドセメント 秩父小野田(株) 普通ボルトランドセメント 消石灰 古手川産業(株) 高強度中空閉鎖型バルーン 秩父小野田(株) マイクロセルズ(SLG) パーライト フヨーライト(株) FL1号 珪藻土 白山工業(株) ラジオライトSPF 珪石 瀬戸窯業(株) トヤネ珪石(63μm以下) メチルセルロース 信越化学工業(株) ハイメトローズ 耐アルカリガラス繊維 日本電気硝子(株) 繊維長13mm,11μ パルプ カナダ産 LBKPThe raw materials used here are as follows. Portland Cement Chichibu Onoda Co., Ltd. Ordinary Boltland Cement Slaked lime Kotegawa Sangyo Co., Ltd. High-strength hollow closed balloon Chichibu Onoda Co., Ltd. Microcells (SLG) Perlite Fuyolite Co., Ltd. FL1 Diatomite Shirayama Industry Co., Ltd. Radiolite SPF Silica stone Seto Ceramics Co., Ltd. Toane silica stone (63 μm or less) Methyl cellulose Shin-Etsu Chemical Co., Ltd. High-Metroze Alkali-resistant glass fiber Nippon Electric Glass Co., Ltd. Fiber length 13 mm, 11 μ Pulp Canadian LBKP
【0040】そして、製品及びオートクレーブ前の生板
に対し、次のような試験及び評価を行った。結果を表1
及び表2に示す。 (1)吸水時寸法安定性:JIS A5403 石綿ス
レート 吸水による長さ変化率試験 (2)釘打ち試験:板の小口より1cmの部分に2cm
おきに直径2.3mm、長さ50mmを7本打ち、板の
状態を次の様に評価した 評価 評価基準 優 1本の釘も曲がらず、板も割れることがない。 良 1本の釘も曲がらず、1〜3カ所板が割れる。 可 釘は多少曲がり、板も1〜3カ所板が割れる。 不可 釘は硬くて打てない。もしくは4カ所以上板が割れる。 (3)平均線表面粗さ:ルーターにより表面を平滑に削
ったあとの面を、JISB0601 表面粗さ規格より
求める。 (4)凍結融解試験:JIS A1435 建築用外装
材料の耐凍結融解試験方法。評価は外観観察とした。 (5)表面ゴム硬度(生板):JIS 6301 加硫ゴム物理試験 (6) 〃 (製品):ASTM D2240 TEST METHOD FOR RUBBER PROPERTY DUROMETAER HARDNESSThen, the following tests and evaluations were performed on the product and the raw plate before autoclaving. The results are shown in Table 1.
And shown in Table 2. (1) Dimensional stability during water absorption: JIS A5403 Asbestos slate Length change rate test due to water absorption (2) Nailing test: 2 cm at 1 cm from the edge of the plate
Seven pieces of 2.3 mm in diameter and 50 mm in length were struck every other time, and the condition of the plate was evaluated as follows. Good One nail does not bend, and boards at 1 to 3 places crack. The nails bend a little, and the board also cracks at one to three places. Impossible nails are hard to hit. Or the board is broken at 4 or more places. (3) Average line surface roughness: The surface after the surface has been smoothed by a router is obtained from JISB0601 surface roughness standard. (4) Freeze-thaw test: JIS A1435 Freeze-thaw resistance test method for building exterior materials. The appearance was observed. (5) Surface rubber hardness (green board): JIS 6301 Vulcanized rubber physical test (6) 〃 (Product): ASTM D2240 TEST METHOD FOR RUBBER PROPERTY DUROMETAER HARDNESS
【0041】実施例1から3については、主にかさ比重
における差異を示したものである。かさ比重が高いもの
は、マトリックス強度(曲げ強度、層間強度)が高く、
吸水率が低くなることから、多少、予測独立気泡率が低
くても、耐凍害性は高い。また、かさ比重が低くなるに
つれ、耐凍害性は劣化してくる。しかし、かさ比重が大
きいものは、釘打ち試験においては、材料が硬くなるた
め劣る。なお、ここで、予測独立気泡率の算出を実施例
3を例に具体的に説明する。上記の式(1)に次の値を
入れると、次の式(3)のように予測独立気泡率を算出
できる。 かさ比重=0.69g/cm3 真比重=2.5g/cm3 (ピクノメーター) 吸水率=78.2% (JIS 5403 吸水率試
験)Examples 1 to 3 mainly show the difference in bulk specific gravity. Those with high bulk specific gravity have high matrix strength (bending strength, interlayer strength),
Since the water absorption rate is low, the frost damage resistance is high even if the predicted closed air bubble ratio is somewhat low. Further, as the bulk specific gravity decreases, the frost damage resistance deteriorates. However, a material having a large bulk density is inferior in the nailing test because the material becomes hard. Here, the calculation of the predicted closed cell rate will be specifically described by taking the third embodiment as an example. By inserting the following value into the above equation (1), the predicted closed cell rate can be calculated as in the following equation (3). Bulk specific gravity = 0.69 g / cm 3 True specific gravity = 2.5 g / cm 3 (Pycnometer) Water absorption rate = 78.2% (JIS 5403 Water absorption rate test)
【0042】[0042]
【数4】 [Equation 4]
【0043】また、実施例3から7、及び比較例1から
4については、原料のCaO/SiO2 モル比、及び原
料中に占める珪藻土の量を比較したものである。CaO
/SiO2 モル比が高くなり過ぎると、同程度のかさ比
重で比較した場合、曲げ強度も低下することがわかる。
さらに、珪藻土の使用量の高いものは、釘打ち試験、耐
凍害性、吸水時寸法安定性が劣化することがわかる。ま
た、逆にCaO/SiO2 モル比が低く、珪藻土の使用
量が低いものは、緻密さに欠け、平均線表面粗さが大き
くなり、表面平滑性が劣ることがわかる。In addition, in Examples 3 to 7 and Comparative Examples 1 to 4, the CaO / SiO 2 molar ratio of the raw material and the amount of diatomaceous earth in the raw material were compared. CaO
It can be seen that when the / SiO 2 molar ratio becomes too high, the bending strength also decreases when compared with the same bulk specific gravity.
Further, it can be seen that, when the amount of diatomaceous earth used is high, the nailing test, frost damage resistance, and dimensional stability during water absorption deteriorate. On the contrary, when the CaO / SiO 2 molar ratio is low and the amount of diatomaceous earth used is low, the density is poor, the average line surface roughness is large, and the surface smoothness is poor.
【0044】比較例5、6はポルトランドセメントを全
く使用しなかった場合の例である。これは上述した実施
例及び他の比較例と製法がやや異なり、消石灰と珪藻土
の一部または全部に適量の水を加え、加熱してゲル化さ
せ、そのゲルスラリーの中に、珪石や残りの珪藻土また
はマイクロセルズ、さらにパルプ、補強繊維を加え、混
合の後、成形し、オートクレーブにより合成(180
℃、10気圧、3時間)し、乾燥して得られるものであ
る。現在市場にでているトバモライト系の人造木材は大
まかこの様な方法で作製される。Comparative Examples 5 and 6 are examples in which Portland cement was not used at all. This is a slightly different manufacturing method from the above-mentioned Examples and other comparative examples, adding an appropriate amount of water to a part or all of slaked lime and diatomaceous earth, heating and gelling, and in the gel slurry, silica stone and the remaining diatomaceous earth. Alternatively, microcells, pulp, and reinforcing fibers are added, mixed, molded, and synthesized by an autoclave (180
(° C., 10 atm, 3 hours) and dried. The tobermorite-based artificial wood currently on the market is roughly produced by such a method.
【0045】比較例5は、予測独立気泡率が殆ど0に近
いため、耐凍害性が殆どないことがわかる。比較例6は
独立気泡率が高いため耐凍害性は優れることが予想され
るが、ポゾラン反応があまり起こらないため、緻密さに
かけ、表面平滑性が劣ることがわかる。また、合成前の
生板強度が弱いため、水熱合成中に膨張し緻密さにもか
ける。このため、凍結融解試験おいて、最初の吸水で強
度が大幅に低下し、試験不能となった。In Comparative Example 5, since the predicted closed cell rate is almost 0, it can be seen that there is almost no frost damage resistance. Comparative Example 6 is expected to be excellent in frost damage resistance because of the high closed cell ratio, but it is understood that since pozzolanic reaction rarely occurs, it is inferior in surface smoothness due to compactness. In addition, since the strength of the raw plate before synthesis is weak, it expands during hydrothermal synthesis and becomes dense. For this reason, in the freeze-thaw test, the strength was significantly reduced by the first absorption of water, and the test was impossible.
【0046】[0046]
【発明の効果】本発明の軽量珪酸カルシウム成形体は、
建築用内外装材等に用いるのに適した特性、すなわち、
軽量でありながら、不燃性、耐凍害性、表面平滑性に優
れた材料である。The lightweight calcium silicate compact of the present invention comprises:
Properties suitable for use in interior and exterior materials for construction, that is,
It is a material that is lightweight, yet has excellent nonflammability, frost damage resistance, and surface smoothness.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/18 14:44 14:38 16:06) ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area // (C04B 28/18 14:44 14:38 16:06)
Claims (4)
(1)に示す予測独立気泡率が15%以上、 【数1】 層間強度が5kgf/cm2 以上で、なおかつJIS規
格B0601による平均線表面粗さが10μm以下であ
ることを特徴とする軽量珪酸カルシウム成形体。1. A bulk specific gravity of 0.4 to 0.9, a predicted closed cell ratio shown in the following formula (1) of 15% or more, and A lightweight calcium silicate compact having an interlaminar strength of 5 kgf / cm 2 or more and an average line surface roughness of 10 μm or less according to JIS B0601.
%、消石灰を10〜20重量%、珪藻土を10〜35重
量%、活性シリカ及びアルミニウムを多量に含みポゾラ
ン作用を持つ粒径200μm以下の高強度中空閉鎖型バ
ルーンを15〜55重量%を主原料とし、かつCaO/
SiO2 のモル比を0.45〜0.80に調製した原料
を、湿式混合し、得られた原料スラリーを成形し、この
成形体をオートクレーブにおいて水熱合成することを特
徴とする軽量珪酸カルシウム成形体の製造方法。2. A high-strength hollow having a particle size of not more than 200 μm and having a pozzolanic effect, containing 15 to 40% by weight of Portland cement, 10 to 20% by weight of slaked lime, 10 to 35% by weight of diatomaceous earth, and containing a large amount of activated silica and aluminum. Closed type balloons are mainly composed of 15-55% by weight and CaO /
A lightweight calcium silicate characterized by wet-mixing raw materials adjusted to have a SiO 2 molar ratio of 0.45 to 0.80, shaping the resulting raw material slurry, and hydrothermally synthesizing this shaped body in an autoclave. Method for manufacturing molded body.
とを特徴とする請求項2に記載の軽量珪酸カルシウム成
形体の製造方法。3. The method for producing a lightweight calcium silicate compact according to claim 2, wherein 5 to 7% by weight of pulp is added to the raw material.
ス繊維、カーボン繊維等の無機繊維及びポリプロピレン
繊維、アクリル繊維等の耐アルカリ性を有する有機繊維
を少なくとも1種類添加することを特徴とする請求項1
または2に記載の軽量珪酸カルシウム成形体の製造方
法。4. At least one kind of inorganic fiber such as alkali-resistant glass fiber and carbon fiber and organic fiber having alkali resistance such as polypropylene fiber and acrylic fiber are added to the raw material as reinforcing fiber.
Alternatively, the method for producing a lightweight calcium silicate compact according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4775195A JPH08217561A (en) | 1995-02-13 | 1995-02-13 | Light-weight calcium silicate formed body and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4775195A JPH08217561A (en) | 1995-02-13 | 1995-02-13 | Light-weight calcium silicate formed body and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08217561A true JPH08217561A (en) | 1996-08-27 |
Family
ID=12784069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4775195A Pending JPH08217561A (en) | 1995-02-13 | 1995-02-13 | Light-weight calcium silicate formed body and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08217561A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000021901A1 (en) * | 1998-10-14 | 2000-04-20 | James Hardie Research Pty Limited | Cement formulation |
WO2001068547A1 (en) * | 2000-03-14 | 2001-09-20 | James Hardie Research Pty Limited | Fiber cement building materials with low density additives |
JP2001270756A (en) * | 2000-03-29 | 2001-10-02 | Taiheiyo Cement Corp | Cured material |
JP2005262728A (en) * | 2004-03-19 | 2005-09-29 | Misawa Homes Co Ltd | Concrete member and manufacturing apparatus therefor |
JP2007238396A (en) * | 2006-03-10 | 2007-09-20 | Nichiha Corp | Lightweight inorganic plate and method for producing the same |
JP2007238397A (en) * | 2006-03-10 | 2007-09-20 | Nichiha Corp | Lightweight inorganic plate like body and method of manufacturing the same |
EP1829838A3 (en) * | 2000-03-14 | 2007-11-07 | James Hardie International Finance B.V. | Fiber cement building materials with low density additives |
US7524555B2 (en) | 1999-11-19 | 2009-04-28 | James Hardie International Finance B.V. | Pre-finished and durable building material |
AU2006241323B2 (en) * | 2000-03-14 | 2010-08-26 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
JP2012091945A (en) * | 2010-10-25 | 2012-05-17 | Misawa Homes Co Ltd | Calcium silicate hydrate-based building material |
JP2013053043A (en) * | 2011-09-02 | 2013-03-21 | Misawa Homes Co Ltd | Calcium silicate hydrate-based building material |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
CN108318395A (en) * | 2017-12-12 | 2018-07-24 | 赤峰柴胡栏子黄金矿业有限公司 | A kind of cementing paste body filling body strength prediction method of tailings |
-
1995
- 1995-02-13 JP JP4775195A patent/JPH08217561A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000021901A1 (en) * | 1998-10-14 | 2000-04-20 | James Hardie Research Pty Limited | Cement formulation |
US7524555B2 (en) | 1999-11-19 | 2009-04-28 | James Hardie International Finance B.V. | Pre-finished and durable building material |
EP1829838A3 (en) * | 2000-03-14 | 2007-11-07 | James Hardie International Finance B.V. | Fiber cement building materials with low density additives |
JP5025872B2 (en) * | 2000-03-14 | 2012-09-12 | ジェイムズ ハーディー テクノロジー リミテッド | Fiber cement building materials with low density additives |
JP2003527288A (en) * | 2000-03-14 | 2003-09-16 | ジェイムズ ハーディー リサーチ ピーティーワイ.リミテッド | Fiber cement building materials with low density additives |
AU2006241323C1 (en) * | 2000-03-14 | 2017-01-12 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US6572697B2 (en) | 2000-03-14 | 2003-06-03 | James Hardie Research Pty Limited | Fiber cement building materials with low density additives |
KR100853920B1 (en) * | 2000-03-14 | 2008-08-25 | 제임스 하디 인터내셔널 파이낸스 비.브이. | Fiber Cement Building Materials with Low Density Additives |
WO2001068547A1 (en) * | 2000-03-14 | 2001-09-20 | James Hardie Research Pty Limited | Fiber cement building materials with low density additives |
AU2006241323B2 (en) * | 2000-03-14 | 2010-08-26 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
JP2001270756A (en) * | 2000-03-29 | 2001-10-02 | Taiheiyo Cement Corp | Cured material |
JP2005262728A (en) * | 2004-03-19 | 2005-09-29 | Misawa Homes Co Ltd | Concrete member and manufacturing apparatus therefor |
JP2007238397A (en) * | 2006-03-10 | 2007-09-20 | Nichiha Corp | Lightweight inorganic plate like body and method of manufacturing the same |
JP2007238396A (en) * | 2006-03-10 | 2007-09-20 | Nichiha Corp | Lightweight inorganic plate and method for producing the same |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
JP2012091945A (en) * | 2010-10-25 | 2012-05-17 | Misawa Homes Co Ltd | Calcium silicate hydrate-based building material |
JP2013053043A (en) * | 2011-09-02 | 2013-03-21 | Misawa Homes Co Ltd | Calcium silicate hydrate-based building material |
CN108318395A (en) * | 2017-12-12 | 2018-07-24 | 赤峰柴胡栏子黄金矿业有限公司 | A kind of cementing paste body filling body strength prediction method of tailings |
CN108318395B (en) * | 2017-12-12 | 2020-06-02 | 赤峰柴胡栏子黄金矿业有限公司 | Method for predicting strength of tailing cemented paste filling body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101780294B1 (en) | Lightweight aerated concrete panel having fireproof, improvement of indoor air quality and antibacterial effect | |
JP5025872B2 (en) | Fiber cement building materials with low density additives | |
EP2543652B1 (en) | Thermal insulator using closed cell expanded perlite | |
KR101146220B1 (en) | A high density fire resistive coating composition for ultra high strength concrete having finish function | |
KR101311700B1 (en) | Cement mortar composite having improved adiabatic capacity and durability, manufacturing method of panel and manufacturing method block using the composite | |
RU2012125995A (en) | EXTRUDED, FIBER REINFORCED CEMENT PRODUCTS WITH WOOD PROPERTIES AND ULTRA HIGH STRENGTH, AND METHODS FOR PRODUCING THEM | |
JP4320704B2 (en) | Lightweight inorganic molded body with excellent frost resistance and method for producing the same | |
WO2015095778A1 (en) | Improved fire core compositions and methods | |
US20150240163A1 (en) | Fire core compositions and methods | |
JP2002060264A (en) | Fiber reinforced cement molding and method for producing the same | |
WO2021178672A2 (en) | Heat and fire resistant geopolymer materials | |
JPH08217561A (en) | Light-weight calcium silicate formed body and its production | |
JP2004505876A (en) | Method for producing concrete or mortar using vegetable aggregate | |
JP3391544B2 (en) | Humidity control material and its manufacturing method | |
JP2012515128A (en) | Hydraulic cement assembly for heat insulation and heat reflection products | |
JP4453997B2 (en) | High strength hardened calcium silicate | |
JP5041521B2 (en) | High strength restoration material | |
KR20040100202A (en) | Concrete Composition for Lightweight and Sound Absorber and Method of Making The Same | |
CN113480331A (en) | Light heat-preservation silicon-oxygen-magnesium foam material and preparation method thereof | |
KR20110109286A (en) | Lightweight foamed concrete using raw materials for high strength concrete and its manufacturing method | |
EP4092006A1 (en) | Method for preparing a mineral foam, mineral foam and use thereof | |
KR101065495B1 (en) | Non-asbestos Extruded Cement Composites for Refractory | |
KR102134823B1 (en) | Eco-efficient ready mixed mortar with diverse additives and indoor precast panels | |
JP2004196602A (en) | Lightweight inorganic molding excellent in fire resistance and method for manufacturing the same | |
KR0181779B1 (en) | Method for producing a lightweight bubble acoustic-absorptive block of a rigid type |