[go: up one dir, main page]

JPH08216172A - Production of fiber reinforced thermoplastic resin foam - Google Patents

Production of fiber reinforced thermoplastic resin foam

Info

Publication number
JPH08216172A
JPH08216172A JP7026486A JP2648695A JPH08216172A JP H08216172 A JPH08216172 A JP H08216172A JP 7026486 A JP7026486 A JP 7026486A JP 2648695 A JP2648695 A JP 2648695A JP H08216172 A JPH08216172 A JP H08216172A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
foaming
reinforced thermoplastic
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7026486A
Other languages
Japanese (ja)
Inventor
Koichi Hirao
浩一 平尾
Hiroshi Sugawara
宏 菅原
Koji Yamaguchi
公二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7026486A priority Critical patent/JPH08216172A/en
Publication of JPH08216172A publication Critical patent/JPH08216172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE: To produce a fiber reinforced thermoplastic resin foam excellent in bending strength and enhanced in specific strength and specific elasticity by laminating a foamable resin compsn. to the inside of a cylindrical body shaped from a fiber reinforced thermoplastic resin composite sheet so that the staple fiber-containing surface of the sheet becomes inside and pressing the cylindrical body to the inner surface of a mold by the foaming pressure of the resin compsn. to shape the same so as to have a desired cross-sectional shape. CONSTITUTION: At first, a composite sheet 15 wherein staple fibers are applied to one surface of a fiber reinforced thermoplastic resin sheet is inserted in a mold 24 from the gap thereof so that the staple fiber-containing surface thereof becomes inside and continuously shaped into a cylindrical body from a U-shape while both end parts of the sheet are abutted without being overlapped with each other. A foamable resin compsn. is extruded from a single-screw extruder 23 at about 200 deg.C to be laminated to the inside of the cylindrical body and, at the same time, foaming is started and the temp. of the resin compsn. is held to about 200 deg.C by a heating mold 27 to complete foaming. Thereafter, the foamed one is cooled by a cooling mold 29 until the temp. of the outer layer thereof becomes about 60 deg.C to obtain a fiber reinforced thermoplastic resin foam 32 with a foaming magnification of about 3, 2 times having, for example, a square cross section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂発泡体か
らなる芯材層上に、繊維強化熱可塑性樹脂からなる表皮
層が設けられた、主として異形断面形状を有する繊維強
化熱可塑性樹脂発泡体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin foam mainly having a modified cross-sectional shape in which a core layer made of a thermoplastic resin foam is provided with a skin layer made of a fiber-reinforced thermoplastic resin. The present invention relates to a method for manufacturing a body.

【0002】[0002]

【従来の技術】長尺の異形断面形状を有する成形体であ
って、その内部に発泡層を有するものは、比強度及び比
弾性に優れた材料として、建材その他の分野において、
天然木材と同様又はその代替品として賞用されている。
かかる用途にあっては、比強度及び比弾性を高めるため
に、芯材層を熱可塑性樹脂発泡体で構成し、表皮層を繊
維強化熱可塑性樹脂で構成したものが用いられている。
2. Description of the Related Art A molded article having a long and irregular cross-sectional shape and having a foamed layer inside thereof is used as a material excellent in specific strength and specific elasticity in building materials and other fields.
It is used as well as natural wood or as a substitute.
In such applications, in order to increase the specific strength and the specific elasticity, the core material layer is made of a thermoplastic resin foam and the skin layer is made of a fiber reinforced thermoplastic resin.

【0003】例えば、特開平4─339635号公報に
は、機械的強度及び軽量性に優れた複合体を連続的に製
造するために、合成樹脂発泡体を連続的に一方向に移送
しつつその外面に熱硬化性樹脂を含浸させた連続繊維を
供給し、加熱して引抜成形する方法が提案されている。
For example, in Japanese Unexamined Patent Publication (Kokai) No. 4-339635, in order to continuously manufacture a composite having excellent mechanical strength and lightness, a synthetic resin foam is continuously transferred in one direction. A method has been proposed in which continuous fibers impregnated with a thermosetting resin are supplied to the outer surface, and the fibers are heated and pultruded.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法では、異形断面形状を有する成形体を形成するために
は、異形断面形状の合成樹脂発泡体を予め準備しておく
必要があるので工程が煩雑となり、又、引抜成形を行う
のに低粘度樹脂を用いる必要があるために、表皮層の厚
みむらや機械的強度に不均一な個所が発生し易く、且
つ、金型内部での変形や賦形が困難であるという問題点
がある。
However, in this method, in order to form a molded product having an irregular cross-sectional shape, it is necessary to prepare a synthetic resin foam having an irregular cross-sectional shape in advance, so the process is complicated. In addition, since it is necessary to use a low-viscosity resin for pultrusion, uneven thickness of the skin layer and non-uniform mechanical strength are likely to occur, and deformation and treatment inside the mold are likely to occur. There is a problem that the shape is difficult.

【0005】この点に鑑み、繊維強化熱可塑性樹脂を筒
状体に賦形したものを金型内に供給し、その中に発泡樹
脂を押し出し、その発泡圧によって、筒状体を金型内面
に押圧して筒状体を所望断面形状に賦形するとともに、
内部に発泡樹脂からなる芯材層を形成する繊維強化熱可
塑性樹脂発泡体の製造方法も考えられる。
In view of this point, a fiber-reinforced thermoplastic resin shaped into a cylindrical body is supplied into a mold, and the foamed resin is extruded into the mold, and the foaming pressure causes the cylindrical body to move to the inner surface of the mold. While pressing to shape the tubular body to the desired cross-sectional shape,
A method for producing a fiber-reinforced thermoplastic resin foam, in which a core material layer made of foamed resin is formed, is also conceivable.

【0006】しかし、この方法により得られた繊維強化
熱可塑性樹脂発泡体は、表皮層と芯材層の界面での融着
性が弱いという問題点があり、又、表皮層と芯材層の界
面での融着性を向上させるには、発泡樹脂の発泡倍率を
高くして発泡圧を高くする必要があるため、芯材層の発
泡倍率が高くなり、得られる繊維強化熱可塑性樹脂発泡
体の比強度、比弾性が小さくなってしまうという問題点
がある。
However, the fiber-reinforced thermoplastic resin foam obtained by this method has a problem that the fusion property at the interface between the skin layer and the core material layer is weak, and that the skin layer and the core material layer are In order to improve the fusion property at the interface, it is necessary to increase the foaming ratio of the foamed resin to increase the foaming pressure, so that the foaming ratio of the core layer becomes high, and the obtained fiber-reinforced thermoplastic resin foam There is a problem that the specific strength and the specific elasticity of are reduced.

【0007】本発明は、上記の如き従来の問題点を解消
し、曲げ強度に優れ、且つ比強度及び比弾性の高い繊維
強化熱可塑性樹脂発泡体の製造方法を提供することを目
的としてなされたものである。
The present invention has been made for the purpose of solving the above-mentioned conventional problems and providing a method for producing a fiber-reinforced thermoplastic resin foam having excellent bending strength, high specific strength and high specific elasticity. It is a thing.

【0008】[0008]

【課題を解決するための手段】本願の請求項1に記載の
発明(以下、本発明1という)は、繊維強化熱可塑性樹
脂シートの一面に短繊維を有する複合シートを、短繊維
を有する面が内側になるようにして筒状に賦形して筒状
体を形成する工程、その筒状体を金型内に供給し、その
筒状体の内部に、熱可塑性樹脂及び発泡剤を含有する発
泡性樹脂組成物を、発泡剤の発泡温度以上に加熱して発
泡させながら供給するか、又は供給した後に発泡剤の発
泡温度以上に加熱して、発泡樹脂の外層を短繊維に食い
込ませ破泡させつつ、その発泡圧により筒状体を金型内
面に押圧して筒状体を所望断面形状に賦形する工程を有
する繊維強化熱可塑性樹脂発泡体の製造方法である。
The invention according to claim 1 of the present application (hereinafter referred to as the present invention 1) is a composite sheet having short fibers on one surface of a fiber reinforced thermoplastic resin sheet, and a surface having short fibers. To form a tubular body by shaping the tubular body so that the inside is inside, the tubular body is supplied into a mold, and the inside of the tubular body contains a thermoplastic resin and a foaming agent. The foamable resin composition to be supplied is heated to a temperature not lower than the foaming agent and supplied while foaming, or after being supplied, it is heated to a temperature not lower than the foaming agent to cause the outer layer of the foamed resin to bite into the short fibers. A method for producing a fiber-reinforced thermoplastic resin foam, which comprises a step of shaping the tubular body into a desired cross-sectional shape by pressing the tubular body against the inner surface of the mold by the foaming pressure while breaking the bubbles.

【0009】本願の請求項2に記載の発明(以下、本発
明2という)は、繊維強化熱可塑性樹脂シートの一面に
短繊維を有する複合シートの短繊維を有する面に、熱可
塑性樹脂及び発泡剤を含有する発泡性樹脂組成物からな
る芯材形成層を積層して積層シートを芯材形成層が内側
になるようにして筒状に賦形して、積層筒状体を形成す
る工程、その積層筒状体を金型内に供給した後に発泡剤
の発泡温度以上に加熱して芯材形成層を発泡させ、発泡
樹脂の外層を短繊維に食い込ませ破泡させつつ、その発
泡圧により積層筒状体の表皮形成層を金型内面に押圧し
て筒状体を所望断面形状に賦形する工程を有する繊維強
化熱可塑性樹脂発泡体の製造方法である。
The invention according to claim 2 of the present application (hereinafter referred to as the present invention 2) is a composite sheet having a short fiber on one surface of a fiber reinforced thermoplastic resin sheet, a thermoplastic resin and a foam on a surface having a short fiber. A step of forming a laminated cylindrical body by laminating a core material forming layer made of a foamable resin composition containing an agent to form a laminated sheet into a tubular shape with the core material forming layer being on the inside, After supplying the laminated cylindrical body into the mold, it is heated to a temperature not lower than the foaming temperature of the foaming agent to foam the core material forming layer, and the outer layer of the foamed resin bites into the short fibers to break the foam, and the foaming pressure A method for producing a fiber-reinforced thermoplastic resin foam, comprising the step of pressing the skin forming layer of the laminated tubular body against the inner surface of the mold to shape the tubular body into a desired cross-sectional shape.

【0010】本発明1及び本発明2(以下、併せて本発
明という)において、繊維強化熱可塑性樹脂シートを構
成する熱可塑性樹脂としては、例えば、高化式フローテ
スターを用い、熱融着可能な温度において、外径1m
m、長さ100mmのノズルから150kg/cm2
条件にて押し出したときの見掛けの粘度が1×105
1×107 ポイズであるような、溶融温度領域(熱融着
可能な温度範囲)において、自重により流動しにくい樹
脂、更には繊維等との複合によって流動性を抑制できる
樹脂であれば特に限定されることなく、使用目的によっ
て適宜選択することができる。
In the present invention 1 and the present invention 2 (hereinafter collectively referred to as the present invention), as the thermoplastic resin constituting the fiber-reinforced thermoplastic resin sheet, for example, a Koka type flow tester can be used for heat fusion. Outside diameter 1m at various temperatures
m, the apparent viscosity when extruded from a 100 mm long nozzle under the condition of 150 kg / cm 2 is 1 × 10 5 to
It is particularly limited as long as it is a resin that does not easily flow due to its own weight in a melting temperature range (a temperature range in which heat fusion can be performed) such as 1 × 10 7 poise, and further that the fluidity can be suppressed by being combined with fibers or the like. It can be appropriately selected according to the purpose of use without being performed.

【0011】そのような熱可塑性樹脂としては、例え
ば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリアミド、ポ
リカーボネート、ポリフェニレンサルファイド、ポリス
ルホン、ポリエーテルエーテルケトン等が挙げられ、賦
形工程において、繊維強化熱可塑性樹脂シートが伸張さ
れるときには、伸張性に富んだ熱可塑性樹脂を用いるの
が好ましく、伸張性を向上させるためには加工処理を施
してもよい。これらの熱可塑性樹脂は、単独で使用され
てもよいし、併用されてもよい。
Examples of such a thermoplastic resin include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone and polyether ether ketone. In the step, when the fiber reinforced thermoplastic resin sheet is stretched, it is preferable to use a thermoplastic resin rich in extensibility, and a processing treatment may be performed to improve the extensibility. These thermoplastic resins may be used alone or in combination.

【0012】熱可塑性樹脂中には、必要に応じて、熱安
定剤、可塑剤、滑剤、酸化防止剤、紫外線吸収剤、顔
料、無機充填剤、補強短繊維等の添加剤、加工助剤、改
質剤等が添加されてもよい。
In the thermoplastic resin, if necessary, additives such as heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet absorbers, pigments, inorganic fillers, reinforcing short fibers, and processing aids, A modifier or the like may be added.

【0013】繊維強化熱可塑性樹脂シートを構成する補
強繊維としては、例えば、ガラス繊維、炭素繊維、金属
繊維、アラミド繊維やビニロン繊維等の合成繊維、天然
繊維などの補強繊維として使用可能な全ての繊維が使用
される。
The reinforcing fibers constituting the fiber-reinforced thermoplastic resin sheet include, for example, all the glass fibers, carbon fibers, metal fibers, synthetic fibers such as aramid fiber and vinylon fiber, and reinforcing fibers such as natural fibers. Fiber is used.

【0014】本発明において、繊維強化熱可塑性樹脂シ
ートは、特に限定されないが、例えば、以下のようにし
て製造される。一方向に補強繊維が引き揃えられた状態
にて配された繊維強化熱可塑性樹脂シートを得ようとす
るときには、含浸槽内に粉末状熱可塑性樹脂を入れ、槽
底に設けた多孔板から圧縮空気を噴出させることにより
浮遊状態としておいて、その中にガイドロールにより誘
導して繊維束の複数本を拡幅状態にて通過させて、熱可
塑性樹脂含浸繊維束となし、これを加熱ロール間を通過
させシート状となし、次いで冷却ロールを通過させる。
In the present invention, the fiber-reinforced thermoplastic resin sheet is not particularly limited, but is manufactured as follows, for example. When obtaining a fiber reinforced thermoplastic resin sheet in which reinforcing fibers are aligned in one direction, a powdered thermoplastic resin is put in the impregnation tank and compressed from a perforated plate provided at the bottom of the tank. It is made to float by blowing out air, and guided by guide rolls through it to allow a plurality of fiber bundles to pass through in a widened state to form a thermoplastic resin-impregnated fiber bundle, which is placed between heating rolls. It is passed to form a sheet, and then passed through a cooling roll.

【0015】尚、上記の如く、一方向に補強繊維が引き
揃えられた状態にて配された繊維強化熱可塑性樹脂シー
トを用いると、連続的に金型内を通過させて引き取る
際、芯材層と金型内面との摺動により発生する摩擦力に
よる切断を防止することができるので好ましい。
When the fiber-reinforced thermoplastic resin sheet, in which the reinforcing fibers are arranged in one direction as described above, is used, the core material is continuously passed through the mold and taken out. It is preferable because cutting due to frictional force generated by sliding between the layer and the inner surface of the mold can be prevented.

【0016】又、繊維がランダム状態にて配された繊維
強化熱可塑性樹脂シートを得ようとするときには、上記
の如くして得られた熱可塑性樹脂付着繊維束を、ロータ
リーカッターで裁断し、下無端ベルト上に落下させて集
積し、これを上下無端ベルト間で挟みみつつ加圧し加熱
炉内を通過させてシート状となし、次いで冷却ロールを
通過させる。
When it is desired to obtain a fiber-reinforced thermoplastic resin sheet in which fibers are randomly arranged, the thermoplastic resin-adhered fiber bundle obtained as described above is cut by a rotary cutter and The endless belt is dropped and accumulated, and is sandwiched between the upper and lower endless belts and pressed to pass through the heating furnace to form a sheet, and then passed through a cooling roll.

【0017】尚、繊維強化熱可塑性樹脂シートは単層で
あっても、複数積層されたものであってもよい。繊維強
化熱可塑性樹脂シートの厚みは、特に限定されないが、
薄すぎると、補強効果が充分でなく、逆に、厚すぎる
と、筒状体への賦形が困難となるので、0.1〜10m
mが好ましい。繊維強化熱可塑性樹脂シートの繊維量
は、少なすぎると充分な補強効果がなく、逆に、多すぎ
ると、熱可塑性樹脂による繊維同士の融着性が低下し、
却って補強効果が低下するので、5〜70容量%が好ま
しい。
The fiber-reinforced thermoplastic resin sheet may be a single layer or a plurality of laminated layers. The thickness of the fiber-reinforced thermoplastic resin sheet is not particularly limited,
If it is too thin, the reinforcing effect is not sufficient, and if it is too thick, it becomes difficult to shape it into a tubular body.
m is preferred. The fiber amount of the fiber-reinforced thermoplastic resin sheet does not have a sufficient reinforcing effect when it is too small, and conversely, when it is too large, the fusibility of fibers to each other due to the thermoplastic resin decreases,
On the contrary, the reinforcing effect decreases, so 5 to 70% by volume is preferable.

【0018】複合シートは、繊維強化熱可塑性樹脂シー
トの少なくとも一面に短繊維を有する。短繊維として
は、例えば、ガラス繊維、炭素繊維、金属繊維、アラミ
ド繊維やビニロン繊維等の合成繊維、天然繊維などの繊
維が使用される。短繊維の直径は、大きすぎると、発泡
樹脂が食い込みにくくなり、その結果、芯材層と表面層
との界面での融着性の低下につながり、逆に、小さすぎ
ると、発泡樹脂と繊維強化熱可塑性樹脂シートの界面
で、発泡樹脂の破泡によるスキン形成が困難となり、得
られる繊維強化熱可塑性樹脂発泡体の曲げ強度が低下
し、又芯材層と表面層との界面での融着性が低下するの
で、1μm〜1mmが好ましい。
The composite sheet has short fibers on at least one surface of the fiber-reinforced thermoplastic resin sheet. As the short fibers, for example, fibers such as glass fibers, carbon fibers, metal fibers, synthetic fibers such as aramid fibers and vinylon fibers, and natural fibers are used. If the diameter of the short fibers is too large, the foamed resin will not easily bite, resulting in a decrease in the fusion property at the interface between the core layer and the surface layer. Conversely, if it is too small, the diameter of the foamed resin and the fibers will decrease. At the interface of the reinforced thermoplastic resin sheet, it becomes difficult to form a skin due to foam breakage of the foamed resin, the bending strength of the resulting fiber-reinforced thermoplastic resin foam is reduced, and melting at the interface between the core layer and the surface layer occurs. Since the adherence decreases, 1 μm to 1 mm is preferable.

【0019】短繊維の長さとしては、長すぎても短かす
ぎても、短繊維が発泡樹脂に食い込むことによる界面融
着性の改善効果及び発泡樹脂の破泡によるスキン形成に
よる得られる繊維強化熱可塑性樹脂発泡体の曲げ強度の
向上効果があまり認められないので、100μm〜10
mmが好ましい。短繊維の量としては、多すぎると繊維
強化熱可塑性樹脂シートに含有しにくくなり、逆に、少
なすぎると芯材層と表面層の融着性低下、又は得られる
繊維強化熱可塑性樹脂発泡体の曲げ強度等が低下するの
で、複合シート中の5〜50容量%が好ましい。
As for the length of the short fiber, whether the length is too long or too short, the effect of improving the interfacial fusion property by the short fiber biting into the foamed resin and the fiber obtained by the skin formation by the foam breaking of the foamed resin are obtained. Since the effect of improving the bending strength of the reinforced thermoplastic resin foam is not recognized so much, 100 μm to 10 μm
mm is preferred. As the amount of short fibers, if it is too large, it becomes difficult to contain it in the fiber-reinforced thermoplastic resin sheet, conversely, if it is too small, the fusion property of the core material layer and the surface layer deteriorates, or the fiber-reinforced thermoplastic resin foam obtained. Since the flexural strength and the like of (3) are reduced, it is preferably 5 to 50% by volume in the composite sheet.

【0020】又、短繊維としては、前記短繊維の他に、
リサイクルやコストダウンの目的から、木質材料、木
粉、粉砕SMC等を利用することもできる。
As the short fibers, in addition to the above short fibers,
For the purpose of recycling and cost reduction, wood materials, wood powder, crushed SMC, etc. can also be used.

【0021】短繊維を含有させる方法は、特に限定され
ないが、例えば、上記の如き繊維強化熱可塑性樹脂シー
トの作成時に、熱可塑性樹脂付着繊維束を、加熱ロール
を通過させる直前に、短繊維を散布させた後、加熱ロー
ルを通過させる方法や、繊維強化熱可塑性樹脂シートの
成形後に、その上に短繊維を散布して再度加熱ロールを
通過させる方法等が挙げられる。
The method of incorporating the short fibers is not particularly limited, but, for example, when the fiber-reinforced thermoplastic resin sheet as described above is prepared, the short fibers are added immediately before passing the thermoplastic resin-adhered fiber bundle through a heating roll. Examples include a method of spraying and then passing through a heating roll, and a method of forming a fiber-reinforced thermoplastic resin sheet, then spraying short fibers thereon and passing through a heating roll again.

【0022】本発明において、発泡性熱可塑性樹脂は、
熱可塑性樹脂及び発泡剤を含有する。熱可塑性樹脂とし
ては、発泡可能なすべての熱可塑性樹脂が使用され、例
えば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエ
チレン、ポリプロピレン、ポリスチレン、ポリエミド、
ポリカーボネート、ポリフェニレンサルファイド、ポリ
スルホン、ポリエーテルエーテルケトン等が挙げられる
が、成形温度領域において、複合シートに使用される熱
可塑性樹脂に対して相対的に粘度の低い流動性のよい樹
脂を用いると、得られる発泡体の表皮層の厚みの均一性
を向上させることができるので好ましい。これらの熱可
塑性樹脂は、単独で使用されてもよいし、又、併用され
てもよい。
In the present invention, the expandable thermoplastic resin is
It contains a thermoplastic resin and a foaming agent. As the thermoplastic resin, all foamable thermoplastic resins are used, for example, polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyimide,
Polycarbonate, polyphenylene sulfide, polysulfone, polyether ether ketone, and the like can be mentioned. However, in the molding temperature range, when a resin having a low fluidity and a relatively low viscosity with respect to the thermoplastic resin used for the composite sheet is used, it is obtained. It is preferable since the uniformity of the thickness of the skin layer of the foam to be obtained can be improved. These thermoplastic resins may be used alone or in combination.

【0023】尚、発泡性熱可塑性樹脂を構成する熱可塑
性樹脂は、繊維強化熱可塑性樹脂シートを構成する熱可
塑性樹脂と同一である必要はなく、得られる繊維強化熱
可塑性樹脂発泡体の表皮層と芯材層の界面が容易に破断
しない融着状態となればよい。
The thermoplastic resin forming the expandable thermoplastic resin does not have to be the same as the thermoplastic resin forming the fiber reinforced thermoplastic resin sheet, and the skin layer of the resulting fiber reinforced thermoplastic resin foam is obtained. It suffices if the interface between the core material layer and the core material layer is in a fused state in which it is not easily broken.

【0024】又、発泡性樹脂組成物を構成する熱可塑性
樹脂は、発泡性を改善するために、架橋処理が施されて
もよい。架橋処理方法としては、特に限定されないが、
例えば、可視光線、紫外線、α線、β線、γ線、X線又
は電子線等の活性エネルギー線の照射により架橋する方
法、有機過酸化物を添加し分解し架橋する方法、架橋性
シラン変性熱可塑性樹脂を添加し、水処理することによ
り架橋する方法等が挙げられる。
Further, the thermoplastic resin constituting the expandable resin composition may be subjected to a crosslinking treatment in order to improve the expandability. The crosslinking treatment method is not particularly limited,
For example, a method of crosslinking by irradiation with an active energy ray such as visible light, ultraviolet rays, α rays, β rays, γ rays, X rays or electron rays, a method of adding an organic peroxide to decompose and crosslink, a crosslinkable silane modification A method in which a thermoplastic resin is added and water treatment is performed to crosslink, and the like can be mentioned.

【0025】電子線により架橋する熱可塑性樹脂として
は、例えば、ポリエチレン、ポリプロピレン、ポリスチ
レン等のα─水素を有する熱可塑性樹脂が挙げられ、
又、可視光線や紫外線により架橋する場合には、必要に
応じて光重合開始剤(光増感剤)が含有される。光重合
開始剤としては、例えば、ベンゾインアルキルエーテル
系、アセトフェノン系、ベンゾフェノン系、チオキサン
トン系等が挙げられる。
Examples of the thermoplastic resin which is crosslinked by electron beams include thermoplastic resins having α-hydrogen such as polyethylene, polypropylene and polystyrene.
Further, in the case of crosslinking with visible light or ultraviolet rays, a photopolymerization initiator (photosensitizer) is optionally contained. Examples of the photopolymerization initiator include benzoin alkyl ether type, acetophenone type, benzophenone type and thioxanthone type.

【0026】有機過酸化物としては、特に限定されない
が、例えば、イソブチルパーオキサイド、ジクミルパー
オキサイド、2,5─ジメチル─2,5─ジ(t─ブチ
ルパーオキシ)ヘキセン、1,3─ビス(t─ブチル─
オキシイソプロピル)ベンゼン、t─ブチルクミルパー
オキサイド、ジ─t─ブチルパーオキサイド等の比較的
分解温度の高いものが使用される。
The organic peroxide is not particularly limited, but for example, isobutyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexene, 1,3- Bis (t-butyl-
Those having a relatively high decomposition temperature such as (oxyisopropyl) benzene, t-butylcumyl peroxide and di-t-butylperoxide are used.

【0027】この際、有機過酸化物の添加によって、一
般に、熱可塑性樹脂そのものが開裂し易くなるが、所望
程度に架橋が進行しない場合には、適宜、トリアリルシ
アヌレート、ジアリルフタレート等の架橋助剤を添加し
てもよい。
At this time, the addition of the organic peroxide generally facilitates the cleavage of the thermoplastic resin itself, but if the crosslinking does not proceed to a desired degree, the crosslinking of triallyl cyanurate, diallyl phthalate, etc. is appropriately carried out. Auxiliary agents may be added.

【0028】熱可塑性樹脂中には、繊維径及び繊維長は
特に限定されないが、得られる繊維強化熱可塑性樹脂発
泡体の比強度、比弾性を更に高めるために、補強繊維を
含有させることができる。補強繊維としては、繊維強化
熱可塑性樹脂シートを構成する補強繊維の他、リサイク
ル、コストダウン等のために、木質材料、木粉、粉砕S
MC等が使用される。補強繊維の含有量としては、複合
シート中60容量%以下が好ましい。含有量が60容量
%を超えると、均一に発泡させることができなくなり、
かえって補強効果が小さくなる。
Although the fiber diameter and the fiber length are not particularly limited in the thermoplastic resin, reinforcing fibers can be contained in order to further increase the specific strength and specific elasticity of the fiber-reinforced thermoplastic resin foam obtained. . As the reinforcing fiber, in addition to the reinforcing fiber forming the fiber-reinforced thermoplastic resin sheet, wood material, wood powder, crushed S, etc. for recycling and cost reduction.
MC or the like is used. The content of the reinforcing fiber is preferably 60% by volume or less in the composite sheet. If the content exceeds 60% by volume, it becomes impossible to uniformly foam,
On the contrary, the reinforcing effect is reduced.

【0029】その他、熱可塑性樹脂中には、必要に応じ
て、熱安定剤、可塑剤、滑剤、酸化防止剤、紫外線吸収
剤、顔料、無機充填剤、補強短繊維等の添加剤、加工助
剤、改質剤などが添加されてもよい。
In addition, in the thermoplastic resin, if necessary, a heat stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a pigment, an inorganic filler, an additive such as a reinforcing short fiber, and a processing aid. Agents, modifiers and the like may be added.

【0030】発泡剤は、特に限定されないが、分解型発
泡剤又は物理型発泡剤のいずれでもよく、発泡性樹脂組
成物を発泡させつつ供給又は供給後発泡させるかによ
り、適宜使い分ければよい。分解型発泡剤としては、例
えば、アゾジカルボンアミド、アゾビスイソブチロニト
リル、N,N′─ジニトロペンタメチレンテトラミン─
p,p′─オキシビスベンゼンスルホニルヒドラジド、
アゾジカルボン酸バリウム、トリヒドラジノトリアジ
ン、5─フェニルテトラゾール等が挙げられる。
The foaming agent is not particularly limited, and may be either a decomposing type foaming agent or a physical type foaming agent, and may be appropriately used depending on whether the foaming resin composition is being foamed while being supplied or after being foamed. As the decomposition type foaming agent, for example, azodicarbonamide, azobisisobutyronitrile, N, N'-dinitropentamethylenetetramine-
p, p′-oxybisbenzenesulfonyl hydrazide,
Examples thereof include barium azodicarboxylate, trihydrazinotriazine, and 5-phenyltetrazole.

【0031】物理型発泡剤としては、例えば、イソペン
タン、ヘプタン、シクロヘキサン等の脂肪族炭化水素、
トリクロトリフルオロエタン、ジクロロテトラフルオロ
エタン等のふっ化脂肪族炭化水素等が挙げられる。
Examples of the physical type foaming agent include aliphatic hydrocarbons such as isopentane, heptane and cyclohexane,
Examples thereof include fluorinated aliphatic hydrocarbons such as trichlorotrifluoroethane and dichlorotetrafluoroethane.

【0032】発泡剤の添加量は、発泡性樹脂組成物の所
望発泡倍率によって適宜選択することができ、熱可塑性
樹脂100重量部に対し通常1〜15重量部である。
The amount of the foaming agent added can be appropriately selected depending on the desired expansion ratio of the foamable resin composition, and is usually 1 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

【0033】本発明1の第1工程において、複合シート
を筒状に賦形して筒状体を形成する方法としては、特に
限定されないが、例えば、実施例において後述する金型
を用いる方法や、合成樹脂製のシューやロール等で徐々
に曲げていく方法等が挙げられる。この際に、割れや裂
けを防ぐため、遠赤外線ヒーターや熱風ブロアーが加熱
し、熱可塑性樹脂を軟化状態にしながら賦形を行うのが
好ましい。
In the first step of the first aspect of the present invention, the method of shaping the composite sheet into a tubular shape to form a tubular body is not particularly limited, but, for example, a method using a mold described later in Examples and , A method of gradually bending it with a synthetic resin shoe or roll. At this time, in order to prevent cracks and tears, it is preferable to perform shaping while heating the far-infrared heater or a hot air blower to soften the thermoplastic resin.

【0034】尚、筒状とは、側縁同士が突き合わされた
り重ね合わされているものの他、側縁同士が若干の隙間
を生じている場合も含まれる。
The term "cylindrical" includes not only those in which the side edges are butted against each other or overlapped with each other, but also those in which the side edges have a slight gap.

【0035】本発明1の第2工程において、発泡性樹脂
組成物の筒状体の内部への供給は、発泡させながら供給
してもよいし、未発泡のまま供給してもよい。筒状体の
内部へ、発泡性樹脂組成物を発泡させながら供給する方
法としては、例えば、熱可塑性樹脂に発泡剤をその発泡
温度未満の温度にて溶融混練又は含浸させ、得られた発
泡性樹脂組成物を押出機に供給し、発泡剤の発泡温度以
上の温度に加熱し、発泡させながら供給する方法や、熱
可塑性樹脂を押出機に供給して溶融混練し、溶融状態と
なった熱可塑性樹脂中に、押出機の途中から物理型発泡
剤を供給し、発泡させつつ供給する方法等が挙げられ
る。尚、発泡温度とは、分解型発泡剤の場合には、その
分解温度を、物理的発泡剤の場合は、その沸点をいう。
In the second step of the present invention 1, the foamable resin composition may be supplied to the inside of the cylindrical body while foaming, or may be supplied in an unfoamed state. As a method for supplying the foamable resin composition to the inside of the tubular body while foaming, for example, a foaming agent obtained by melt-kneading or impregnating a thermoplastic resin with a foaming agent at a temperature lower than the foaming temperature is obtained. A method in which the resin composition is supplied to an extruder and heated to a temperature equal to or higher than the foaming temperature of a foaming agent and supplied while foaming, or a thermoplastic resin is supplied to an extruder and melt-kneaded to obtain a heat in a molten state. Examples include a method in which a physical-type foaming agent is supplied into the plastic resin from the middle of the extruder and is supplied while foaming. The foaming temperature means the decomposition temperature in the case of a decomposition type foaming agent, and the boiling point in the case of a physical foaming agent.

【0036】筒状体の内部へ、発泡性樹脂組成物を未発
泡のまま供給する方法としては、例えば、熱可塑性樹脂
に発泡剤をその発泡温度未満の温度にて溶融混練又は含
浸させて得た発泡性樹脂組成物を、ペレット状、シート
状、ロッド状、パイプ状等の所望の形状で供給する方法
が挙げられる。
As a method for supplying the foamable resin composition to the inside of the cylindrical body in an unfoamed state, for example, it is obtained by melt-kneading or impregnating a thermoplastic resin with a foaming agent at a temperature lower than the foaming temperature. Examples of the method include supplying the foamable resin composition in a desired shape such as a pellet shape, a sheet shape, a rod shape, or a pipe shape.

【0037】本発明1の第2工程において、発泡性樹脂
組成物の発泡による発泡圧により、筒状体を金型内面に
押圧して、金型の内面形状に沿う所望断面形状に賦形す
る。その後、冷却して繊維強化熱可塑性樹脂発泡体を得
る。
In the second step of the present invention 1, the tubular body is pressed against the inner surface of the mold by the foaming pressure due to the foaming of the expandable resin composition to form a desired cross-sectional shape along the inner surface shape of the mold. . Then, it cools and a fiber reinforced thermoplastic resin foam is obtained.

【0038】芯材層における中心部の発泡倍率は、30
倍を超えると芯材層自体が応力を保持できなくなり、曲
げ強度、比強度及び比弾性が低くなるので、30倍以下
に限定されるが、その範囲においては、補強繊維との組
み合わせによって最適な倍率を適宜選択することがで
き、曲げ強度等の機械的強度と軽量性のバランスの点か
ら2〜5倍程度が好ましい。
The expansion ratio at the center of the core layer is 30.
If it exceeds 2 times, the core material layer itself cannot hold the stress and the bending strength, specific strength and specific elasticity become low. Therefore, it is limited to 30 times or less, but in that range, it is optimal depending on the combination with the reinforcing fiber. The magnification can be appropriately selected, and it is preferably about 2 to 5 times from the viewpoint of the balance between mechanical strength such as bending strength and lightness.

【0039】芯材層における外層には、発泡の際、筒状
体の内周面の短繊維に食い込み破泡して低倍率のスキン
層が形成される。このスキン層の発泡倍率は、破泡させ
る短繊維の因子により変化するが、比強度、比弾性の面
を考慮すると、1〜3倍程度が好ましい。
In the outer layer of the core material layer, a low-magnification skin layer is formed during foaming by biting into and breaking the short fibers on the inner peripheral surface of the tubular body. The expansion ratio of the skin layer varies depending on the factors of the short fibers to be broken, but considering the specific strength and the specific elasticity, it is preferably about 1 to 3 times.

【0040】芯材層は、上記の如き発泡成形時の支障が
生じない限り、表皮層内が充満された状態に形成される
必要はなく、表皮層の内方に一定の厚さの層をなし、中
心部の一部に空隙部が形成されてもよい。中心部の一部
に空隙部を発生させる方法としては、例えば、発泡性樹
脂組成物の押出量又は引取速度を周期的に変化させる方
法、金型内にコアを設け、そのコアを金型冷却部位まで
延長して設ける方法、コアに空気配管を設けその空気配
管より圧縮空気を圧入する方法等が挙げられる。
The core material layer does not need to be formed in a state in which the inside of the skin layer is filled so long as the above-mentioned problems during foam molding do not occur, and a layer having a constant thickness is formed inside the skin layer. None, a void may be formed in a part of the central portion. As a method of generating a void in a part of the central portion, for example, a method of periodically changing the extrusion rate or the take-up speed of the expandable resin composition, a core is provided in a mold, and the core is cooled by the mold. Examples thereof include a method of extending to a portion and a method of providing an air pipe in the core and injecting compressed air from the air pipe.

【0041】本発明2において、複合シートの短繊維を
有する面に、熱可塑性樹脂及び発泡剤を含有する発泡性
樹脂組成物からなる芯材形成層を積層して積層シートを
形成する方法は、特に限定ないが、例えば、複合シート
の短繊維を有する面に、熱可塑性樹脂及び発泡剤を含有
する発泡性樹脂組成物を発泡剤の発泡温度未満の温度に
て押出成形して芯材形成層を積層する方法等が挙げられ
る。これにより、複合シートの短繊維を有する面と芯材
形成層の積層界面にボイドが残留するのを防止すること
ができ、局所的に強度の弱い部分が発生するのをおさえ
ることができる。
In the second aspect of the present invention, a method for forming a laminated sheet by laminating a core material forming layer made of a foamable resin composition containing a thermoplastic resin and a foaming agent on the surface of the composite sheet having short fibers, Although not particularly limited, for example, a core material forming layer is formed by extruding a foamable resin composition containing a thermoplastic resin and a foaming agent at a temperature lower than the foaming temperature of the foaming agent on the surface of the composite sheet having short fibers. And the like. Thereby, it is possible to prevent voids from remaining at the laminated interface between the surface of the composite sheet having the short fibers and the core material forming layer, and it is possible to suppress the occurrence of locally weak portions.

【0042】本発明2の第1工程において、積層シート
を芯材形成層が内側になるようにして筒状に賦形して、
積層筒状体を形成する方法としては、特に限定されない
が、例えば、本発明1の第1工程において、筒状体を成
形する方法と同様の方法が挙げられる。
In the first step of the second aspect of the present invention, the laminated sheet is formed into a cylindrical shape with the core material forming layer facing inside,
The method for forming the laminated tubular body is not particularly limited, and examples thereof include the same method as the method for forming the tubular body in the first step of the first invention.

【0043】本発明2の第2工程において、積層筒状体
の芯材形成層を加熱発泡させその発泡圧により、表皮形
成層を金型内面に押圧して、所望断面形状に賦形する。
その後、冷却して繊維強化熱可塑性樹脂発泡体を得る。
In the second step of the second aspect of the present invention, the core forming layer of the laminated cylindrical body is heated and foamed, and the foaming pressure presses the skin forming layer against the inner surface of the mold to shape it into a desired cross-sectional shape.
Then, it cools and a fiber reinforced thermoplastic resin foam is obtained.

【0044】[0044]

【作用】本発明1の繊維強化熱可塑性樹脂発泡体の製造
方法は、繊維強化熱可塑性樹脂シートの一面に短繊維を
有する複合シートを、短繊維を有する面が内側になるよ
うにして筒状に賦形して筒状体を形成する工程、その筒
状体を金型内に供給し、その筒状体の内部に、熱可塑性
樹脂及び発泡剤を含有する発泡性樹脂組成物を、発泡剤
の発泡温度以上に加熱して発泡させながら供給するか、
又は供給した後に発泡剤の発泡温度以上に加熱して、発
泡樹脂の外層を短繊維に食い込ませ破泡させつつ、その
発泡圧により筒状体を金型内面に押圧して筒状体を所望
断面形状に賦形する工程を有することにより、芯材層は
中心を高発泡倍率、外層を破泡させた低倍発泡率のスキ
ン層とすることができ、芯材層の外層に短繊維を食い込
ませることができるので、曲げ強度、比強度及び比弾性
の高い繊維強化熱可塑性樹脂発泡体を得ることができ
る。
According to the method for producing a fiber-reinforced thermoplastic resin foam of the present invention 1, a composite sheet having short fibers on one surface of a fiber-reinforced thermoplastic resin sheet is formed into a tubular shape with the surface having the short fibers facing inward. Forming into a tubular body, the tubular body is fed into a mold, and a foaming resin composition containing a thermoplastic resin and a foaming agent is foamed inside the tubular body. Supply it while heating above the foaming temperature of the agent to foam it,
Or, after supplying, heating above the foaming temperature of the foaming agent, while biting the outer layer of the foamed resin into the short fibers to break the foam, the foaming pressure presses the cylindrical body against the inner surface of the mold to obtain the cylindrical body. By having a step of shaping into a cross-sectional shape, the core material layer can be a skin layer with a high expansion ratio in the center and a low expansion ratio with the outer layer ruptured, and short fibers are added to the outer layer of the core material layer. Since it can be bitten, a fiber-reinforced thermoplastic resin foam having high bending strength, specific strength and specific elasticity can be obtained.

【0045】本発明2の繊維強化熱可塑性樹脂発泡体の
製造方法は、繊維強化熱可塑性樹脂シートの一面に短繊
維を有する複合シートの短繊維を有する面に、熱可塑性
樹脂及び発泡剤を含有する発泡性樹脂組成物からなる芯
材形成層を積層して積層シートを芯材形成層が内側にな
るようにして筒状に賦形して、積層筒状体を形成する工
程、その積層筒状体を金型内に供給した後に発泡剤の発
泡温度以上に加熱して芯材形成層を発泡させ、発泡樹脂
の外層を短繊維に食い込ませ破泡させつつ、その発泡圧
により積層筒状体の表皮形成層を金型内面に押圧して筒
状体を所望断面形状に賦形する工程を有することによ
り、予め複合シートの短繊維を有する面に芯材形成層を
積層するので、更に複合シートの短繊維を有する面と芯
材形成層の積層界面にボイドが残留するのを防止するこ
とができて局所的に強度の弱い部分が発生するのをおさ
えることができる。
In the method for producing a fiber-reinforced thermoplastic resin foam of the present invention 2, a thermoplastic resin and a foaming agent are contained on the surface having short fibers of a composite sheet having short fibers on one surface of a fiber-reinforced thermoplastic resin sheet. A step of forming a laminated tubular body by laminating a core material forming layer made of a foamable resin composition to form a laminated sheet into a tubular shape with the core material forming layer facing inside, and the laminated cylinder. The core material forming layer is foamed by heating above the foaming temperature of the foaming agent after supplying the shaped body into the mold, and the outer layer of the foamed resin bites into the short fibers to break the foam, and the foaming pressure causes the laminated tubular shape. By having a step of pressing the skin forming layer of the body against the inner surface of the mold to shape the tubular body into a desired cross-sectional shape, the core material forming layer is laminated on the surface having the short fibers of the composite sheet in advance. Laminated interface between the surface of the composite sheet having short fibers and the core forming layer Weak portions of locally intensity can be possible to prevent the voids from remaining can be suppressed from occurring.

【0046】[0046]

【実施例】以下、本発明を実施例により説明する。実施例1 (1)複合シートの製造 熱可塑性樹脂組成物として、下記のA,Bを使用した。 熱可塑性樹脂組成物A:ポリ塩化ビニル(信越化学社
製、商品名「TK─800」)100重量部、錫系熱安
定剤〔三共有機合成社製、商品名「STANNNM
(N)〕1重量部、ポリエチレンWAX(三井油化社
製、商品名「HIWAX 4202E)0.5重量部か
らなる樹脂組成物。
The present invention will be described below with reference to examples. Example 1 (1) Production of composite sheet The following A and B were used as the thermoplastic resin composition. Thermoplastic resin composition A: 100 parts by weight of polyvinyl chloride (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "TK-800"), tin-based heat stabilizer [manufactured by Sankyo Machine Gosei Co., Ltd., trade name "STANNNM"
(N)] A resin composition comprising 1 part by weight of polyethylene WAX (manufactured by Mitsui Yuka Co., Ltd., trade name "HIWAX 4202E").

【0047】発泡性樹脂組成物B:ポリ塩化ビニル(信
越化学社製、商品名「TK─600」)100重量部、
錫系熱安定剤〔三共有機合成社製、商品名「STANN
ONZ142F〕2.5重量部、ポリエチレンWAX
(三井油化社製、商品名「HIWAX 220RTK)
0.2重量部、アクリル加工助剤(三菱レイヨン社製、
商品名「メタブレンP−570」)8重量部、炭酸カル
シウム35重量部、ジオクチルフタレート2重量部、発
泡剤として炭酸ナトリウム(永和化成社製、商品名「S
C−D」)3.5重量部のからなる樹脂組成物。
Foaming resin composition B: 100 parts by weight of polyvinyl chloride (trade name "TK-600" manufactured by Shin-Etsu Chemical Co., Ltd.),
Tin-based heat stabilizer [Sanko Machine Gosei Co., Ltd., trade name "STANN
ONZ142F] 2.5 parts by weight, polyethylene WAX
(Mitsui Yuka Co., Ltd., trade name "HIWAX 220RTK")
0.2 parts by weight, acrylic processing aid (manufactured by Mitsubishi Rayon Co.,
Trade name "Metablene P-570") 8 parts by weight, calcium carbonate 35 parts by weight, dioctyl phthalate 2 parts by weight, sodium carbonate as a foaming agent (manufactured by Eiwa Chemical Co., Ltd., product name "S
C-D ") 3.5 parts by weight of a resin composition.

【0048】図1に示した如く、直径23μmのフィラ
メントより構成されたロービング状のガラス繊維集合束
(4400tex)11を14本配列させて、上記粉体
状熱可塑性樹脂組成物A(粒子径約80μm)12が矢
印の方向より圧送されるエアーにより浮遊状態とされて
いる含浸槽13中を通過させて、ガラス繊維集合束11
に粉体状熱可塑性樹脂組成物A12を含浸させた。
As shown in FIG. 1, 14 roving-like glass fiber aggregate bundles (4400 tex) 11 composed of filaments having a diameter of 23 μm were arrayed, and the powdery thermoplastic resin composition A (particle diameter: 80 μm) 12 is passed through the impregnation tank 13 in a floating state by the air fed in the direction of the arrow, and the glass fiber aggregate bundle 11
Was impregnated with the powdery thermoplastic resin composition A12.

【0049】その片面に直径13μm、長さ3mmのフ
ィラメントより構成されるチョップドストランド状の短
繊維を16を散布し、これを約200℃に加熱された加
熱炉14を通過させることにより加熱、加圧し、幅92
mm、厚み0.7mmの複合シート15を得た。得られ
た複合シート15の樹脂:ガラス繊維:短繊維の体積割
合は、70:20:10であった。
16 chopped strand-shaped short fibers composed of filaments having a diameter of 13 μm and a length of 3 mm were sprinkled on one surface of the filaments 16 and heated by passing through a heating furnace 14 heated to about 200 ° C. Press, width 92
A composite sheet 15 having a thickness of 0.7 mm and a thickness of 0.7 mm was obtained. The resin: glass fiber: short fiber volume ratio of the obtained composite sheet 15 was 70:20:10.

【0050】(2)繊維強化熱可塑性樹脂発泡体の製造 図2に示した製造装置は、(1)で得られた複合シート
15が巻回されている巻き出しロール22と、発泡性樹
脂組成物の押出機23と、先端部が進行方向直角に折り
曲げられ、且つ、その中央部に通孔が設けられた、複合
シートを円形に賦形することのできる金型24と、金型
24の進行方向側に、断熱材26、加熱金型27、断熱
材28及び冷却金型29を配し、その進行方向側に引取
機30を備えているものである。
(2) Production of Fiber Reinforced Thermoplastic Resin Foam The production apparatus shown in FIG. 2 has an unwinding roll 22 around which the composite sheet 15 obtained in (1) is wound, and a foamable resin composition. Extruder 23 of the object, a mold 24 having a tip bent at a right angle to the traveling direction, and having a through hole in the center thereof, which can shape the composite sheet into a circle, and the mold 24. The heat insulating material 26, the heating die 27, the heat insulating material 28, and the cooling die 29 are arranged on the traveling direction side, and the take-up machine 30 is provided on the traveling direction side.

【0051】加熱金型27は、樹脂流路の断面形状が2
9mmの円形の金型27aに、樹脂流路の断面形状が2
7mm×27mmの正方形の金型27bが連結されてお
り、連結部分には、円形から滑らかに変形するように加
工が施されられている。断熱材28及び冷却金型29
も、その内部に断面形状が27mm×27mmの正方形
の樹脂流路を有している。金型24には、複合シート1
5を挿入できるU字形の隙間が設けられている。
The heating die 27 has a resin flow passage having a cross-sectional shape of 2
A 9 mm circular mold 27a has a resin flow path with a cross-sectional shape of 2
A 7 mm × 27 mm square mold 27b is connected, and the connected portion is processed so as to smoothly deform from a circular shape. Heat insulating material 28 and cooling die 29
Also has a square resin channel having a cross section of 27 mm × 27 mm inside. The mold 24 has a composite sheet 1
There is a U-shaped gap into which 5 can be inserted.

【0052】まず、金型24の隙間より複合シート15
の短繊維含有側が内側となるように挿入し、金型24内
部にて複合シート15をU字形から両端部を重ね合わせ
ることなく突き合わせ、外径29mm、厚み0.7mm
の筒状体となるように連続的に賦形した。
First, the composite sheet 15 is removed from the gap of the mold 24.
Inserted so that the short fiber-containing side is the inner side, the composite sheet 15 is abutted from the U-shape inside the mold 24 without overlapping the both ends, and the outer diameter is 29 mm and the thickness is 0.7 mm.
It was continuously shaped into a cylindrical body.

【0053】その筒状体内に、発泡性樹脂組成物B31
(予め170℃以下の温度にて、口径30mmの二軸押
出機にて混練ペレット化したものを用いた)を、口径4
0mmの単軸押出機(L/D=30、圧縮比2.5)2
3より樹脂温度200℃にて押し出して積層すると同時
に発泡を開始させ、加熱金型27により樹脂温度を20
0℃に保持し発泡を終了させた後、冷却金型29にて、
外層温度を60℃になるまで冷却し、一辺27mm、発
泡倍率約3.2倍の断面正方形の繊維強化熱可塑性樹脂
発泡体32を得た。尚、成形速度は1.5m/分とし
た。
The expandable resin composition B31 was placed in the cylindrical body.
(Used after kneading and pelletizing with a twin-screw extruder having a diameter of 30 mm at a temperature of 170 ° C. or less in advance)
0 mm single screw extruder (L / D = 30, compression ratio 2.5) 2
3. At the same time, the resin was extruded at a resin temperature of 200 ° C. and laminated, and at the same time foaming was started.
After maintaining the temperature at 0 ° C. to complete the foaming, the cooling mold 29
The outer layer temperature was cooled to 60 ° C. to obtain a fiber-reinforced thermoplastic resin foam 32 having a square cross section with a side length of 27 mm and a foaming ratio of about 3.2 times. The molding speed was 1.5 m / min.

【0054】実施例2 実施例1と以下の点が相違するのみで、実施例1と同様
な工程を経て繊維強化熱可塑性樹脂発泡体32を得た。
熱可塑性樹脂組成物Aの代わりに、熱可塑性樹脂組成物
Cとして、高密度ポリエチレン〔三菱油化社製、商品名
「S561」、メルトインデックス(以下、MIとい
う)=0.75)を、発泡性樹脂組成物Bの代わりに、
発泡性樹脂組成物Dとして、高密度ポリエチレン(三菱
油化社製、商品名「ZH−52」、MI=3)100重
量部、ホモプロピレン(三菱油化社製、商品名「PY2
40B」、MI=5)100重量部、シラン架橋製ポリ
プロピレン(三菱油化社製、商品名「XPM800
H」、MI=11)30重量部、ジカルボンアミド5重
量部からなる樹脂組成物を用いた。
Example 2 A fiber reinforced thermoplastic resin foam 32 was obtained through the same steps as in Example 1 except for the following differences from Example 1.
Instead of the thermoplastic resin composition A, as the thermoplastic resin composition C, high density polyethylene [trade name “S561” manufactured by Mitsubishi Yuka Co., Ltd., melt index (hereinafter referred to as MI) = 0.75) is foamed. Instead of the resin composition B,
As the foamable resin composition D, 100 parts by weight of high-density polyethylene (manufactured by Mitsubishi Petrochemical Co., Ltd., trade name “ZH-52”, MI = 3), homopropylene (manufactured by Mitsubishi Petrochemical Co., Ltd., trade name “PY2”)
40B ", MI = 5) 100 parts by weight, silane crosslinked polypropylene (manufactured by Mitsubishi Petrochemical Co., Ltd., trade name" XPM800 "
H ”, MI = 11) 30 parts by weight, and a resin composition comprising 5 parts by weight of dicarbonamide was used.

【0055】尚、発泡性樹脂組成物Dとしては、口径3
0mmの二軸押出機を用い、樹脂温度175℃にてペレ
ット化し、このペレットを1気圧下100℃の熱水中に
1時間浸漬した後、乾燥させ内層用の発泡性樹脂組成物
Dとして用いた。図2において、上記ペレットを口径4
0mmの単軸押出機(L/D=30、圧縮比2.5)2
3にて樹脂温度165℃に制御しながら押出積層した
後、205℃に温度制御した加熱金型27にて加熱し発
泡を開始させた。発泡樹脂層が複合シート内に充満する
直前又は直後に、冷却金型29に導入し、外層樹脂温度
を60℃となるまで冷却し、一辺27mm、発泡倍率
6.1倍の断面正方形の繊維強化熱可塑性樹脂発泡体3
2を得た。
The foamable resin composition D has a caliber of 3
Using a 0 mm twin-screw extruder, pelletizing at a resin temperature of 175 ° C., immersing the pellets in hot water of 100 ° C. under 1 atmosphere for 1 hour, and then drying the foamable resin composition D for the inner layer. I was there. In FIG.
0 mm single screw extruder (L / D = 30, compression ratio 2.5) 2
After extrusion lamination was performed while controlling the resin temperature to 165 ° C. in 3, the heating mold 27 heated to 205 ° C. was used to start foaming. Immediately before or immediately after the foamed resin layer fills the composite sheet, it is introduced into the cooling mold 29, cooled to the outer layer resin temperature of 60 ° C., and is reinforced with a square cross section having a side length of 27 mm and a foaming ratio of 6.1 times. Thermoplastic resin foam 3
2 was obtained.

【0056】又、図示しないが、金型コア25内部に金
型コア25の後方より通気孔を設け、金型コア25の先
端付近に形成される空間の空気圧を0.3kg/cm2
となるように調節した。加熱金型27及び冷却金型29
内面には、テトラフルオロエチレンからなるフッ素樹脂
加工を施したものを使用した。これらの一連の工程を
1.8m/分にて行った。
Although not shown, a ventilation hole is provided inside the mold core 25 from the rear of the mold core 25, and the air pressure in the space formed near the tip of the mold core 25 is 0.3 kg / cm 2.
Was adjusted so that Heating die 27 and cooling die 29
As the inner surface, a fluororesin-treated tetrafluoroethylene was used. These series of steps were performed at 1.8 m / min.

【0057】実施例3 熱可塑性樹脂組成物としては、下記のE,Fを使用し
た。 熱可塑性樹脂組成物E:ポリプロピレン(三菱油化社
製、商品名「MA4」、MI=5)。 発泡性樹脂組成物F:高密度ポリエチレン(三菱油化社
製、商品名「EY─40H」、MI=1.5)100重
量部、シラン架橋性ポリプロピレン(三菱油化社製、商
品名「XPM800HM」、MI=11)15重量部、
テトラジカルボンアミド5重量部の樹脂組成物。
Example 3 The following E and F were used as the thermoplastic resin composition. Thermoplastic resin composition E: polypropylene (manufactured by Mitsubishi Petrochemical Co., Ltd., trade name "MA4", MI = 5). Expandable resin composition F: 100 parts by weight of high-density polyethylene (manufactured by Mitsubishi Yuka Co., Ltd., trade name "EY-40H", MI = 1.5), silane crosslinkable polypropylene (manufactured by Mitsubishi Yuka Co., Ltd., trade name "XPM800HM" , MI = 11) 15 parts by weight,
A resin composition containing 5 parts by weight of tetradicarbonamide.

【0058】複合シートは、熱可塑性樹脂組成物Aの代
わりに、熱可塑性樹脂組成物Eを用いたこと以外は実施
例1と同様にして製造した。発泡性樹脂組成物Fを口径
30mmの二軸押出機にて樹脂温度を170℃以下に維
持しなから厚み1mmのシートを作成し、これを170
℃にて複合シートの短繊維含有面に積層融着させて、両
端部に発泡性樹脂組成物層を積層してない部分を20m
m設け、発泡性樹脂組成物層の厚みが1mmであり、複
合シート層の厚みが0.7mmであり、幅が240mm
の積層シートを得た。
A composite sheet was produced in the same manner as in Example 1 except that the thermoplastic resin composition E was used instead of the thermoplastic resin composition A. The expandable resin composition F was maintained at a resin temperature of 170 ° C. or lower by a twin-screw extruder having a diameter of 30 mm, and thus a sheet having a thickness of 1 mm was prepared.
Laminated and fused to the short fiber-containing surface of the composite sheet at 20 ° C., and apply 20 m to the portions where the expandable resin composition layer is not laminated at both ends.
m, the thickness of the foamable resin composition layer is 1 mm, the thickness of the composite sheet layer is 0.7 mm, and the width is 240 mm.
A laminated sheet of was obtained.

【0059】図2における複合シート15の代わりに、
上記方法によって得られた積層シートを巻き出し、20
5℃に温度制御した加熱金型27にて加熱して発泡を開
始させた。発泡樹脂が積層シート内面に充満する直前又
は直後に、冷却金型29に導入して、外層樹脂温度を6
0℃になるまで冷却し、1辺27mm、発泡倍率7.3
倍の断面正方形の繊維強化熱可塑性樹脂発泡体32を得
た。
Instead of the composite sheet 15 in FIG.
Unwinding the laminated sheet obtained by the above method,
Foaming was started by heating with a heating die 27 whose temperature was controlled to 5 ° C. Immediately before or immediately after the foamed resin fills the inner surface of the laminated sheet, it is introduced into the cooling mold 29 to adjust the outer layer resin temperature to 6
Cooled to 0 ° C, one side 27 mm, foaming ratio 7.3
A fiber-reinforced thermoplastic resin foam 32 having a double section square was obtained.

【0060】又、図示しないが、金型コア25内部に金
型コア25の後方より通気孔を設け、金型コア25の先
端付近に形成される空間の空気圧を0.3kg/cm2
となるように調節した。加熱金型27及び冷却金型29
内面には、テトラフルオロエチレンからなるフッ素樹脂
加工を施したものを使用した。これらの一連の工程を
1.2m/分にて行った。
Although not shown, a ventilation hole is provided inside the mold core 25 from the rear of the mold core 25, and the air pressure in the space formed near the tip of the mold core 25 is 0.3 kg / cm 2.
Was adjusted so that Heating die 27 and cooling die 29
As the inner surface, a fluororesin-treated tetrafluoroethylene was used. These series of steps were performed at 1.2 m / min.

【0061】比較例1 繊維強化熱可塑性樹脂シートにおいて、短繊維が含有さ
れていないものを用いたこと以外は、実施例1と同様に
して繊維強化熱可塑性樹脂発泡体を得た。比較例2 繊維強化熱可塑性樹脂シートにおいて、短繊維が含有さ
れていないものを用いたこと以外は、実施例2と同様に
して繊維強化熱可塑性樹脂発泡体を得た。
Comparative Example 1 A fiber-reinforced thermoplastic resin foam was obtained in the same manner as in Example 1 except that a fiber-reinforced thermoplastic resin sheet containing no short fibers was used. Comparative Example 2 A fiber-reinforced thermoplastic resin foam was obtained in the same manner as in Example 2 except that a fiber-reinforced thermoplastic resin sheet containing no short fibers was used.

【0062】比較例3 繊維強化熱可塑性樹脂シートにおいて、短繊維が含有さ
れていないものを用いたこと以外は、実施例3と同様に
して繊維強化熱可塑性樹脂発泡体を得た。
Comparative Example 3 A fiber-reinforced thermoplastic resin foam was obtained in the same manner as in Example 3 except that a fiber-reinforced thermoplastic resin sheet containing no short fibers was used.

【0063】以上の方法で得られた繊維強化熱可塑性樹
脂発泡体について、断面観察、曲げ強度、比強度、比弾
性、芯材層と表面層との融着性を評価した。その結果を
表1に示した。尚、断面観察については、得られた繊維
強化熱可塑性樹脂発泡体の断面を、光学顕微鏡で観察し
た。
With respect to the fiber-reinforced thermoplastic resin foam obtained by the above method, cross-section observation, bending strength, specific strength, specific elasticity, and fusion property between the core material layer and the surface layer were evaluated. The results are shown in Table 1. Regarding the cross-section observation, the cross section of the obtained fiber-reinforced thermoplastic resin foam was observed with an optical microscope.

【0064】曲げ強度については、JIS K7203
に準じて測定した。比強度については、単位長さ当りの
体積と重量を測定して比重を求め、曲げ強度を比重で除
することにより算出した。比弾性については、JIS
K7203に準じて曲げ弾性率を測定するとともに、単
位長さ当りの体積と重量を測定して比重を求め、曲げ弾
性率を比重で除することにより算出した。
Regarding bending strength, JIS K7203
It measured according to. The specific strength was calculated by measuring the volume and weight per unit length to determine the specific gravity, and dividing the bending strength by the specific gravity. Regarding specific elasticity, JIS
The flexural modulus was measured according to K7203, and the specific gravity was obtained by measuring the volume and weight per unit length, and the flexural modulus was divided by the specific gravity.

【0065】芯材層と表面層との融着性については、芯
材層と表皮層の融着部分を含む断面を幅20mm、長さ
150mmの小片に切り取り、一方の端から約90mm
だけナイフで切れ目を入れ、芯材層をチャックAで掴ん
で固定し、表皮層をチャックBで掴んで、チャックAに
対して90°方向に引っ張った時の荷重を測定した。
Regarding the fusing property between the core material layer and the surface layer, a cross section including the fused portion of the core material layer and the skin layer was cut into a small piece having a width of 20 mm and a length of 150 mm, and about 90 mm from one end.
Then, a cut was made with a knife, the core material layer was grasped and fixed by the chuck A, the skin layer was grasped by the chuck B, and the load when pulled in the 90 ° direction with respect to the chuck A was measured.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【発明の効果】本発明1の繊維強化熱可塑性樹脂発泡体
の製造方法は、上記の如き構成とされているので、曲げ
強度、比強度及び比弾性の高い繊維強化熱可塑性樹脂発
泡体を得ることができる。
EFFECTS OF THE INVENTION Since the method for producing a fiber-reinforced thermoplastic resin foam of the present invention 1 is configured as described above, a fiber-reinforced thermoplastic resin foam having high bending strength, specific strength and specific elasticity can be obtained. be able to.

【0068】本発明2の繊維強化熱可塑性樹脂発泡体の
製造方法は、上記の如き構成とされているので、本発明
1に比して、更に、局所的に、曲げ強度等の機械的強度
の弱い部分を有しない繊維強化熱可塑性樹脂発泡体を得
ることができる。
Since the method for producing a fiber-reinforced thermoplastic resin foam according to the second aspect of the present invention is configured as described above, the mechanical strength such as bending strength can be further locally increased as compared with the first aspect. It is possible to obtain a fiber-reinforced thermoplastic resin foam having no weak portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の繊維強化熱可塑性樹脂発泡体の製造方
法の一例における、複合シートの製造工程を説明する模
式断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a manufacturing process of a composite sheet in an example of a method for manufacturing a fiber-reinforced thermoplastic resin foam of the present invention.

【図2】本発明の繊維強化熱可塑性樹脂発泡体の製造方
法の一例における、繊維強化熱可塑性樹脂発泡体の製造
工程を説明する模式断面図である。
FIG. 2 is a schematic cross-sectional view illustrating a step of producing a fiber-reinforced thermoplastic resin foam in an example of the method for producing a fiber-reinforced thermoplastic resin foam of the present invention.

【符合の説明】 15 複合シート 16 短繊維 24 金型 27 加熱金型 32 繊維強化熱可塑性樹脂発泡体[Explanation of reference symbols] 15 composite sheet 16 short fiber 24 mold 27 heating mold 32 fiber reinforced thermoplastic resin foam

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:12 B29L 9:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29K 105: 12 B29L 9:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱可塑性樹脂シートの一面に短
繊維を有する複合シートを、短繊維を有する面が内側に
なるようにして筒状に賦形して筒状体を形成する工程、
その筒状体を金型内に供給し、その筒状体の内部に、熱
可塑性樹脂及び発泡剤を含有する発泡性樹脂組成物を、
発泡剤の発泡温度以上に加熱して発泡させながら供給す
るか、又は供給した後に発泡剤の発泡温度以上に加熱し
て、発泡樹脂の外層を短繊維に食い込ませ破泡させつ
つ、その発泡圧により筒状体を金型内面に押圧して筒状
体を所望断面形状に賦形する工程を有することを特徴と
する繊維強化熱可塑性樹脂発泡体の製造方法。
1. A process for forming a tubular body by shaping a composite sheet having short fibers on one surface of a fiber-reinforced thermoplastic resin sheet into a tubular shape with the surface having the short fibers facing inward.
The tubular body is supplied into a mold, and inside the tubular body, a foamable resin composition containing a thermoplastic resin and a foaming agent,
The foaming agent is heated to a temperature higher than the foaming temperature and supplied while foaming, or after being supplied, it is heated to a temperature not lower than the foaming temperature of the foaming agent to bite the outer layer of the foaming resin into the short fibers to break the foam, and the foaming pressure The method for producing a fiber-reinforced thermoplastic resin foam, which comprises the step of pressing the tubular body against the inner surface of the mold to shape the tubular body into a desired cross-sectional shape.
【請求項2】 繊維強化熱可塑性樹脂シートの一面に短
繊維を有する複合シートの短繊維を有する面に、熱可塑
性樹脂及び発泡剤を含有する発泡性樹脂組成物からなる
芯材形成層を積層して積層シートを芯材形成層が内側に
なるようにして筒状に賦形して、積層筒状体を形成する
工程、その積層筒状体を金型内に供給した後に発泡剤の
発泡温度以上に加熱して芯材形成層を発泡させ、発泡樹
脂の外層を短繊維に食い込ませ破泡させつつ、その発泡
圧により積層筒状体の表皮形成層を金型内面に押圧して
筒状体を所望断面形状に賦形する工程を有することを特
徴とする繊維強化熱可塑性樹脂発泡体の製造方法。
2. A core material forming layer made of a foamable resin composition containing a thermoplastic resin and a foaming agent is laminated on the surface of a composite sheet having short fibers on one surface of a fiber-reinforced thermoplastic resin sheet. Then, the step of forming the laminated sheet into a cylindrical shape with the core material forming layer facing inward to form a laminated cylindrical body, foaming the foaming agent after supplying the laminated cylindrical body into the mold. While heating above the temperature to foam the core forming layer, the outer layer of the foamed resin bites into the short fibers to break the foam, and the foaming pressure pushes the skin forming layer of the laminated tubular body against the inner surface of the mold to form a cylinder. A method for producing a fiber-reinforced thermoplastic resin foam, which comprises the step of shaping the shaped body into a desired cross-sectional shape.
JP7026486A 1995-02-15 1995-02-15 Production of fiber reinforced thermoplastic resin foam Pending JPH08216172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026486A JPH08216172A (en) 1995-02-15 1995-02-15 Production of fiber reinforced thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026486A JPH08216172A (en) 1995-02-15 1995-02-15 Production of fiber reinforced thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JPH08216172A true JPH08216172A (en) 1996-08-27

Family

ID=12194840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026486A Pending JPH08216172A (en) 1995-02-15 1995-02-15 Production of fiber reinforced thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JPH08216172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005106A (en) * 2014-05-30 2014-08-27 山东陆宇塑胶工业有限公司 Ultra-high molecular weight polyethylene fiber production device and method
CN104404640A (en) * 2014-12-26 2015-03-11 常熟绣珀纤维有限公司 Ultra-high-molecular-weight polyethylene protofilament drafting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005106A (en) * 2014-05-30 2014-08-27 山东陆宇塑胶工业有限公司 Ultra-high molecular weight polyethylene fiber production device and method
CN104404640A (en) * 2014-12-26 2015-03-11 常熟绣珀纤维有限公司 Ultra-high-molecular-weight polyethylene protofilament drafting method

Similar Documents

Publication Publication Date Title
EP0653280B1 (en) Method for producing a fiber reinforced thermoplastic resin foamed product
JP2634184B2 (en) Method for producing thermoplastic polymer profiled section by pultrusion molding, apparatus for carrying out this method and product obtained thereby
US20020064641A1 (en) Foamable thermoplastic sheet-like synthetic resin, thermoplastic foamed resin and their production method
EA032684B1 (en) Method and device for manufacturing a sandwich structure
JPH08216172A (en) Production of fiber reinforced thermoplastic resin foam
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JP3754525B2 (en) Decorative molding sheet, method for producing the same, and method for producing fiber reinforced thermoplastic resin foam using the decorative molding sheet
JP2974582B2 (en) Method for producing fiber-reinforced thermoplastic resin foam
JP4278233B2 (en) Extrusion molding method and extruded product of fiber-containing thermoplastic resin
JP3182217B2 (en) Method for producing fiber-reinforced foamed resin structure
JPH08267475A (en) Manufacture of fiber-reinforced thermoplastic resin foam
JPH1067052A (en) Continuous production of fiber-reinforced thermoplastic resin foam
JPH09150463A (en) Method for producing fiber-reinforced thermoplastic resin foam
JPH10113943A (en) Continuous manufacture of fiber reinforced thermoplastic resin foam
KR101462881B1 (en) Apparatus For Manufacturing Long Fiber Reinforced Thermoplastic Preform
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH10180889A (en) Manufacture of fiber-reinforced thermoplastic resin foam
JPH0966566A (en) Fiber-reinforced thermoplastic resin form and manufacture thereof
JPH09150462A (en) Production of fiber-reinforced thermoplastic resin foam
JPH09150430A (en) Fiber reinforced thermoplastic resin foam and its manufacture
JPH09239764A (en) Production of thermoplastic resin profile foam
JPH08174697A (en) Manufacture of fiber-reinforced thermoplastic resin foam
JPH08300434A (en) Method for producing fiber-reinforced thermoplastic resin molding
JPH08300536A (en) Fiber-reinforced thermoplastic resin hollow long foam, and manufacture thereof
JPH08300537A (en) Fiber-reinforced thermoplastic resin foam