[go: up one dir, main page]

JPH08214584A - Motor with speed controller - Google Patents

Motor with speed controller

Info

Publication number
JPH08214584A
JPH08214584A JP7034393A JP3439395A JPH08214584A JP H08214584 A JPH08214584 A JP H08214584A JP 7034393 A JP7034393 A JP 7034393A JP 3439395 A JP3439395 A JP 3439395A JP H08214584 A JPH08214584 A JP H08214584A
Authority
JP
Japan
Prior art keywords
motor
speed
signal
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7034393A
Other languages
Japanese (ja)
Other versions
JP3240868B2 (en
Inventor
Hiroshi Iwai
広 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP03439395A priority Critical patent/JP3240868B2/en
Publication of JPH08214584A publication Critical patent/JPH08214584A/en
Application granted granted Critical
Publication of JP3240868B2 publication Critical patent/JP3240868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE: To control and suppress high frequency rotation unevenness and reduce the speed fluctuation caused by the fluctuation of a load. CONSTITUTION: A motor has a speed detection means which detects physical values corresponding to the speed of the motor, a speed control means 20 which controls the speed of the motor in accordance with the output signal of the speed detection means and a driving circuit 21 which drives the motor to rotate in accordance with the output of the speed control means 20. In the motor, a permanent magnet 13 which is provided in a rotor and has a plurality of poles, AC signal generating windings which are so provided on a stator as to face the poles and generates a plurality of AC signals having phases different from each other in accordance with the change of poles and a calculating means 19 which calculates the AC signals are provided and the speed of the motor is controlled in accordance with the output of the calculating means 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は速度制御装置を備えたモ
ータに係り、特にムダ時間が小さくリップルの少ない速
度信号によりモータを制御し、回転ムラ等が少なく速度
の安定度が高い速度制御装置を備えたモータに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor provided with a speed control device, and more particularly to a motor which controls a motor with a speed signal having a small dead time and a small ripple, and has a high stability of speed with less uneven rotation. The present invention relates to a motor equipped with.

【0002】[0002]

【従来の技術】図9は従来の速度制御装置を備えたモー
タのブロック図である。ロータ1には2p(p波1以上
の正の整数)極の磁極を有する周波数発電形成用の永久
磁石が備えられ、ステータには該磁極と所定の間隔を保
って対向しその近傍に該磁極の変化に応じて交流信号を
発生する交流信号発生捲線2がp個の折り返し銅箔配線
としてプリント基板上に備えられている。
2. Description of the Related Art FIG. 9 is a block diagram of a motor having a conventional speed control device. The rotor 1 is provided with a permanent magnet for frequency power generation that has a magnetic pole of 2p (a positive integer equal to or greater than p wave 1) poles, and the stator is opposed to the magnetic poles at a predetermined interval and is close to the magnetic poles. AC signal generating windings 2 for generating an AC signal in accordance with the change of P are provided on the printed board as p folded copper foil wirings.

【0003】即ち、この捲線2は図10に示すように上
記周波数発電形成用の永久磁石の磁極ピッチと等間隔で
形成された半径方向の発電線素2aを磁極と同数個有す
るような形状の環状に形成された櫛歯状の導電パターン
である。
That is, as shown in FIG. 10, the winding 2 has a shape having the same number of radial power generating wire elements 2a as the magnetic poles, which are formed at the same pitch as the magnetic pole pitch of the permanent magnet for frequency power generation. It is a comb-shaped conductive pattern formed in a ring shape.

【0004】この捲線2はロータ1の回転に伴い式
(1)に示されるような電圧信号e(t)を出力する。
The winding 2 outputs a voltage signal e (t) as shown in the equation (1) as the rotor 1 rotates.

【0005】 e(t)= K×n×sin(2 π×p×n×t) (1) k: 比例定数 n: 回転速度 p: 極対数 t: 時間 Kは構成要素の形状などで決まる比例定数で、モータが
同一ならば一定であり、振幅及び周波数が回転速度に比
例するから、例えばこの信号の波高値をサンプルホール
ド回路3で処理し出力すれば、速度に比例した速度電圧
が得られる。
E (t) = K × n × sin (2π × p × n × t) (1) k: proportional constant n: rotational speed p: number of pole pairs t: time K is determined by the shape of the constituent elements It is a constant of proportionality and is constant if the motors are the same, and since the amplitude and frequency are proportional to the rotation speed, for example, if the peak value of this signal is processed and output by the sample hold circuit 3, a speed voltage proportional to the speed can be obtained. To be

【0006】このサンプルホールド回路3の出力速度電
圧を速度制御手段4にて予め設定された基準電圧と比較
して、出力速度電圧と基準電圧との差に応じた信号を駆
動回路5に供給し、モータのトルクを制御するように構
成することにより、モータの速度はサンプルホールド回
路3の出力速度電圧が基準電圧と概略等しくなるような
速度で平衡し一定に制御される。
The output speed voltage of the sample and hold circuit 3 is compared with a reference voltage preset by the speed control means 4, and a signal corresponding to the difference between the output speed voltage and the reference voltage is supplied to the drive circuit 5. By configuring so as to control the torque of the motor, the speed of the motor is balanced and kept constant at a speed at which the output speed voltage of the sample hold circuit 3 becomes substantially equal to the reference voltage.

【0007】即ち、基準電圧をEsとすれば、式(2)
のような速度Nsで平衡する。
That is, assuming that the reference voltage is Es, equation (2)
Equilibrate at a speed Ns such as

【0008】 Ns= Es/K (2) 図6はこれらの過程を説明するタイミングチャートであ
る。
Ns = Es / K (2) FIG. 6 is a timing chart for explaining these processes.

【0009】[0009]

【発明が解決しようとする課題】ところで、従来の交流
信号発生捲線2の図11aに示すような発電信号の波高
値をサンプルホールドして図11bの速度電圧を得る方
法は、サンプリングするタイミングの一瞬の速度を検出
しているに過ぎず、波高値の繰り返し周期より短い周期
の速度変動は検出し得ない。
By the way, the conventional method for sampling and holding the peak value of the power generation signal as shown in FIG. 11a of the AC signal generating winding 2 to obtain the speed voltage of FIG. 11b is a moment of sampling timing. However, the speed fluctuation of a cycle shorter than the repetition cycle of the peak value cannot be detected.

【0010】即ち、発電信号の周波数より高い周波数の
速度変動を検出できず、また概略発電信号の周期に等し
い時間のムダ時間を有しこれによる位相遅れを生じるた
め、この速度電圧にて速度を制御するよう構成すると、
発電信号の周波数の1/8程度より高い周波数の回転ム
ラは制御抑制できず、負荷変動による速度変動も大きく
なる問題があった。
That is, since the speed fluctuation of a frequency higher than the frequency of the power generation signal cannot be detected, and there is a dead time of a time approximately equal to the cycle of the power generation signal, which causes a phase lag, the speed is changed at this speed voltage. When configured to control,
There is a problem that uneven rotation at a frequency higher than about 1/8 of the frequency of the power generation signal cannot be controlled and the speed fluctuation due to load fluctuation becomes large.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであり、モータの回転速度に応じた物理
値を検出する速度検出手段と、この出力信号に応じてモ
ータの速度を制御する速度制御手段と、前記速度制御手
段の出力に応じてモータを回転駆動する駆動回路とを備
えたモータにおいて、ロータに配設され多極の磁極を有
する永久磁石と、該磁極に対向しする如くステータに配
設され該磁極の変化に応じて互いに位相の異なる複数の
交流信号を発生する交流信号発生捲線と、該交流信号を
演算する演算手段とを備え、該演算手段の出力に応じて
モータの速度を制御するように構成した速度制御装置を
備えたモータを提供する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and includes speed detection means for detecting a physical value corresponding to the rotation speed of a motor, and speed of the motor according to the output signal. In a motor provided with a speed control means for controlling and a drive circuit for rotationally driving the motor according to the output of the speed control means, a permanent magnet having a multi-pole magnetic pole arranged on a rotor and facing the magnetic pole. As described above, it is provided with an AC signal generating winding which generates a plurality of AC signals having mutually different phases according to the change of the magnetic poles, and an arithmetic means for arithmetically operating the AC signal. A motor having a speed control device configured to control the speed of the motor is provided.

【0012】[0012]

【実施例】以下に本発明に係わる速度制御装置を備えた
モータの一実施例を図1乃至図8を参照して詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a motor having a speed control device according to the present invention will be described in detail below with reference to FIGS.

【0013】本発明の1実施例について説明する。図1
は本発明の概要を説明するブロック図、図2はそのタイ
ミングチャート、図3は本発明を実施したディスク駆動
モータの分解図である。
An embodiment of the present invention will be described. FIG.
Is a block diagram for explaining the outline of the present invention, FIG. 2 is a timing chart thereof, and FIG. 3 is an exploded view of a disk drive motor embodying the present invention.

【0014】先ず、本発明を実施したディスク駆動モー
タの概略構成を図3によって説明する。
First, a schematic structure of a disk drive motor embodying the present invention will be described with reference to FIG.

【0015】図3中、回転軸(図示せず)を備えたロー
タ10はフロッピーディスク(図示せず)を回転駆動す
るセンターハブ(図示せず)を有して一体回転する。
In FIG. 3, a rotor 10 provided with a rotation shaft (not shown) has a center hub (not shown) for driving a floppy disk (not shown) to rotate integrally therewith.

【0016】ロータ10はフランジ11内にN極及びS
極を交互に着磁した例えば8極の駆動用界磁磁極を形成
した環状の駆動用の永久磁石12が配置され、フランジ
11の外周には多極着磁された周波数発電形成用の永久
磁石13が嵌着されている。
The rotor 10 has a north pole and an S pole in the flange 11.
An annular driving permanent magnet 12 having driving magnetic poles of, for example, 8 poles, which are alternately magnetized, is arranged, and a multi-pole magnetized permanent magnet for frequency power generation is provided on the outer periphery of the flange 11. 13 is fitted.

【0017】一方、ステータベース14上には上記永久
磁石12と所定の間隔を保って対向し、所定の位置関係
を保った3相の駆動コイル(電機子コイル)15a,1
5b,15c及び電気角で120度の角度で配置された
3個のホール素子16a,16b,16cがそれぞれ配
置されている。また、ステータベース14は、上記周波
数発電形成用の永久磁石13と所定の間隔を保って対向
配置され、パターン形成された環状をなす櫛歯状の交流
信号発生捲線18を有する。
On the other hand, on the stator base 14, three-phase drive coils (armature coils) 15a, 1 which face the above-mentioned permanent magnet 12 at a predetermined interval and maintain a predetermined positional relationship.
5b, 15c and three Hall elements 16a, 16b, 16c arranged at an electrical angle of 120 degrees are arranged respectively. Further, the stator base 14 has a comb-teeth-shaped AC signal generating winding 18 which is arranged in a pattern and is opposed to the permanent magnet 13 for forming the frequency power generation with a predetermined space therebetween.

【0018】図5は本発明の実施例の交流信号発生捲線
の第一の例で、図10に示す従来のそれと比較してその
違いを説明する。図5に示す捲線18Aは上記磁極ピッ
チと等間隔で形成された半径方向の発電線素18A1 a
を磁極と同数個有するような形状の環状に形成された櫛
歯状の導電パターンで、上半分と下半分とに2分割され
ておりそれぞれ独立した捲線18A1 ,18A2 を構成
しており、電気角で90度のずれがあり、モータの回転
に伴い各々90度の位相差を有する交流信号を発電す
る。
FIG. 5 shows a first example of the AC signal generating winding of the embodiment of the present invention, and the difference will be described in comparison with the conventional one shown in FIG. The winding 18A shown in FIG. 5 is a radial power generating wire element 18A1a formed at equal intervals with the magnetic pole pitch.
Is a comb-shaped conductive pattern formed in an annular shape having the same number of magnetic poles, and is divided into two parts, an upper half and a lower half, which form independent windings 18A1 and 18A2. There is a 90 degree shift, and AC signals having a phase difference of 90 degrees are generated as the motor rotates.

【0019】図6は本発明の実施例の交流信号発生捲線
の第二の例で、交流信号発生捲線18Bは概略90度に
4分割された捲線18B1 〜18B4 から構成されてお
り、中心を挟んで対向する2つの捲線18B1 ,18B
3 は同相であり、直列に接続されているから実質的に2
群の捲線を構成しており、モータの回転にともない各々
90度の位相差を有する交流信号を発電する。この例は
図5の例と比較してロータに配置された多極の永久磁石
の面振れ変動に対して、捲線の発電出力の変動が小さく
抑えられ、また、二つの捲線の発電出力の差が小さくな
る特徴がある。さらに分割数を増すことによってこの特
徴はより効果を増す。
FIG. 6 shows a second example of the AC signal generating winding of the embodiment of the present invention. The AC signal generating winding 18B is composed of windings 18B1 to 18B4 which are divided into approximately 90 degrees, and the center of the winding is sandwiched. Two windings 18B1 and 18B facing each other
3 is in phase and is connected in series, so 2
The windings of the group are configured to generate an AC signal having a phase difference of 90 degrees with the rotation of the motor. Compared to the example of FIG. 5, this example suppresses the fluctuation of the power generation output of the winding to a small value with respect to the surface runout fluctuation of the multi-pole permanent magnets arranged in the rotor, and the difference between the power generation outputs of the two windings. Has a characteristic that becomes smaller. This feature becomes more effective by increasing the number of divisions.

【0020】そして、ロータ10の軸がステータベース
14上の軸受17にて回転自在に支持されることによ
り、ダイレクトドライブ型スピンドルモータが構成さ
れ、ロータ10は界磁磁界、駆動コイル、ホール素子、
駆動回路に相互作用による公知のホールブラシレスモー
タの原理により回転する。
The shaft of the rotor 10 is rotatably supported by bearings 17 on the stator base 14 to form a direct drive type spindle motor. The rotor 10 includes a field magnetic field, a drive coil, a Hall element,
It rotates according to the well-known principle of a Hall brushless motor that interacts with a drive circuit.

【0021】ここで、図1に示すブロック図において動
作を説明する。
The operation will now be described with reference to the block diagram shown in FIG.

【0022】18A1 と18A2 は被計測速度に比例し
た略等しい振幅と周波数で互いにπ/2の位相差を有す
る正弦波状の交流信号AとBとを発生する交流信号発生
捲線である。交流信号eA(t)とeB(t)は各々下
式で表される。
Reference numerals 18A1 and 18A2 are AC signal generating windings for generating AC signals A and B having a sinusoidal shape and having a phase difference of π / 2 with each other with substantially equal amplitude and frequency proportional to the measured speed. The AC signals eA (t) and eB (t) are expressed by the following equations, respectively.

【0023】 eA(t)= K×n×sin(2 π×p×n×t) (3) eB(t)= K×n×sin(2 π×p×n×t+π/2) (4) k: 比例定数 n: 回転速度 p: 極対数 t: 時間 これらは図2に示す波形a、bで示される。EA (t) = K × n × sin (2π × p × n × t) (3) eB (t) = K × n × sin (2π × p × n × t + π / 2) (4) ) K: proportional constant n: rotational speed p: number of pole pairs t: time These are shown by the waveforms a and b shown in FIG.

【0024】交流信号発生捲線18A1 ,18A2 によ
る交流信号が供給される演算手段19は、これら交流信
号eA(t)とeB(t)から常に波高値K×nに相当
する出力を得るべく構成するもので、まず瞬時値eA
(t)とeB(t)の比からn×tを式(5)により演
算で求める。 n×t=arctan(eB(t)/eA(t))/(2π×p) (5) 次に、n×tから波高値K×nを式(6)、(7)によ
り演算で求める。 K×n=eA(t)/sin(2 π×p×n×t) (6) K×n=eB(t)/sin(2 π×p×n×t+π/2) (7) いづれの演算によっても2つの瞬時値から常に波高値が
求め得ることが示されているが、瞬時値の絶対値が小さ
いタイミングでは誤差が大きくなる懸念があり、この場
合eAとeBの2つの瞬時値の絶対値が高い方を選択し
て用いるなどの方法により問題無くなる。この様に演算
手段19は2つの捲線18A1 ,18A2による交流信
号の瞬時値から波高値、またはこれに対応した大きさの
例えば電圧(図2のg)を速度信号電圧として出力す
る。なお、演算手段19は瞬時値をアナログ−ディジタ
ル変換した後マイクロプロセッサでソフト的に演算して
も良いし、またディジタル信号のままハードウエア論理
回路で演算処理しても良く、またアナログ信号のを関数
変換回路で変換した後に合成しても、さらにこれらを適
宜組み合わせることによっても目的は達成される。
The calculating means 19 to which the AC signal generated by the AC signal generating windings 18A1 and 18A2 is supplied is configured to always obtain an output corresponding to the peak value K × n from these AC signals eA (t) and eB (t). First, the instantaneous value eA
From the ratio of (t) and eB (t), n × t is calculated by the equation (5). n × t = arctan (eB (t) / eA (t)) / (2π × p) (5) Next, the peak value K × n is calculated from n × t by the equations (6) and (7). . K × n = eA (t) / sin (2π × p × n × t) (6) K × n = eB (t) / sin (2π × p × n × t + π / 2) (7) Either Although it has been shown that the peak value can always be obtained from two instantaneous values by calculation, there is a concern that the error may increase at the timing when the absolute value of the instantaneous value is small. In this case, the two instantaneous values of eA and eB There is no problem by a method such as selecting and using one with a higher absolute value. In this way, the calculating means 19 outputs a peak value from the instantaneous value of the AC signal by the two windings 18A1 and 18A2, or a voltage (g in FIG. 2) of a magnitude corresponding to this peak value as the speed signal voltage. The calculating means 19 may perform an analog-to-digital conversion of the instantaneous value and then perform a software operation with a microprocessor, or an arithmetic processing with a hardware logic circuit as it is as a digital signal. The object can be achieved by combining after conversion by the function conversion circuit or by appropriately combining these.

【0025】次に、この演算手段19の出力速度電圧を
速度制御手段20にて予め設定された基準電圧と比較し
て駆動回路21に供給し、出力速度電圧と基準電圧との
差に応じてモータのトルクを制御するように構成すれ
ば。モータの速度は演算手段19の出力速度電圧が基準
電圧と概略等しくなるような速度で平衡し一定に制御さ
れる点は従来例と同様である。この構成ではモータの速
度を連続的に検出でき、発電信号より高い周波数の速度
変動をも検出できムダ時間による位相遅れも少ないから
高い周波数の回転ムラも制御抑制でき、負荷変動による
速度変動も小さくできるなどの特徴が得られる。
Next, the output speed voltage of the calculation means 19 is compared with a reference voltage preset by the speed control means 20 and supplied to the drive circuit 21, and according to the difference between the output speed voltage and the reference voltage. If configured to control the torque of the motor. Similar to the conventional example, the speed of the motor is balanced and controlled at a speed such that the output speed voltage of the calculating means 19 becomes substantially equal to the reference voltage. With this configuration, the motor speed can be detected continuously, speed fluctuations with a frequency higher than the power generation signal can be detected, and phase delay due to dead time is small, so high-frequency rotation irregularities can be controlled and suppressed, and speed fluctuations due to load fluctuations are small. Features such as being able to be obtained.

【0026】ここで演算手段19の第2の演算手順につ
いて説明する。前述した交流信号A,Bは大きさと位相
の2つの情報で表現される回転ベクトルとして図7に示
す如くとらえられる。
Now, the second calculation procedure of the calculation means 19 will be described. The AC signals A and B described above can be regarded as a rotation vector represented by two pieces of information of magnitude and phase, as shown in FIG.

【0027】ここで任意の位相角θにおいて2つの交流
信号A,Bの瞬時値とベクトルの関係はこの図で表さ
れ、2つのベクトルはその大きさが等しく90゜の位相
差を有し、瞬時値はx軸に下ろされた垂線の長さとして
とらえられる。このベクトルと垂線が作る各々の三角形
は2角挟辺が等しいため合同である。これらからこの三
角形は2つの瞬時値が直角を挟む2辺となり、ベクトル
の大きさが斜辺である直角三角形を構成している。ここ
でピタゴラスの定理より、斜辺ベクトルの大きさの平方
は直角を挟む2辺瞬時値の平方の和として与えられる。
即ち、ベクトルの大きさである波高値K×nは2つの瞬
時値eA、eBの平方の和の平方根として式(8)のよ
うに演算により求められることが示される。
The relation between the instantaneous values of the two AC signals A and B and the vector at an arbitrary phase angle θ is shown in this figure, and the two vectors are equal in magnitude and have a phase difference of 90 °. The instantaneous value is taken as the length of the perpendicular drawn down the x-axis. Each triangle formed by this vector and the perpendicular is congruent because the two sides of the triangle are equal. From these, this triangle forms a right-angled triangle whose two instantaneous values are two sides sandwiching a right angle and whose vector size is the hypotenuse. Here, from the Pythagorean theorem, the square of the magnitude of the hypotenuse vector is given as the sum of the squares of the instantaneous values of the two sides that sandwich the right angle.
That is, it is shown that the crest value K × n, which is the magnitude of the vector, is obtained as a square root of the sum of the squares of the two instantaneous values eA and eB by calculation as in equation (8).

【0028】 K×n=(eA(t)2 +eB(t)2 )1/2 (8) なお、演算手段は瞬時値をアナログ−ディジタル変換し
た後マイクロプロセッサでソフト的に演算してもよい
し、またディジタル信号のままハードウエア論理回路で
演算処理しても良く、またアナログ信号を関数変換回路
で変換した後に合成しても、さらにこれらを適宜組み合
わせることによっても目的は達成される。
K × n = (eA (t) 2 + eB (t) 2 ) 1/2 (8) The calculating means may perform analog-to-digital conversion of the instantaneous value and then software-calculate it by a microprocessor. Alternatively, the digital logic signal may be processed as it is by a hardware logic circuit, or the analog signal may be converted after being converted by the function conversion circuit, or may be combined, and the object may be achieved by appropriately combining these.

【0029】図4はアナログ信号のまま関数変換し、式
(8)に相当する演算を為す事により波高値に相当する
電圧を得る回路の実施例である。捲線18A1 から発生
する交流信号eAは演算増幅器A1、トランジスタQ
1,2,5,6,7及び抵抗R1によって電流変換及び
絶対値化され図2のcの波形のようにIa となってQ
3,4で構成されるダイオードに流れ、その電流電圧特
性を利用して対数に相当する電圧Vdに変換する。
FIG. 4 shows an embodiment of a circuit for obtaining a voltage corresponding to a peak value by performing function conversion of an analog signal as it is and performing a calculation corresponding to the equation (8). The AC signal eA generated from the winding 18A1 is the operational amplifier A1 and the transistor Q.
The current is converted into an absolute value by 1, 2, 5, 6, 7 and the resistor R1 and converted into an absolute value, and becomes Ia as shown in the waveform of FIG.
It flows through the diode composed of 3 and 4, and it is converted into a voltage Vd corresponding to a logarithm by utilizing its current-voltage characteristic.

【0030】 Vd=2×h×ln(Ia /Is) =h×ln(Ia /Is)2 (9) h:半導体固有の定数 Is:ダイオードの暗電流 更に定電流IrでバイアスされたトランジスタQ8で電
圧シフトした後、トランジスタQ9の電流電圧特性で対
数逆変換された電流が図2eに示す波形のようにコレク
タに流れる。
Vd = 2 × h × ln (Ia / Is) = h × ln (Ia / Is) 2 (9) h: Semiconductor-specific constant Is: Dark current of diode Transistor Q8 biased by constant current Ir After the voltage shift at, the current inversely logarithmically converted by the current-voltage characteristic of the transistor Q9 flows through the collector as shown in the waveform of FIG. 2e.

【0031】同様にして捲線18A2 から発生する交流
信号ebは演算増幅器A2、トランジスタQ14,1
5,18,19,20及び抵抗R4によって電流変換及
び絶対値化され図2のdの波形のようにIbとなってQ
16,17で構成されるダイオードに流れ、更に定電流
IrでバイアスされたトランジスタQ21で電圧シフト
した後、トランジスタQ22の電流電圧特性で対数逆変
換された電流が図2fに示す波形のようにコレクタに流
れる。これらを合成した電流がIoとなる。
Similarly, the AC signal eb generated from the winding 18A2 is the operational amplifier A2 and the transistors Q14,1.
5, 18, 19, 20 and the resistor R4 convert the current into an absolute value and form Ib as shown in the waveform of d in FIG.
After flowing into the diode composed of 16 and 17, and further voltage-shifted by the transistor Q21 biased by the constant current Ir, the current inversely logarithmically converted by the current-voltage characteristic of the transistor Q22 has a collector-like waveform as shown in FIG. 2f. Flow to. The current obtained by combining these is Io.

【0032】 Io=Ia 2 /Ir+ Ib2 /Ir (10) この結果式(10)のようにIa とIbの平方の和に相当
する電流が得られる。このようにして2つの瞬時値に相
当する電流をそれぞれ平方演算しその和をとることによ
って波高値の平方に相当する電流が得られる。これをト
ランジスタQ10〜13によって前述の逆処理(平方根
演算)をすることにより和電流の平方根、即ち波高値相
当の速度電圧が図2のgのようにR3の電圧降下として
得られる。さらに、A3、R7,8、C2で構成した速
度制御手段で出力速度電圧を予め設定された基準電圧E
sと比較し、その差に応じてモータのトルクを制御する
ようA4、Q23、R6で構成される駆動回路20に供
給すれば、モータの速度は演算手段の出力速度電圧が基
準電圧と等しくなるような速度で平衡し、速度は一定に
制御される。
Io = Ia 2 / Ir + Ib 2 / Ir (10) As a result, a current corresponding to the sum of the squares of Ia and Ib is obtained as shown in Expression (10). In this way, the currents corresponding to the two instantaneous values are squared and the sum thereof is obtained to obtain the current corresponding to the square of the peak value. By performing the above-mentioned reverse processing (square root calculation) by the transistors Q10 to 13, the square root of the sum current, that is, the speed voltage corresponding to the peak value is obtained as the voltage drop of R3 as indicated by g in FIG. Further, the output speed voltage is set to a reference voltage E preset by the speed control means composed of A3, R7, 8 and C2.
By comparing with s and supplying to the drive circuit 20 composed of A4, Q23 and R6 so as to control the torque of the motor according to the difference, the speed of the motor becomes equal to the reference voltage at the output speed voltage of the calculating means. Equilibrate at such a speed and the speed is controlled to be constant.

【0033】以上の説明では交流信号は、正弦波で実質
的に電気角でπ/2の位相差を有する2相信号であった
が、これに限らず例えば3相信号でも瞬時値から演算に
より連続的に波高値が得られ、同様の効果を奏する。
In the above description, the AC signal is a two-phase signal which is a sine wave and has a phase difference of π / 2 substantially in electrical angle. However, not limited to this, for example, a three-phase signal can be calculated from an instantaneous value. The peak value is continuously obtained, and the same effect is obtained.

【0034】また、交流信号は奇数次高調波を含んでい
てもその2乗和も一定となるから、本発明の動作の障害
とはならない。
Further, even if the AC signal contains odd harmonics, the sum of squares thereof is also constant, so that it does not hinder the operation of the present invention.

【0035】前述した説明では独立した各々の捲線の発
電出力をそのまま演算手段に入力していたが、複数の発
電出力を適宜和合成したり差合成したりして位相と振幅
を調整した後に演算手段に入力する構成も可能であり、
この場合、3相の発電信号から2相信号を合成したり、
2相の発電信号から3相信号を合成するような構成も可
能である。
In the above description, the power generation output of each independent winding is directly input to the calculating means. However, the plurality of power generation outputs are appropriately sum-combined or difference-combined to adjust the phase and amplitude and then calculated. It is also possible to input to the means,
In this case, you can combine two-phase signals from three-phase power generation signals,
A configuration in which a three-phase signal is synthesized from a two-phase power generation signal is also possible.

【0036】また、複数の発電信号に振幅の差が有る場
合など、その振幅差を補正する補正機能を演算手段に含
めることにより、演算誤差が低減されるためより高度な
制御が可能となる。
Further, in the case where a plurality of power generation signals have a difference in amplitude, the calculation means includes a correction function for correcting the difference in amplitude, whereby a calculation error is reduced, so that more advanced control becomes possible.

【0037】なお、本実施例では演算手段19の出力電
圧のみでモータの速度を制御する例で説明したが、図8
に示すように、前述の交流信号発生巻線18の出力信号
や別に設けた周波数発電器の出力信号を所謂FG信号と
してその周波数や周期を周波数電圧変換手段22で変換
して得た速度電圧や、さらに基準周波数信号と前述した
FG信号との位相差を位相電圧変換手段23にて変換し
て得た位相電圧などに応じてモータの速度を制御する既
知の速度制御方法に本発明による演算手段出力電圧を付
加してモータの速度を制御するように構成しても、請求
範囲の構成を逸脱するものではなくまた、本発明固有の
発電信号より高い周波数の速度変動をも検出できる作用
は失われず、それによって得られる効果も同様に得られ
る。
In the present embodiment, an example in which the motor speed is controlled only by the output voltage of the calculating means 19 has been described.
As shown in FIG. 3, the speed signal obtained by converting the output signal of the AC signal generating winding 18 or the output signal of the separately provided frequency generator into a so-called FG signal, the frequency and period of which are converted by the frequency voltage converting means 22, Further, a known speed control method for controlling the speed of the motor in accordance with the phase voltage obtained by converting the phase difference between the reference frequency signal and the above-mentioned FG signal by the phase voltage converting means 23 is the calculating means according to the present invention. Even if the configuration is such that the output voltage is added to control the speed of the motor, it does not depart from the scope of the claims, and the effect of detecting speed fluctuations of a frequency higher than the power generation signal peculiar to the present invention is lost. The effect obtained by that is also obtained.

【0038】即ち、前述した位相電圧はモータの速度変
動の長周期の変動に対して有効な制御電圧であり、周波
数速度電圧はそれより短い周期で発電信号の1/8程度
の周波数以下の速度変動に対して有効な制御電圧であ
り、本発明による演算速度電圧はさらに高い周波数の速
度変動に対しても有効な制御電圧であるから、これらの
既知の制御電圧に本発明による演算速度電圧を適宜合成
してモータの速度を制御するように構成すれば本発明特
有の効果が既知の速度制御に付加されて得られる。
That is, the above-mentioned phase voltage is a control voltage effective for long-term fluctuations in the speed fluctuations of the motor, and the frequency speed voltage is a cycle shorter than that and a speed equal to or lower than about 1/8 of the frequency of the power generation signal. Since the control voltage is effective for fluctuations, and the operation speed voltage according to the present invention is also effective for speed fluctuations at a higher frequency, the operation speed voltage according to the present invention is added to these known control voltages. If the motor speed is controlled by combining them appropriately, the effect peculiar to the present invention can be obtained in addition to the known speed control.

【0039】[0039]

【発明の効果】以上説明したように本発明によればモー
タの速度を連続的に検出でき、発電信号より高い周波数
の速度変動をも検出できムダ時間による位相遅れも少な
いから高い周波数の回転ムラも制御抑制でき、負荷変動
による速度変動も小さくできるなど、モータの速度を高
度に安定するようにした速度制御装置を備えたモータを
提供できる。
As described above, according to the present invention, the speed of the motor can be continuously detected, the speed fluctuation of a frequency higher than the power generation signal can be detected, and the phase delay due to the dead time is small, so that the rotation irregularity of the high frequency is small. It is possible to provide a motor equipped with a speed control device that highly stabilizes the speed of the motor, such that the control can be suppressed and the speed fluctuation due to load fluctuation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の速度制御装置を備えたモータの一実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a motor including a speed control device of the present invention.

【図2】図1のタイミングチャートである。FIG. 2 is a timing chart of FIG.

【図3】本発明を実施したディスク駆動モータの概略構
成図である。
FIG. 3 is a schematic configuration diagram of a disk drive motor embodying the present invention.

【図4】図1の具体的な回路図である。FIG. 4 is a specific circuit diagram of FIG.

【図5】本発明に使用される交流信号発生捲線の第1の
実施例の図である。
FIG. 5 is a diagram of a first embodiment of an AC signal generating winding used in the present invention.

【図6】本発明に使用される交流信号発生捲線の第2の
実施例の図である。
FIG. 6 is a diagram of a second embodiment of an AC signal generating winding used in the present invention.

【図7】交流信号を大きさと徒位相で示したベクトル図
である。
FIG. 7 is a vector diagram showing an AC signal in terms of magnitude and phase difference.

【図8】本発明の速度制御装置を備えたモータの他の実
施例を示すブロック図である。
FIG. 8 is a block diagram showing another embodiment of the motor including the speed control device of the present invention.

【図9】従来の速度制御装置を備えたモータのブロック
図である。
FIG. 9 is a block diagram of a motor including a conventional speed control device.

【図10】図9における周波数発電形成用の巻線であ
る。
10 is a winding for forming frequency power generation in FIG.

【図11】図9のタイミングチャートである。11 is a timing chart of FIG.

【符号の説明】[Explanation of symbols]

18…交流信号発生捲線、19…演算手段、20…速度
制御手段、21…駆動回路,22…周波数電圧変換手
段、23…位相電圧変換手段。
18 ... AC signal generating winding, 19 ... Arithmetic means, 20 ... Speed control means, 21 ... Drive circuit, 22 ... Frequency voltage converting means, 23 ... Phase voltage converting means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】モータの回転速度に応じた物理値を検出す
る速度検出手段と、この出力信号に応じてモータの速度
を制御する速度制御手段と、前記速度制御手段の出力に
応じてモータを回転駆動する駆動回路とを備えたモータ
において、 ロータに配設され多極の磁極を有する永久磁石と、該磁
極に対向する如くステータに配設され該磁極の変化に応
じて互いに位相の異なる複数の交流信号を発生する交流
信号発生捲線と、該交流信号を演算する演算手段とを備
え、該演算手段の出力に応じてモータの速度を制御する
ように構成した事を特徴とする速度制御装置を備えたモ
ータ。
1. A speed detection means for detecting a physical value according to the rotation speed of the motor, a speed control means for controlling the speed of the motor according to the output signal, and a motor according to the output of the speed control means. In a motor provided with a drive circuit for rotational driving, a permanent magnet having a multi-pole magnetic pole arranged on a rotor and a plurality of permanent magnets arranged on a stator so as to face the magnetic pole and having different phases according to changes in the magnetic pole. Of the AC signal generating coil for generating the AC signal of the above, and a calculation unit for calculating the AC signal, and configured to control the speed of the motor according to the output of the calculation unit. With a motor.
【請求項2】前記交流信号は略正弦波状の波形であり、
前記演算手段は実質的に入力信号の2乗に比例した信号
を合成出力することを特徴とする請求項1に記載した速
度制御装置を備えたモータ。
2. The AC signal has a substantially sinusoidal waveform,
2. The motor having a speed control device according to claim 1, wherein the arithmetic means synthesizes and outputs a signal substantially proportional to the square of the input signal.
【請求項3】前記交流信号は、実質的に電気角で略π/
2の位相差を有する2相信号であることを特徴とする請
求項2に記載した速度制御装置を備えたモータ。
3. The AC signal has a substantially electrical angle of about π /.
The motor having the speed control device according to claim 2, wherein the motor is a two-phase signal having a phase difference of two.
【請求項4】前記演算手段には前記交流信号の波形を補
正する補正手段を備えたことを特徴とする請求項1から
3に記載した速度制御装置を備えたモータ。
4. A motor provided with a speed control device according to claim 1, wherein the arithmetic means is provided with a correction means for correcting the waveform of the AC signal.
JP03439395A 1995-01-31 1995-01-31 Motor with speed control Expired - Fee Related JP3240868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03439395A JP3240868B2 (en) 1995-01-31 1995-01-31 Motor with speed control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03439395A JP3240868B2 (en) 1995-01-31 1995-01-31 Motor with speed control

Publications (2)

Publication Number Publication Date
JPH08214584A true JPH08214584A (en) 1996-08-20
JP3240868B2 JP3240868B2 (en) 2001-12-25

Family

ID=12412941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03439395A Expired - Fee Related JP3240868B2 (en) 1995-01-31 1995-01-31 Motor with speed control

Country Status (1)

Country Link
JP (1) JP3240868B2 (en)

Also Published As

Publication number Publication date
JP3240868B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP3397007B2 (en) Brushless motor
TW201722060A (en) Linear hall effect sensors for multi-phase permanent magnet motors with PWM drive
WO2007052026A1 (en) Control of switched reluctance machines
JP3894566B2 (en) Method and apparatus for maximizing the maximum speed of a brushless DC motor
JP4205473B2 (en) Stepping motor control method and stepping motor control device
JP3690338B2 (en) Motor control device
JP3085884B2 (en) Speed detector for brushless motor
Niemelä Position sensorless electrically excited synchronous motor drive for industrial use based on direct flux linkage and torque control
JPH0824435B2 (en) DC brushless motor
JPH09103096A (en) Driving apparatus for stepping motor
JP3240868B2 (en) Motor with speed control
JPS6333395B2 (en)
Deskur et al. Application of digital phase locked loop for control of SRM drive
Aung et al. Speed Control System for BLDC Motor by using Direct Back EMF Detection Mathod
JP3402322B2 (en) Brushless motor
KR101539850B1 (en) Back elecromotive force detecting circuit and motor driving apparatus using the same
US12050103B2 (en) Rotational angle sensor device and method for determining a rotational angle, and control device for an electric motor
JPH01248987A (en) Driving method for brushless dc motor
JPS6321434B2 (en)
JP3402328B2 (en) Brushless motor
JPH0614580A (en) Motor controller
JPH0421390A (en) Brushless motor drive system
JPS5836184A (en) Speed adjusting circuit for dc brushless motor
JPS6087692A (en) Drive circuit in dc brushless motor
JPH0568954B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees