JPH0821375B2 - Negative electrode for lithium secondary battery - Google Patents
Negative electrode for lithium secondary batteryInfo
- Publication number
- JPH0821375B2 JPH0821375B2 JP2168434A JP16843490A JPH0821375B2 JP H0821375 B2 JPH0821375 B2 JP H0821375B2 JP 2168434 A JP2168434 A JP 2168434A JP 16843490 A JP16843490 A JP 16843490A JP H0821375 B2 JPH0821375 B2 JP H0821375B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- lithium
- negative electrode
- fiber
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 53
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 50
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 67
- 239000004917 carbon fiber Substances 0.000 claims description 67
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 47
- 229910002804 graphite Inorganic materials 0.000 claims description 39
- 239000010439 graphite Substances 0.000 claims description 39
- 239000000835 fiber Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 21
- 238000002441 X-ray diffraction Methods 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 14
- 239000011302 mesophase pitch Substances 0.000 claims description 4
- 239000011295 pitch Substances 0.000 description 33
- 238000009987 spinning Methods 0.000 description 13
- 239000008151 electrolyte solution Substances 0.000 description 12
- 238000005087 graphitization Methods 0.000 description 12
- 239000003575 carbonaceous material Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009830 intercalation Methods 0.000 description 4
- 230000002687 intercalation Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000006713 insertion reaction Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000011337 anisotropic pitch Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- -1 transition metal chalcogen compound Chemical class 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液リチウム二次電池用の負極材料
に関する。更に詳しくは、長寿命、高エネルギー密度が
要求される高性能非水電解液リチウム二次電池に適した
負極材料に関する。TECHNICAL FIELD The present invention relates to a negative electrode material for a non-aqueous electrolyte lithium secondary battery. More specifically, the present invention relates to a negative electrode material suitable for a high-performance non-aqueous electrolyte lithium secondary battery that requires long life and high energy density.
従来の技術 一般にアルカリ金属を負極活物質に用いた電池は、高
エネルギー密度、軽量小型、非水電解液を用いるため長
期保存性に優れるなど多くの利点を有し、既に、リチウ
ムに関しては、リチウム一次電池として実用化され広く
普及している。2. Description of the Related Art Generally, a battery using an alkali metal as a negative electrode active material has many advantages such as high energy density, light weight and small size, and excellent long-term storage stability because it uses a non-aqueous electrolyte solution. It has been put to practical use as a primary battery and is widely used.
しかしながら、この負極活物質を二次電池の負極とし
て使用した場合、一次電池にはない新たな問題が生じ
る。即ち、リチウムを負極とした二次電池は充放電のサ
イクル寿命が短く、また、放電効率が低いなどの問題で
ある。これは充電の際負極に析出するリチウムがいわゆ
るデンドライト(樹枝状晶)を形成することに起因す
る。However, when this negative electrode active material is used as a negative electrode of a secondary battery, a new problem not found in the primary battery occurs. That is, the secondary battery using lithium as a negative electrode has problems such as short cycle life of charge / discharge and low discharge efficiency. This is because the lithium deposited on the negative electrode during charging forms so-called dendrites (dendritic crystals).
これらリチウムの二次電池化における問題点に対する
解決策として、以下の方法が検討されている。即ち、電
解液を改善すること、リチウムを含む合金を負極に用い
ること、導電性高分子を負極に用いること、炭素材料を
負極に用いることである。The following methods have been studied as a solution to the problems in converting lithium into a secondary battery. That is, improving the electrolytic solution, using an alloy containing lithium in the negative electrode, using a conductive polymer in the negative electrode, and using a carbon material in the negative electrode.
電解液の改善として、有機溶媒の複合化、微量の溶媒
の添加(例えば、電気化学と工業物理化学、57、523(1
989))が検討されている。これらの方法は、有機溶媒
によって充電時のリチウムの析出状態が変化するという
点を依り処としているが、現状ではデンドライトの発生
を完全に排除できるような電解液は見い出されていな
い。To improve the electrolyte solution, compound organic solvents, add a small amount of solvent (for example, electrochemistry and industrial physical chemistry, 57 , 523 (1
989)) is being considered. These methods rely on the fact that the deposition state of lithium during charging changes depending on the organic solvent, but at present, no electrolytic solution that can completely eliminate the generation of dendrites has been found.
リチウムを含む合金として、例えば、Li−Al合金、ウ
ッド合金などが検討されている(NationalTech.Report,
Vol.32,No.5(1986))。これらの合金を負極に用いる
ことで、析出したリチウムは合金化して電極内部に取り
込まれるため、原理的にデンドライトの成長を排除でき
る。しかしながら、リチウムの濃度によって合金の結晶
構造が変化するなどの理由で電極の膨張収縮が生じるた
め、リチウムの濃度変化が大きい充放電をさせることが
できないこと、合金内部へのリチウムの拡散が律速とな
って電流密度を高くできないことなどの問題がある。As an alloy containing lithium, for example, a Li-Al alloy, a wood alloy, etc. have been studied (National Tech. Report,
Vol.32, No.5 (1986)). By using these alloys for the negative electrode, the precipitated lithium is alloyed and taken into the electrode, so that the growth of dendrite can be eliminated in principle. However, since the electrode expands and contracts due to the change in the crystal structure of the alloy depending on the lithium concentration, it is not possible to charge and discharge the lithium concentration largely, and the diffusion of lithium into the alloy is rate-determining. Therefore, there is a problem that the current density cannot be increased.
また、導電性高分子は、リチウムのドーピング・脱ド
ーピングを負極反応に応用するもので、リチウムは析出
せずに高分子内にドープされるので原理的にデンドライ
トの発生を排除できる(固体物理、17、793(198
2))。しかしながら、リチウムをドープした高分子の
電位が1.2V(リチウム基準)とリチウムに比較して大幅
に貴なこと、充放電のサイクル寿命の劣化のためリチウ
ムのドープ量を多くすることができないなどの問題が残
されている。In addition, the conductive polymer applies lithium doping / dedoping to the negative electrode reaction. Since lithium is doped into the polymer without depositing, dendrite generation can be eliminated in principle (solid physics, 17 , 793 (198
2)). However, the potential of the lithium-doped polymer is 1.2 V (lithium standard), which is significantly higher than that of lithium, and the lithium doping amount cannot be increased due to deterioration of the charge / discharge cycle life. The problem remains.
上述のように三種の手段は、必ずしも負極の欠点の解
決には成功していないのが現状である。これらの方法に
代わる新たな手段として近年注目されているのが、炭素
材料を負極活物質に用いる方法である。炭素材料を負極
に用いることで、充電の際リチウムは炭素層間に取り込
まれ(インターカレーション反応)、いわゆる黒鉛層間
化合物を形成する。この為、原理的にデンドライトの発
生を排除することができる。As described above, the three types of means do not always succeed in solving the drawbacks of the negative electrode. A method that uses a carbon material as a negative electrode active material has been drawing attention in recent years as a new alternative to these methods. By using a carbon material for the negative electrode, lithium is taken in between the carbon layers during charging (intercalation reaction) and forms a so-called graphite intercalation compound. Therefore, the generation of dendrites can be eliminated in principle.
また、炭素材料を用いた負極は、リチウム含有合金、
導電性高分子を用いた場合と比較して、リチウム金属に
対して化学的に安定であること、理論的にC6Liまでリチ
ウムを取り込むことが可能であり、炭素材料の軽量性、
良導電性とあいまって負極材料のエネルギー密度を高め
られることなどの優位性を持つ。更に、インターカレー
ション反応の特徴である本質的な反応の易可逆性の為、
充放電の繰り返しに対して長寿命であり二次電池の負極
として期待されている。Further, the negative electrode using the carbon material is a lithium-containing alloy,
Compared with the case of using a conductive polymer, it is chemically stable against lithium metal, theoretically it is possible to incorporate lithium up to C 6 Li, and the light weight of the carbon material,
Combined with good conductivity, it has the advantage of being able to increase the energy density of the negative electrode material. Furthermore, because of the intrinsic reversibility of the reaction, which is a characteristic of the intercalation reaction,
It has a long life with repeated charge and discharge and is expected as a negative electrode for secondary batteries.
上記のような特徴を有したリチウム二次電池の負極に
適した炭素材料として、本願発明者らは、X線回折法、
並びに、ラマン分光法によって規定したピッチを原料と
した炭素繊維が優れた性能を示すことを明かにし、既に
特許出願(特開平2−82466号公報参照)した。しかし
ながら、負極としてこのピッチ系炭素繊維を用いて充放
電を繰り返すと、サイクルに伴う放電容量に減少の傾向
が認められることがあり、容量のサイクル安定性を改善
することが必要であった。As a carbon material suitable for a negative electrode of a lithium secondary battery having the above characteristics, the inventors of the present application have proposed an X-ray diffraction method,
In addition, it has been clarified that carbon fibers whose raw material has a pitch defined by Raman spectroscopy show excellent performance, and a patent application has already been made (see Japanese Patent Laid-Open No. 2-82466). However, when this pitch-based carbon fiber is used as the negative electrode and charging and discharging are repeated, there is a tendency that the discharge capacity tends to decrease with the cycle, and it was necessary to improve the cycle stability of the capacity.
発明が解決しようとする課題 本発明は上記のごとき現状を鑑みてなされたもので、
繰り返し充放電に対する放電容量の安定性が高い、非水
電解液系リチウム二次電池用の負極に適したピッチ系炭
素繊維を提供することを目的とする。The present invention has been made in view of the current situation as described above,
An object of the present invention is to provide a pitch-based carbon fiber having a high stability of discharge capacity against repeated charging / discharging and suitable for a negative electrode for a non-aqueous electrolyte-based lithium secondary battery.
課題を解決するための手段 本発明者らは、前記のような諸問題を解決すべくピッ
チ系炭素繊維の構造に関し鋭意検討を重ねた結果、適当
な大きさの黒鉛結晶子とそれを取り巻く非晶質部分の集
合体という複合構造がリチウム二次電池のサイクル安定
性に本質的に重要であることを見い出した。更に、この
複合構造の規定の目的には、従来電池用の炭素材の規定
に用いられていたX線回折法による指標の他に、結晶子
の大きさを規定する配向係数とTEM写真による炭素繊維
横断面方向の黒鉛結晶子の大きさという二つの指標が、
炭素繊維の規定に最適であることを見い出し、本発明に
至ったものである。Means for Solving the Problems As a result of extensive studies on the structure of the pitch-based carbon fiber in order to solve the above-mentioned problems, the present inventors have found that a graphite crystallite having an appropriate size and a non-circular structure surrounding it. It has been found that the composite structure, which is an aggregate of crystalline portions, is essentially important for the cycle stability of lithium secondary batteries. Furthermore, the purpose of defining this composite structure is to use, in addition to the index by the X-ray diffraction method that was conventionally used for defining carbon materials for batteries, the orientation coefficient that defines the size of crystallites and the carbon by TEM photographs. Two indicators of the size of the graphite crystallite in the fiber cross-section direction,
The present invention has been found out to be the most suitable for the regulation of carbon fiber.
即ち、本発明はリチウム塩を有機溶媒に溶解した有機
電解液を用いたリチウム二次電池であって、以下に規定
する炭素繊維を活物質に用いることを特徴とした負極に
関するものである。即ち、X線回折法による結晶子パラ
メータである格子面間隔(d002)が0.338nm以上0.343nm
以下、c軸方向の結晶子の大きさ(Lc)が10nm以上30nm
以下、配向係数(FWHM)が7゜以上20゜以下であり、且
つ、繊維軸方向に長く伸びた黒鉛結晶子の繊維横断面方
向での平均の長さが20nm以上100nm以下である炭素繊維
である。That is, the present invention relates to a lithium secondary battery using an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent, and relates to a negative electrode characterized by using carbon fiber defined below as an active material. That is, the lattice spacing (d 002 ) which is a crystallite parameter by the X-ray diffraction method is 0.338 nm or more and 0.343 nm or more.
Below, the crystallite size (Lc) in the c-axis direction is 10 nm to 30 nm.
A carbon fiber having an orientation coefficient (FWHM) of 7 ° or more and 20 ° or less, and an average length in the fiber cross-section direction of graphite crystallites elongated in the fiber axis direction of 20 nm or more and 100 nm or less is there.
炭素繊維の規定に用いた上述の種々の物性値の表現方
法に関し、以下に説明する: (1)X線回折法 CuKαをX線源、標準物質に高純度シリコンを使用
し、炭素材に対し002回折パターンを測定し、そのピー
ク位置、半価幅から、各々、格子面間隔d002、黒鉛結晶
子のc軸方向の平均的長さLcを算出する。算出方法は、
例えば、「炭素繊維」(近代編集社、昭和61年3月発
行)第733〜742頁に記載されている。The method of expressing the above-mentioned various physical properties used in the definition of carbon fiber will be described below: (1) X-ray diffraction method CuKα is an X-ray source, high-purity silicon is used as a standard substance, and The 002 diffraction pattern is measured, and the lattice plane spacing d 002 and the average length Lc of the graphite crystallite in the c-axis direction are calculated from the peak position and the half width. The calculation method is
For example, it is described on pages 733 to 742 of "Carbon Fiber" (Modern Editing Co., Ltd., published in March 1986).
(2)炭素繊維のX線回折による配向係数 真直に張った炭素繊維束を含む平面に垂直にX線を照
射し、その透過回折光を002面回折が最大となる方向に
セットした検出器で検出する。この条件にX線回折測定
系を固定した状態で、繊維束を入射X線に垂直な平面内
で回転させて回折光を測定すると回折パターンは繊維の
回転角180゜の周期関数となり、一周期毎にひとつのピ
ークを示す。配向係数は、このピークの半値幅(FWHM)
として定義される。(2) Orientation coefficient of carbon fiber by X-ray diffraction With a detector that irradiates X-rays perpendicularly to the plane containing the straight carbon fiber bundle and sets the transmitted diffracted light in the direction in which the 002 plane diffraction becomes maximum. To detect. When the diffracted light is measured by rotating the fiber bundle in a plane perpendicular to the incident X-ray with the X-ray diffraction measurement system fixed under these conditions, the diffraction pattern becomes a periodic function of the fiber rotation angle of 180 ° One peak is shown for each. The orientation coefficient is the full width at half maximum of this peak (FWHM)
Is defined as
(3)繊維軸方向に伸ている黒鉛結晶子の横断面方向で
の平均の長さ 以下に記述するように透過型電子顕微鏡(TEM)によ
って測定する。(3) Average length in the cross-sectional direction of graphite crystallites extending in the fiber axis direction Measured by a transmission electron microscope (TEM) as described below.
炭素繊維を樹脂に埋め込んだ後、例えばダイアモンド
カッター等を用いて薄片を得る。この際、薄片の表面と
炭素繊維軸とは平行にする。透過型電子顕微鏡を用いて
薄片の002暗視野像を観察すると、繊維軸に平行な白い
帯と黒い帯の格子縞が観察される。格子縞の平均的な間
隔Δと像の拡大倍率Aから繊維軸方向に伸びているメソ
フェース領域の横断面方向での平均の長さlは、次式で
求められる:l=Δ/A 以下、本発明のピッチ系炭素繊維を用いた負極に関し
詳細に説明する。After embedding the carbon fibers in the resin, a thin piece is obtained using, for example, a diamond cutter. At this time, the surface of the thin piece is parallel to the carbon fiber axis. When the 002 dark-field image of the thin piece is observed using a transmission electron microscope, lattice stripes of white bands and black bands parallel to the fiber axis are observed. The average length l in the cross-sectional direction of the meso-face region extending in the fiber axis direction from the average interval Δ of the lattice fringes and the magnification A of the image is calculated by the following formula: l = Δ / A or less, The negative electrode using the pitch-based carbon fiber of the invention will be described in detail.
本発明に用いる紡糸用の原料ピッチは、配向し易い分
子種が形成されており、光学的に異方性のピッチ、即
ち、メソフェースピッチを与えるものであれば何ら制限
はなく、種々のメソフェースピッチを使用することがで
きる。これらのメソフェースピッチを得るための炭素質
原料としては、例えば、石炭系のコールタールピッチ、
石油系の重質油、ピッチ等が挙げられる。本発明におけ
る紡糸用ピッチは、基本的に易黒鉛化性のものが望まし
く、メソフェース含有量が70%以上、好ましくは90%以
上、最適には、95%以上のメソフェースを含有するピッ
チが適当である。The raw material pitch for spinning used in the present invention is not limited as long as it is formed of molecular species that are easily oriented and gives an optically anisotropic pitch, that is, a mesophase pitch, and various mesophase pitches are used. Face pitch can be used. Examples of the carbonaceous raw material for obtaining these mesophase pitches include coal-based coal tar pitch,
Examples include heavy petroleum oil and pitch. The pitch for spinning in the present invention is basically desirable to be graphitizable, and a pitch containing a mesophase content of 70% or more, preferably 90% or more, and optimally 95% or more is suitable. is there.
本発明者らは、充放電の繰り返しに対するサイクル安
定性の高いリチウム二次電池負極に適したピッチ系炭素
繊維を得るため、炭素繊維の製造工程、並びに、評価方
法に関し詳細に検討した。その結果、炭素繊維の構造に
おいて本質的に重要な点は、紡糸過程等の製造工程にお
いて、易黒鉛化性のメソフェースピッチを細分化するこ
とにより、黒鉛結晶構造の発達を抑制することであるこ
とが判明した。細分化されたメソフェースを内部組織と
した繊維は、黒鉛結晶構造の発達した領域(以下、黒鉛
結晶子と呼ぶ)と、これら黒鉛結晶子を相互に結合する
非晶質部分とから構成されるものである。即ち、黒鉛結
晶子とそれらを結合する非晶質部分とからなる複合構造
が、リチウム二次電池用負極として最適な構造であるこ
とが判明した。In order to obtain a pitch-based carbon fiber suitable for a lithium secondary battery negative electrode having high cycle stability against repeated charging / discharging, the present inventors have made detailed studies on a carbon fiber production process and an evaluation method. As a result, the essential point in the structure of the carbon fiber is to suppress the development of the graphite crystal structure by subdividing the graphitizable mesophase pitch in the manufacturing process such as the spinning process. It has been found. A fiber having a finely divided mesophase as an internal structure is composed of a region in which a graphite crystal structure is developed (hereinafter referred to as a graphite crystallite) and an amorphous portion that connects these graphite crystallites to each other. Is. That is, it has been found that the composite structure composed of the graphite crystallites and the amorphous portion connecting them is the most suitable structure for the negative electrode for the lithium secondary battery.
本発明が主張するところのリチウム二次電池用負極に
おける結晶子と非晶質部分との複合構造を持った炭素繊
維がリチウム二次電池負極活物質として優れた特性を有
する理由を以下に説明する。The reason why the carbon fiber having the composite structure of the crystallite and the amorphous portion in the lithium secondary battery negative electrode, which is claimed by the present invention, has excellent characteristics as a lithium secondary battery negative electrode active material will be described below. .
充電時、電解液中から負極である炭素繊維の中へリチ
ウムが挿入される。そして、炭素繊維内のリチウムは、
エネルギー的に安定な結晶構造の発達した黒鉛結晶子内
に選択的に挿入される。リチウムの挿入によって黒鉛結
晶子を構成する炭素層面の面間隔は拡大し、同時に黒鉛
結晶子が膨張することになるが、この膨張は、結晶子を
取り巻く非晶質部分が弾性的に吸収するため、炭素繊維
のマクロな構造の破壊には至らない。During charging, lithium is inserted into the negative electrode carbon fiber from the electrolytic solution. And the lithium in the carbon fiber is
It is selectively inserted in a graphite crystallite with a developed energetically stable crystal structure. The intercalation of the carbon layer surface that constitutes the graphite crystallite is expanded by the insertion of lithium, and at the same time the graphite crystallite expands, but this expansion is because the amorphous part surrounding the crystallite elastically absorbs it. , It does not lead to the destruction of the macroscopic structure of carbon fiber.
放電時、炭素繊維中のリチウムは、電解液中へ放出さ
れる。リチウムを層間から放出する際には、層間の収縮
が生じるが、黒鉛結晶子を取り巻く非晶質部分が弾性的
に結晶子を元の状態に戻す働きをするため、炭素繊維は
何等結晶の破壊を伴うことはない。During discharge, the lithium in the carbon fiber is released into the electrolytic solution. When lithium is released from the layers, the layers shrink, but the amorphous part surrounding the graphite crystallites elastically restores the crystallites to their original state. It is not accompanied by.
即ち、黒鉛結晶子へのリチウムの挿入反応は、黒鉛結
晶子の膨張という本来であれば非可逆な結晶構造の破壊
を生じせしめるが、本発明が主張するところの炭素繊維
は、黒鉛結晶子を非晶質部分が取り囲み、この非晶質部
分が弾性的に黒鉛結晶子の膨張収縮を吸収することに依
って、可逆性を発現せしめているのである。また、黒鉛
結晶子からのリチウムの放出反応においては、膨張した
黒鉛結晶子が元の状態へ収縮するが、この収縮は、非晶
質部分の弾性によって、マクロな炭素繊維の構造の破壊
には至らない。That is, the insertion reaction of lithium into the graphite crystallite causes expansion of the graphite crystallite, which is an irreversible destruction of the crystal structure, but the carbon fiber claimed by the present invention has The amorphous portion is surrounded, and the amorphous portion elastically absorbs the expansion and contraction of the graphite crystallite, thereby exhibiting reversibility. In addition, in the lithium release reaction from the graphite crystallite, the expanded graphite crystallite contracts to the original state, but this contraction causes the elasticity of the amorphous part to destroy the structure of the macro carbon fiber. I can't reach it.
即ち、安定な充放電の繰り返しに適した炭素繊維の条
件は、次の二点である。一つは、反応の場である黒鉛構
造の発達した部分が存在すること、一つは、膨張収縮を
弾性的に吸収する非晶質部分が存在することである。That is, the conditions of the carbon fiber suitable for stable repeated charging and discharging are the following two points. One is the presence of a developed portion of the graphite structure, which is the field of reaction, and the other is the presence of an amorphous portion that elastically absorbs expansion and contraction.
上述のように本発明において重要な点は、黒鉛結晶子
の発達を抑制すること、即ち、メソフェースピッチを細
かく分割することで強制的に炭素繊維内に結晶子とそれ
を取り巻く非晶質部分という複合構造を導入することに
ある。As described above, the important point in the present invention is to suppress the development of graphite crystallites, that is, by finely dividing the mesophase pitch, the crystallites and the amorphous portion surrounding them are forcibly forced into the carbon fiber. Is to introduce a complex structure.
このような構造の炭素繊維を物性値で表現すると、以
下のようになる; (1)X線回折法による結晶子パラメータにおいて、格
子面間隔(d002)が、0.338nm以上0.343nm以下で、且
つ、c軸方向の結晶子の大きさ(Lc)が10nm以上30nm以
下。The physical properties of the carbon fiber having such a structure are expressed as follows; (1) In the crystallite parameters by the X-ray diffraction method, the lattice spacing (d 002 ) is 0.338 nm or more and 0.343 nm or less, Also, the crystallite size (Lc) in the c-axis direction is 10 nm or more and 30 nm or less.
(2)X線回折法に於ける配向係数(FWHM)が、7゜以
上20゜以下。(2) The orientation coefficient (FWHM) in the X-ray diffraction method is 7 ° or more and 20 ° or less.
(3)繊維軸方向に長く伸びている黒鉛結晶子の横断面
方向での平均の長さが、20nm以上100nm以下。(3) The average length in the cross-sectional direction of the graphite crystallite extending in the fiber axis direction is 20 nm or more and 100 nm or less.
上記の条件の内、(1)は、炭素繊維の平均的な黒鉛
化度において、負極に適した範囲を規定、(2)は、繊
維軸方向に伸びた黒鉛結晶子の長さに対応する。即ち、
黒鉛結晶子の長さが長ければ、黒鉛結晶子は繊維軸に平
行に揃う傾向が強くなり、そのため結晶子の配向は発達
し配向角は小さくなる。(3)は、黒鉛結晶子の横断面
方向の大きさを規定するものである。(2)、(3)
は、即ち、黒鉛結晶子の大きさに関する規定である。こ
の様に炭素繊維をその内部構造に焦点を当て、Li二次電
池負極に最適な構造の本質が、黒鉛結晶子と非晶質部分
からなる複合構造であることを見い出し、X線回折によ
るd002、Lc、黒鉛結晶子の配向角、黒鉛結晶子の繊維断
面方向の大きさによって、その複合構造の規定を可能に
したことが本発明の最大の特徴である。この様にして規
定された炭素繊維を用いることで、繰り返し充放電に対
して安定な負極を提供することができる。Among the above conditions, (1) defines the range suitable for the negative electrode in the average degree of graphitization of carbon fiber, and (2) corresponds to the length of the graphite crystallite extending in the fiber axis direction. . That is,
If the length of the graphite crystallite is long, the graphite crystallite tends to be aligned parallel to the fiber axis, so that the crystallite orientation develops and the orientation angle decreases. (3) defines the size of the graphite crystallite in the cross-sectional direction. (2), (3)
Is a regulation regarding the size of the graphite crystallite. Thus, focusing on the internal structure of the carbon fiber, we found that the essence of the optimum structure for the negative electrode of the Li secondary battery was a composite structure consisting of a graphite crystallite and an amorphous part, and d by X-ray diffraction The greatest feature of the present invention is that the composite structure can be defined by 002 , Lc, the orientation angle of the graphite crystallites, and the size of the graphite crystallites in the fiber cross-sectional direction. By using the carbon fiber defined in this way, it is possible to provide a stable negative electrode against repeated charge and discharge.
本発明に規定するところの炭素繊維は、以下の方法を
単独もしくは組み合わせることによって製造することが
好ましい。The carbon fiber defined in the present invention is preferably produced by the following methods alone or in combination.
(1)極細繊維 原料ピッチを細く紡糸すればするほど、一般に炭素繊
維の断面方向の結晶子の発達を抑制し、同時に、結晶子
の配向を乱すことが出来る。そして、両者の効果によっ
て、X線回折による炭素繊維の平均的な黒鉛化度を抑制
することが出来る。具体的な炭素繊維の物性値は炭素繊
維の直径だけで決まるのではなく、原料ピッチの性状、
紡糸時のピッチの粘度、紡糸ノズルの形状等に依存して
変化するが、本発明に適する炭素繊維の直径は、8μm
以下である。(1) Ultrafine Fiber The finer the raw material pitch, the more the growth of crystallites in the cross-sectional direction of the carbon fiber can be suppressed, and at the same time, the orientation of crystallites can be disturbed. And, due to the effects of both, the average degree of graphitization of the carbon fibers by X-ray diffraction can be suppressed. Specific physical properties of carbon fiber are not determined only by the diameter of carbon fiber, but the properties of raw material pitch,
The diameter of the carbon fiber suitable for the present invention is 8 μm, although it varies depending on the pitch viscosity during spinning, the shape of the spinning nozzle, and the like.
It is the following.
(2)メッシュフィルターによるメソフェースの細分化 紡糸工程において、原料ピッチが紡糸ノズルから吐出
するまでのピッチの流路に予め網(メッシュフィルタ
ー)を設置し、ピッチがフィルターの目に応じて細分割
されるようにする。この様にして紡糸した炭素繊維は、
その断面内において、メソフェースがメッシュフィルタ
ーに応じて細分化されているため、黒鉛結晶子の発達が
抑制され、且つ、結晶子の配向も抑制することが出来
る。そして、両者の効果によって、X線回折による炭素
繊維の平均的な黒鉛化度を抑制することが出来る。(2) Subdivision of mesophase by mesh filter In the spinning process, a net (mesh filter) is installed in advance in the flow path of the pitch until the raw material pitch is discharged from the spinning nozzle, and the pitch is subdivided according to the eyes of the filter. To do so. The carbon fiber spun in this way is
In the cross section, the mesophase is subdivided according to the mesh filter, so that the growth of graphite crystallites can be suppressed and the orientation of crystallites can also be suppressed. And, due to the effects of both, the average degree of graphitization of the carbon fibers by X-ray diffraction can be suppressed.
(3)撹拌によるメソフェースの細分化 紡糸工程において、原料ピッチが紡糸ノズルから吐出
するまでのピッチ流路に予め撹拌子を設置し、撹拌子の
回転に依ってピッチが細分化されるようにする。このよ
うに紡糸してなる炭素繊維は、その断面方向、並びに、
繊維軸方向にメソフェースが細分化されているため黒鉛
結晶子の発達が抑制され、且つ、結晶子の配向も抑制さ
れる。そして、両者の効果によって、X線回折による炭
素繊維の平均的な黒鉛化度を抑制することが出来る。(3) Fragmentation of mesophase by stirring In the spinning process, a stirrer is installed in advance in the pitch flow path until the raw material pitch is discharged from the spinning nozzle, and the pitch is subdivided by the rotation of the stirrer. . The carbon fiber spun in this manner has a cross-sectional direction, and
Since the mesophase is subdivided in the fiber axis direction, the development of graphite crystallites is suppressed and the crystallite orientation is also suppressed. And, due to the effects of both, the average degree of graphitization of the carbon fibers by X-ray diffraction can be suppressed.
炭素繊維の黒鉛化処理は、不活性雰囲気下で行われる
が、その温度は2000℃以上、好ましくは、2600℃以上が
適当である。炭素繊維の充放電サイクルに対する安定性
は、基本的に発達した炭素層面が要求されるため、ある
程度高い温度での黒鉛化処理が望ましい。The graphitization treatment of carbon fibers is carried out in an inert atmosphere, and the temperature thereof is 2000 ° C or higher, preferably 2600 ° C or higher. The stability of the carbon fiber to the charge / discharge cycle basically requires a developed carbon layer surface, and thus graphitization treatment at a somewhat high temperature is desirable.
本発明は、上述したようにリチウムを挿入放出する反
応に適した構造の炭素繊維を用いることを特徴としたリ
チウム二次電池用の負極に関するものであり、本発明の
炭素繊維を用いた電極であれば、電極の形状に関し何ら
これを制限するものではない。The present invention relates to a negative electrode for a lithium secondary battery, which is characterized by using a carbon fiber having a structure suitable for the reaction of inserting and releasing lithium as described above, and is an electrode using the carbon fiber of the present invention. If so, it does not limit the shape of the electrode.
本発明に於けるリチウム二次電池の電解質として、過
塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF
4)、六フッ化アンチモン酸リチウム(LiSbF6)、六塩
化アンチモン酸リチウム(LiSbCl6)、六フッ化ひそ酸
リチウム(LiAsF6)、六フッ化リン酸リチウム(LiP
F6)、リチウムトリフロロメチルスルホネート(LiCF3S
O3)等のリチウム塩が好適に使用される。電解質として
用いるリチウム塩に要求されるのは、基本的には電気化
学的反応に於けるアニオンの安定性であるから、この条
件さえ満足されていれば、特に上記のリチウム塩に限定
されるものではない。As the electrolyte of the lithium secondary battery in the present invention, lithium perchlorate (LiClO 4 ) and lithium borofluoride (LiBF
4), lithium hexafluoro antimonate (LiSbF 6), six lithium chloride antimonate (LiSbCl 6), hexafluoride Hisosan lithium (LiAsF 6), lithium hexafluoro phosphate (LiP
F 6 ), lithium trifluoromethyl sulfonate (LiCF 3 S
Lithium salts such as O 3 ) are preferably used. The lithium salt used as the electrolyte is basically required to have stability of the anion in the electrochemical reaction. Therefore, as long as this condition is satisfied, the lithium salt is particularly limited to the above lithium salt. is not.
本発明が提供するところの炭素繊維を用いた負極は、
通常の方法によって、リチウム二次電池に負極として組
み込まれて実用化される。即ち、正極として、例えば、
遷移金属のカルコゲン化合物、共役高分子化合物、また
は、活性炭等を使用し得る。これらの負極と正極との間
に、合成繊維製の不織布、または、織布、ガラス繊維製
の不織布、または、織布などが、セパレーターとして使
用することができる。これらの負極、正極、及び、セパ
レーターは、電解液に浸漬されるか、或は、セパレータ
ーに電解液を含浸させて電池となる。The negative electrode using the carbon fiber provided by the present invention,
It is put into practical use by being incorporated in a lithium secondary battery as a negative electrode by a usual method. That is, as the positive electrode, for example,
A transition metal chalcogen compound, a conjugated polymer compound, activated carbon, or the like may be used. A synthetic fiber non-woven fabric, a woven fabric, a glass fiber non-woven fabric, a woven fabric, or the like can be used as a separator between the negative electrode and the positive electrode. The negative electrode, the positive electrode, and the separator are immersed in an electrolytic solution or the separator is impregnated with the electrolytic solution to form a battery.
本発明におけるリチウム二次電池の電解液に用いる有
機溶媒は、リチウム塩を溶解し得るものであればよい
が、好ましくは、非プロトン性有機溶媒であり、誘電率
が大きい、酸化還元に対する安定性が高く、いわゆる、
電気化学的な電位の窓が広い、粘度が低い、等の特性を
有したものが望まれる。The organic solvent used in the electrolytic solution of the lithium secondary battery in the present invention may be one capable of dissolving a lithium salt, but is preferably an aprotic organic solvent, has a large dielectric constant and is stable against redox. Is high, so-called
It is desired to have characteristics such as a wide electrochemical potential window and low viscosity.
具体的には、炭酸プロピレン、炭酸エチレン、スルホ
ラン、γ−ブチロラクトン、1,2−ジメトキシエタン、
テトラヒドロフラン、2メチル−テトラヒドロフラン、
アセトニトリル、ジメチルスルホキシド等の溶媒や、こ
れらの混合溶媒を用いることができる。また、電解液の
濃度は、溶媒や電解質の種類、電極材に依存するが、0.
1〜10モル/リットルの範囲が好ましい。Specifically, propylene carbonate, ethylene carbonate, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane,
Tetrahydrofuran, 2 methyl-tetrahydrofuran,
A solvent such as acetonitrile or dimethyl sulfoxide, or a mixed solvent thereof can be used. The concentration of the electrolytic solution depends on the type of solvent and electrolyte and the electrode material, but is 0.
The range of 1 to 10 mol / liter is preferable.
実施例 以下の実施例により、本発明を更に具体的に説明す
る。Examples The following examples further illustrate the present invention.
実施例1 メソフェース含有量が95%のピッチを原料として、直
径6.2μmのピッチ繊維を紡糸し、更に2800℃で黒鉛化
処理し炭素繊維を得た。この炭素繊維を長さ20mm〜30m
m、重量10mgとし、直径0.1mmのニッケル線で束ねたもの
を負極とした。上記の炭素繊維は、黒鉛化後の直径は、
約4.5μmであった。Example 1 A pitch fiber having a diameter of 6.2 μm was spun from a pitch having a mesophase content of 95% as a raw material, and graphitized at 2800 ° C. to obtain a carbon fiber. This carbon fiber is 20mm ~ 30m long
A negative electrode was prepared by bundling nickel wire having a diameter of 0.1 mm with m and weight of 10 mg. The above carbon fiber has a diameter after graphitization,
It was about 4.5 μm.
この炭素繊維のX線回折法による結晶パラメータは、
d002=0.3391nm、Lc=21.1nmであった。配向係数は、9.
2゜、TEM写真による繊維横断面方向の黒鉛結晶子の大き
さは、約45nmであった。The crystal parameters of this carbon fiber by the X-ray diffraction method are
d 002 = 0.3391 nm and Lc = 21.1 nm. The orientation coefficient is 9.
The size of the graphite crystallite in the cross-sectional direction of the fiber at 2 °, TEM photograph was about 45 nm.
測定には、0.1g程度の金属リチウムシートをニッケル
網に圧着したものを対極、対極と同じく金属リチウムシ
ートの小片をニッケル線に接続したものを基準極、LiAs
F6を炭酸プロピレンに1.5モル/リットルの濃度に溶か
した溶液を電解液に用いた三極セルをアルゴンガスを雰
囲気ガスとした密閉ガラス容器内に設置したものを用い
た。定電流の充放電を繰り返した際の負極の電位変化を
基準極を基準として測定した。For measurement, a metal lithium sheet of about 0.1 g was crimped onto a nickel net as the counter electrode, and a small piece of metal lithium sheet was connected to a nickel wire as with the counter electrode.
A triode cell using a solution of F 6 dissolved in propylene carbonate at a concentration of 1.5 mol / liter as an electrolytic solution was installed in a closed glass container using argon gas as an atmosphere gas. The potential change of the negative electrode when charging and discharging at constant current was repeated was measured with the reference electrode as a reference.
定電流充放電のサイクル試験を行った。充電電流、放
電電流共に、0.3mAとした。充電、即ち、リチウムの挿
入反応は、基準極に対する試験極の電位が0Vで、リチウ
ム金属と同電位になったところで終了し、30分間の開放
状態の後、放電、即ち、リチウムの放出反応に切り替え
た。放電反応は、基準極に対する試験極の電位が1Vにな
ったところで終了し、30分間の開放状態の後、再び充電
させた。A constant current charge / discharge cycle test was performed. Both charging current and discharging current were 0.3 mA. Charging, that is, the lithium insertion reaction ends when the potential of the test electrode with respect to the reference electrode is 0 V and becomes the same potential as the lithium metal, and after an open state for 30 minutes, discharge, that is, the lithium release reaction. I switched. The discharge reaction was terminated when the potential of the test electrode with respect to the reference electrode became 1 V, and after the open state for 30 minutes, the battery was charged again.
炭素繊維の自然電位は、約3Vであった。このような条
件で充放電させた結果、放電効率は、第1回目のサイク
ルは、80%程度であるが、第2回目以降は、96%以上99
%以下で安定していた。充放電の繰り返しに対する放電
曲線の変化は小さく、放電容量は190mAhr/gで安定して
いた。The natural potential of carbon fiber was about 3V. As a result of charging and discharging under these conditions, the discharge efficiency is about 80% in the first cycle, but 96% or more 99% after the second cycle.
It was stable below%. The change in the discharge curve due to repeated charging and discharging was small, and the discharge capacity was stable at 190 mAhr / g.
実施例2 実施例1と同一のピッチ原料、紡糸条件で、ピッチ繊
維で直径4μmに紡糸し、2800℃で黒鉛化処理し、炭素
繊維を得た。黒鉛化後の炭素繊維の直径は、約3μmで
あった。Example 2 Under the same pitch raw material and spinning conditions as in Example 1, pitch fibers were spun into a diameter of 4 μm and graphitized at 2800 ° C. to obtain carbon fibers. The diameter of the carbon fiber after graphitization was about 3 μm.
この炭素繊維のX線回折法による結晶パラメータは、
d002=0.3401nm、Lc=17.7nmであった。配向係数は、1
1.3゜、TEM写真による繊維横断面方向の黒鉛結晶子の大
きさは、約32nmであった。The crystal parameters of this carbon fiber by the X-ray diffraction method are
d 002 = 0.3401 nm and Lc = 17.7 nm. The orientation coefficient is 1
The size of the graphite crystallite in the fiber cross-sectional direction at 1.3 ° by a TEM photograph was about 32 nm.
実施例1と同一の条件で試験した結果、第1回目のサ
イクルの放電効率は、86%、第2回目以降のサイクルの
放電効率は、96%以上100%以下であった。放電容量
は、210mAhr/gであり、容量の減少もなく安定してサイ
クルした。As a result of testing under the same conditions as in Example 1, the discharge efficiency in the first cycle was 86%, and the discharge efficiency in the second and subsequent cycles was 96% or more and 100% or less. The discharge capacity was 210 mAhr / g, and the cycle was stable without a decrease in capacity.
第1図に、実施例1、実施例2における負極として用
いた炭素繊維の放電容量のサイクル変化を示す。FIG. 1 shows the cycle change of the discharge capacity of the carbon fiber used as the negative electrode in Example 1 and Example 2.
実施例3 メソフェース含有量が96%の原料ピッチを用い、400
メッシュのメッシュフィルターを用いて紡糸し、ピッチ
繊維で直径8.5μmとし、その後、2800℃で熱処理し
た。熱処理後の炭素繊維の直径は、約6.4μmであっ
た。Example 3 Using a raw material pitch having a mesophase content of 96%, 400
Spinning was performed using a mesh filter, and pitch fibers were made to have a diameter of 8.5 μm, and then heat treated at 2800 ° C. The diameter of the carbon fiber after heat treatment was about 6.4 μm.
この炭素繊維のX線回折法による黒鉛化度の指標は、
d002=0.3395nm、Lc=22.1nmであった。配向係数は、9.
2゜であった。TEM写真による繊維横断面方向の黒鉛結晶
子の大きさは、約40nmであった。The index of graphitization degree of this carbon fiber by X-ray diffraction method is
d 002 = 0.3395 nm and Lc = 22.1 nm. The orientation coefficient is 9.
It was 2 °. The size of the graphite crystallite in the cross-sectional direction of the fiber was about 40 nm on the TEM photograph.
電解液にLiClO4を1.5モル/リットルの濃度で炭酸プ
ロピレンに溶解した溶液を用い、他の条件は実施例1と
同一にして試験した結果、放電容量が170mAhr/gで安定
した充放電を繰り返した。Using a solution of LiClO 4 dissolved in propylene carbonate at a concentration of 1.5 mol / liter as the electrolytic solution, the other conditions were the same as in Example 1, and the results were tested. As a result, stable charge / discharge was repeated at 170 mAhr / g. It was
実施例4 実施例3と同一のピッチを原料として、3000メッシュ
のメッシュフィルターを用いてピッチ繊維で直径4μm
に紡糸したものを2800℃で熱処理した炭素繊維を負極と
して試験した。熱処理後の炭素繊維の直径は、約3μm
であった。Example 4 The same pitch as in Example 3 was used as a raw material, and a 3000-mesh mesh filter was used to obtain pitch fibers having a diameter of 4 μm
A carbon fiber obtained by heat-treating the spun fiber at 2800 ° C. was tested as a negative electrode. Diameter of carbon fiber after heat treatment is about 3μm
Met.
この炭素繊維のX線回折法による黒鉛化度の指標は、
d002=3.413A、Lc=133A、であった。配向係数は、17.2
゜であった。TEM写真による繊維横断面方向の黒鉛結晶
子の大きさは、約25nmであった。The index of graphitization degree of this carbon fiber by X-ray diffraction method is
d 002 = 3.413A, was Lc = 133A,. The orientation coefficient is 17.2
It was °. The size of the graphite crystallite in the cross-sectional direction of the fiber was about 25 nm on the TEM photograph.
実施例1と同様の条件で充放電試験した結果、放電容
量160mAhr/gで安定してサイクルした。As a result of a charge / discharge test conducted under the same conditions as in Example 1, the battery was stably cycled at a discharge capacity of 160 mAhr / g.
第2図に実施例3と実施例4の放電容量のサイクル変
化を示す。FIG. 2 shows the cycle changes of the discharge capacities of Example 3 and Example 4.
実施例5 メソフェース含有量が96%の原料ピッチを、撹はん棒
を備えた紡糸器の中に入れ、撹はん棒を30rpmで回転さ
せながら、ピッチ繊維で直径約8μmに紡糸した。その
後、2800℃で熱処理して炭素繊維を得た。炭素繊維の直
径は、約6μmであった。Example 5 A raw material pitch having a mesophase content of 96% was placed in a spinning machine equipped with a stirring bar, and spun with a pitch fiber to a diameter of about 8 μm while rotating the stirring bar at 30 rpm. Then, it heat-processed at 2800 degreeC and obtained the carbon fiber. The diameter of the carbon fiber was about 6 μm.
この炭素繊維のX線回折法による黒鉛化度の指標は、
d002=0.3396nm、Lc=20.8nm、であった。配向係数は、
11.2゜であった。TEM写真による繊維横断面方向の黒鉛
結晶子の大きさは、約30nmであった。The index of graphitization degree of this carbon fiber by X-ray diffraction method is
It was d 002 = 0.3396 nm and Lc = 20.8 nm. The orientation coefficient is
It was 11.2 °. The size of the graphite crystallite in the cross-sectional direction of the fiber was about 30 nm on the TEM photograph.
実施例1と同様の条件で充放電試験した結果、放電容
量180容量mAhr/gで安定したサイクル挙動を示した。As a result of a charge / discharge test conducted under the same conditions as in Example 1, a stable cycle behavior was exhibited at a discharge capacity of 180 capacity mAhr / g.
比較例1 メソフェース含有量が96%のピッチを原料として、ピ
ッチ繊維で、直径15μmに紡糸し後、2900℃で熱処理し
た炭素繊維を試験した。この炭素繊維の直径は、約11.4
μmであった。Comparative Example 1 A carbon fiber was prepared by using pitch having a mesophase content of 96% as a raw material, spinning the pitch fiber to a diameter of 15 μm, and then heat-treating the carbon fiber at 2900 ° C. The diameter of this carbon fiber is approximately 11.4.
μm.
X線回折法による黒鉛化度の指標は、d002=0.3379n
m、Lc=39.7nm、であった。配向係数は、5.6゜であっ
た。TEM写真による繊維横断面方向の黒鉛結晶子の大き
さは、約160nmであった。The index of graphitization degree by X-ray diffraction method is d 002 = 0.3379n
m, Lc = 39.7 nm. The orientation coefficient was 5.6 °. The size of the graphite crystallite in the cross-sectional direction of the fiber was about 160 nm according to the TEM photograph.
実施例1と同様の試験を行なった結果、初期容量は15
0nAhr/gであったが、充放電のサイクルを繰り返すとそ
の容量はサイクル数にほぼ比例して減少した。第2図に
実施例3、実施例4と併せて放電容量のサイクル変化を
示す。As a result of the same test as in Example 1, the initial capacity was 15
It was 0 nAhr / g, but its capacity decreased almost in proportion to the number of cycles when the charge and discharge cycles were repeated. FIG. 2 shows the cycle change of the discharge capacity in combination with Example 3 and Example 4.
発明の効果 本発明に依れば、放電容量が大きく、繰り返し充放電
に対する放電容量の安定性が高い、非水電解液系リチウ
ム二次電池用の負極に適した炭素材料を提供することを
可能とした。EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a carbon material having a large discharge capacity and a high stability of the discharge capacity against repeated charge and discharge, which is suitable for a negative electrode for a non-aqueous electrolyte lithium secondary battery. And
第1図は、実施例1と実施例2の放電容量のサイクル変
化を示したものである。第2図は、実施例3、実施例4
と比較例1の放電容量のサイクル変化を示したものであ
る。FIG. 1 shows the cycle changes of the discharge capacities of Example 1 and Example 2. FIG. 2 shows Example 3 and Example 4.
And the cycle change of the discharge capacity of Comparative Example 1.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 公仁 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式會社第1技術研究所内 (72)発明者 佐藤 真樹 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式會社第1技術研究所内 (72)発明者 藤本 研一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式會社第1技術研究所内 (56)参考文献 特開 平2−82466(JP,A) 特開 平1−292753(JP,A) 特開 昭62−165857(JP,A) 稲垣道夫外6名,「炭素」1979,No 99,PP.130−137. ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kimito Suzuki, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Kanagawa, Ltd. 1st Technical Research Laboratory, Nippon Steel Co., Ltd. (72) Masaki Sato, Ida, Nakahara-ku, Kawasaki, Kanagawa 1618 Nippon Steel & Co., Ltd. First Technology Research Institute (72) Inventor Kenichi Fujimoto Ida, Nakahara-ku, Kawasaki-shi, Kanagawa 1618, Nippon Steel & Co., Ltd. Technical Research Center (56) References 2-82466 (JP, A) JP-A 1-292753 (JP, A) JP-A-62-165857 (JP, A) Inagaki Michio 6 persons, "Carbon" 1979, No 99, PP. 130-137.
Claims (1)
であって、X線回折法による結晶子パラメータである格
子面間隔(d002)が0.338nm以上0.343nm以下、c軸方向
の結晶子の大きさ(Lc)が10nm以上30nm以下、配向係数
(FWHM)が7゜以上20゜以下であり、且つ、繊維軸方向
に長く伸びた黒鉛結晶子の繊維横断面方向での平均の長
さが20nm以上100nm以下である炭素繊維を用いたことを
特徴とするリチウム二次電池用負極。1. A carbon fiber made of mesophase pitch as a raw material, which has a lattice spacing (d 002 ) which is a crystallite parameter according to an X-ray diffraction method of 0.338 nm or more and 0.343 nm or less and a crystallite in the c-axis direction. The size (Lc) is 10 nm or more and 30 nm or less, the orientation coefficient (FWHM) is 7 ° or more and 20 ° or less, and the average length in the fiber cross-section direction of the graphite crystallites elongated in the fiber axis direction is A negative electrode for a lithium secondary battery, which is characterized by using a carbon fiber of 20 nm or more and 100 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2168434A JPH0821375B2 (en) | 1990-06-28 | 1990-06-28 | Negative electrode for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2168434A JPH0821375B2 (en) | 1990-06-28 | 1990-06-28 | Negative electrode for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0461747A JPH0461747A (en) | 1992-02-27 |
JPH0821375B2 true JPH0821375B2 (en) | 1996-03-04 |
Family
ID=15868048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2168434A Expired - Fee Related JPH0821375B2 (en) | 1990-06-28 | 1990-06-28 | Negative electrode for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0821375B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0573266B1 (en) * | 1992-06-01 | 1999-12-08 | Kabushiki Kaisha Toshiba | Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery |
JP3175801B2 (en) * | 1993-09-17 | 2001-06-11 | 株式会社東芝 | Negative electrode for secondary battery |
US5795678A (en) * | 1994-04-01 | 1998-08-18 | Kabushiki Kaisha Toshiba | Negative electrode for use in lithium secondary battery and process for producing the same |
JPH0823183A (en) | 1994-07-06 | 1996-01-23 | Matsushita Electric Ind Co Ltd | Structure of cooling member |
JPH08100329A (en) * | 1994-09-29 | 1996-04-16 | Petoca:Kk | Production of milled graphite fiber |
JP3481063B2 (en) * | 1995-12-25 | 2003-12-22 | シャープ株式会社 | Non-aqueous secondary battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2516741B2 (en) * | 1986-01-17 | 1996-07-24 | 矢崎総業株式会社 | Non-aqueous electrolyte secondary battery |
JPH01292753A (en) * | 1988-05-18 | 1989-11-27 | Mitsubishi Gas Chem Co Inc | Secondary battery |
JP2612320B2 (en) * | 1988-09-20 | 1997-05-21 | 新日本製鐵株式会社 | Lithium secondary battery using carbon fiber for both electrodes |
-
1990
- 1990-06-28 JP JP2168434A patent/JPH0821375B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
稲垣道夫外6名,「炭素」1979,No99,PP.130−137. |
Also Published As
Publication number | Publication date |
---|---|
JPH0461747A (en) | 1992-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5153082A (en) | Nonaqueous electrolyte secondary battery | |
US5340670A (en) | Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery | |
JP3541387B2 (en) | Battery electrode, secondary battery using the same, and method of manufacturing battery electrode | |
Endo et al. | Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery | |
JP3556270B2 (en) | Lithium secondary battery | |
EP0495613B1 (en) | Lithium secondary battery and carbonaceous material useful therein | |
EP0742295B1 (en) | Carbon fibre for secondary battery and process for producing the same | |
JP2612320B2 (en) | Lithium secondary battery using carbon fiber for both electrodes | |
JP3509050B2 (en) | Lithium secondary battery and method of manufacturing the same | |
JP3499584B2 (en) | Lithium secondary battery | |
US5851697A (en) | Negative electrode material for lithium secondary cell, method for its production, and lithium secondary cell | |
Yamaura et al. | High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material | |
US5556723A (en) | Negative electrode for use in a secondary battery | |
JP3311104B2 (en) | Lithium secondary battery | |
JP4354723B2 (en) | Method for producing graphite particles | |
JPH0770328B2 (en) | Secondary battery | |
JPH0821375B2 (en) | Negative electrode for lithium secondary battery | |
JP3840087B2 (en) | Lithium secondary battery and negative electrode material | |
JP4314087B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH0589879A (en) | Lithium secondary battery | |
JPH10255799A (en) | Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture | |
JPH11111297A (en) | Lithium secondary battery | |
JPH0770327B2 (en) | Secondary battery | |
KR20040003738A (en) | Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode | |
JPH10255803A (en) | Carbon material for secondary battery negative electrode and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |