[go: up one dir, main page]

JPH08211406A - Active matrix display element - Google Patents

Active matrix display element

Info

Publication number
JPH08211406A
JPH08211406A JP1615995A JP1615995A JPH08211406A JP H08211406 A JPH08211406 A JP H08211406A JP 1615995 A JP1615995 A JP 1615995A JP 1615995 A JP1615995 A JP 1615995A JP H08211406 A JPH08211406 A JP H08211406A
Authority
JP
Japan
Prior art keywords
light
shielding film
potential
light shielding
shielding films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1615995A
Other languages
Japanese (ja)
Inventor
Hitoshi Takada
仁 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP1615995A priority Critical patent/JPH08211406A/en
Publication of JPH08211406A publication Critical patent/JPH08211406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: To decrease the leakage current of a polycrystalline silicon TFT by relatively determining the values of the capacitance between light shielding films and respective inter- electrode wirings and between pixel electrodes in such a manner that the potential of the light shielding films enter in the range of the specific min. potential of the light shielding films. CONSTITUTION: The light shielding films 8 are formed separately by each of respective pixels and are insulated and are provided with the overlaps with insulating films 7 between the light shielding films 8 and gate electrodes 1a wirings, between the light shielding films 8 and source electrode wirings 3 and between the hight shielding film 8 and the pixel electrode 4. The capacitance between the light shielding films 8 and the gate electrode wirings is defined as C1 , the capacitance between the light shielding films 8 and the source electrode wirings 3 as C2 and the capacitance between the light shielding films 8 and the pixel electrodes 4 as C3 . The values of C1 to C3 are then relatively determined in such a manner that the potential VB of the light shielding films enters in the range of VBMIN±2V if the potential VB of the light shielding films at which the parasitic channel current of the polycrystal semiconductor TFTs is nearly minimized is defined as the min. potential VBMIN of the light shielding films at the time the thin-film transistors (TFTs) is brought into a non-selection state by impression of the max. effective voltage between the sources and the drains and impression of the off voltage on the gate electrodes 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶半導体をチャネ
ルに用いた薄膜トランジスタ(以下、TFTと呼ぶ)を
備えたアクティブマトリクス表示素子に関する。具体的
には、TFT駆動の液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix display device having a thin film transistor (hereinafter referred to as TFT) using a polycrystalline semiconductor as a channel. Specifically, it relates to a liquid crystal display device driven by a TFT.

【0002】[0002]

【従来の技術】近年、液晶表示素子をはじめとする平面
型表示素子が様々な分野で広く用いられている。なかで
もアクティブマトリクス表示素子は、表示密度や視野
角、コントラストなどの面で単純マトリクス表示素子に
比して優位性がある。そして、通常アクティブマトリク
ス表示素子のスイッチング素子としてTFTが用いられ
ている。
2. Description of the Related Art In recent years, flat panel display devices such as liquid crystal display devices have been widely used in various fields. Among them, the active matrix display element is superior to the simple matrix display element in terms of display density, viewing angle, contrast and the like. A TFT is usually used as a switching element of an active matrix display element.

【0003】種々の構造形態があるTFTのなかで、そ
の形成が容易であることからアモルファスシリコンTF
Tが広く用いられている。しかし、アモルファスシリコ
ンTFTはキャリアの移動度が低いため高速のスイッチ
ング動作が得られにくい。したがって、高性能の表示素
子に求められる高開口率化、駆動回路集積化などの要求
に応えられない。
Among TFTs having various structural forms, amorphous silicon TF is easy to form.
T is widely used. However, since the amorphous silicon TFT has a low carrier mobility, it is difficult to obtain a high-speed switching operation. Therefore, it is not possible to meet the demands for high aperture ratio and drive circuit integration, which are required for high-performance display elements.

【0004】そのため、アモルファスシリコンTFTに
くらべてキャリア移動度が相対的に高い多結晶シリコン
TFTが今後の高性能表示素子用の駆動素子として期待
されている。
Therefore, a polycrystalline silicon TFT, which has a relatively higher carrier mobility than an amorphous silicon TFT, is expected as a driving element for high performance display elements in the future.

【0005】次にトップゲート型TFTの基板側の遮光
(裏面遮光)に関する従来技術を説明する。まず従来例
1(特開昭60−216377公報)では、アモルファ
スシリコンTFTの素子構造について遮光膜とソース電
極配線とが兼用して用いられている。また、従来例2
(特開平4−20935公報)では遮光膜と蓄積容量と
を同一層に、同一材料にて形成することを特徴としてい
る。これらの従来技術においては、多結晶半導体TFT
において特に問題となる、リーク電流への遮光膜の電位
の影響については考慮されていない。
Next, a conventional technique concerning light shielding (back surface light shielding) on the substrate side of the top gate type TFT will be described. First, in Conventional Example 1 (Japanese Patent Laid-Open No. 60-216377), the light-shielding film and the source electrode wiring are used in common for the element structure of the amorphous silicon TFT. In addition, conventional example 2
(JP-A-4-20935) is characterized in that the light-shielding film and the storage capacitor are formed in the same layer with the same material. In these conventional techniques, a polycrystalline semiconductor TFT is used.
In particular, the influence of the potential of the light-shielding film on the leak current, which is particularly problematic, is not considered.

【0006】また、特願平6−201116では、多結
晶半導体TFTのリーク電流を低減せしめるために、導
電性遮光膜をゲート選択電位より低く、ゲート非選択電
位より高い特定の遮光膜電位を印加することが示されて
いる。
Further, in Japanese Patent Application No. 6-201116, in order to reduce the leak current of the polycrystalline semiconductor TFT, a specific light-shielding film potential lower than the gate selection potential and higher than the gate non-selection potential is applied to the conductive light-shielding film. Has been shown to do.

【0007】[0007]

【発明が解決しようとする課題】一般に、多結晶シリコ
ンTFTには、光を照射するとゲートを非選択(オフ状
態)にした際のリーク電流が増大するという特性があ
る。そのため、液晶表示素子の画素を駆動するスイッチ
ング素子として用いる際には、何らかの遮光を施すこと
が好ましい。しかし、トップゲート型の多結晶シリコン
TFTにおいては、TFT素子構造の裏側からの光を遮
り、かつTFT特性を損なわないような構造は従来知ら
れていなかった。
Generally, a polycrystalline silicon TFT has a characteristic that, when irradiated with light, a leak current increases when the gate is deselected (off state). Therefore, when used as a switching element for driving the pixels of the liquid crystal display element, it is preferable to provide some light shielding. However, in a top-gate type polycrystalline silicon TFT, a structure that blocks light from the back side of the TFT element structure and does not impair the TFT characteristics has not been heretofore known.

【0008】なお、本発明のトップゲート型とはチャネ
ルからみてゲート電極が基板と反対側に設けられた構造
のものを指している。コプレーナ型TFT又は順スタガ
ー型TFTなどがこの構造を有している。
The top gate type of the present invention refers to a structure in which the gate electrode is provided on the side opposite to the substrate when viewed from the channel. A coplanar TFT, a forward stagger TFT, or the like has this structure.

【0009】[0009]

【課題を解決するための手段】本発明は、前述した課題
を解決すべくなされたものであり、画素電極と、画素電
極を駆動する駆動素子としてトップゲート型の多結晶半
導体TFTが備えられた第1の基板と、画素電極に対向
する対向電極が備えられた第2の基板と、第1の基板と
第2の基板との間に光制御層とが備えられ、第1の基板
と多結晶半導体TFTのチャネルとの間に絶縁膜と導電
性の遮光膜が設けられ、絶縁膜はチャネルと遮光膜との
間に配置されてなるアクティブマトリクス表示素子であ
って、前記遮光膜は各画素ごとに分離して形成されかつ
絶縁され、前記遮光膜とゲート電極配線との間、前記遮
光膜とソース電極配線との間、及び前記遮光膜と画素電
極との間に絶縁膜との重なりが設けられ、前記遮光膜と
ゲート電極配線間の容量をC1 、前記遮光膜とソース電
極配線間の容量をC2 、及び前記遮光膜と画素電極間の
容量をC3 とすると、ソースドレイン間に最大実効電圧
が印加され、かつゲート電極にオフ電圧が印加されてT
FT非選択状態となった際に、多結晶半導体TFTの寄
生チャネル電流がほぼ最小となる遮光膜電位VB を最小
遮光膜電位VBMINとすると、遮光膜電位VB =最小遮光
膜電位がVBMIN±2Vの範囲に入るように、C1 、C2
及びC3 の値が相対的に決められたことを特徴とするア
クティブマトリクス表示素子を提供する。これを第1の
発明と呼ぶ。なお、C1 、C2及びC3 の容量値を決め
る際に、パターン上で連続して繋がっている導電位の各
領域のなかで実効的に容量結合する部分を含めるものと
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and is provided with a pixel electrode and a top gate type polycrystalline semiconductor TFT as a driving element for driving the pixel electrode. A first substrate, a second substrate provided with a counter electrode facing the pixel electrode, and a light control layer provided between the first substrate and the second substrate are provided. An active matrix display element in which an insulating film and a conductive light-shielding film are provided between a channel of a crystalline semiconductor TFT and the insulating film is disposed between the channel and the light-shielding film, and the light-shielding film is provided for each pixel. Are formed separately and insulated from each other, and there is no overlap between the light-shielding film and the gate electrode wiring, between the light-shielding film and the source electrode wiring, and between the light-shielding film and the pixel electrode with the insulating film. Provided between the light shielding film and the gate electrode wiring C 1 capacity, and the capacitance between the light shielding film and the source electrode wiring C 2, and the capacitance between the shielding film and the pixel electrode and C 3, the maximum effective voltage is applied between the source and the drain, and the gate electrode OFF voltage is applied and T
When the light-shielding film potential V B at which the parasitic channel current of the polycrystalline semiconductor TFT is almost minimum when the FT non-selection state is set to the minimum light-shielding film potential V BMIN , the light-shielding film potential V B = the minimum light-shielding film potential V as fall within the BMIN ± 2V, C 1, C 2
And a value of C 3 are relatively determined, to provide an active matrix display device. This is called the first invention. When determining the capacitance values of C 1 , C 2 and C 3 , the effective capacitive coupling portion is included in each region of the conductive potentials that are continuously connected on the pattern.

【0010】通常、TFTの動作時においては、多結晶
半導体TFTのゲート電極にはゲート選択電位、又はゲ
ート非選択電位が印加され、ソース電極には、ゲート非
選択電位より高く、ゲート選択電位より低い範囲のソー
ス信号電位が印加され、対向電極にはゲート非選択電位
より高く、ゲート選択電位より低い対向電極電位が印加
される。
Normally, during operation of the TFT, a gate selection potential or a gate non-selection potential is applied to the gate electrode of the polycrystalline semiconductor TFT, and a source electrode is higher than the gate non-selection potential and higher than the gate selection potential. The source signal potential in the low range is applied, and the counter electrode potential higher than the gate non-selection potential and lower than the gate selection potential is applied to the counter electrode.

【0011】本発明においてはTFTの各電極や蓄積容
量線、あるいは特定の回路端子の電位から遮光膜は絶縁
されている。言い換えると、遮光膜は他の回路部分と容
量結合した導電体として浮遊電位を有することになる。
そして、その遮光膜の電位VB が、ゲート非選択電位よ
り高く、対向電極電位より低い範囲でかつ、TFT非選
択状態で一定の電位となるようにTFTの裏面側の主た
る寄生容量構造を設定する。そして、通常の動作中のゲ
ート非選択時に遮光膜電位VB が一定の範囲に入るよう
にする。
In the present invention, the light-shielding film is insulated from each electrode of the TFT, the storage capacitance line, or the potential of a specific circuit terminal. In other words, the light-shielding film has a floating potential as a conductor capacitively coupled to other circuit parts.
Then, the main parasitic capacitance structure on the back surface side of the TFT is set so that the potential V B of the light-shielding film is higher than the gate non-selection potential and lower than the counter electrode potential and is a constant potential in the TFT non-selection state. To do. Then, when the gate is not selected during normal operation, the light-shielding film potential V B is set within a certain range.

【0012】また、この第1の発明において、C1 、C
2 、C3 が次の数2の関係を満たすことを特徴とするア
クティブマトリクス表示素子を提供する。これを第2の
発明と呼ぶ。
Further, in the first invention, C 1 , C
Provided is an active matrix display device characterized in that 2 and C 3 satisfy the following relationship of the following expression 2. This is called the second invention.

【0013】[0013]

【数2】0.6×C1 ≦C2 ≦5×C1 0.6×C1 ≦C3 ≦5×C1 0.8×C2 ≦C3 ≦1.2×C2 ## EQU2 ## 0.6 × C 1 ≦ C 2 ≦ 5 × C 1 0.6 × C 1 ≦ C 3 ≦ 5 × C 1 0.8 × C 2 ≦ C 3 ≦ 1.2 × C 2

【0014】以下に、本発明について詳細に説明する。
本発明における多結晶半導体TFTの、チャネル部裏面
側に設ける絶縁膜の膜厚としては100〜1000n
m、好ましくは200〜500nmが用いられる。膜厚
としては厚い方が裏面MIS容量の効果が小さくなる。
The present invention will be described in detail below.
The thickness of the insulating film provided on the rear surface side of the channel portion of the polycrystalline semiconductor TFT of the present invention is 100 to 1000 n.
m, preferably 200-500 nm is used. The thicker the film thickness, the smaller the effect of the back surface MIS capacitance.

【0015】また、絶縁膜に用いる材料としては、Si
2 (誘電率3.9)、Si34(誘電率7.5)、
SiOXY (誘電率4〜7)、又はタンタルオキシド
などの絶縁膜が用いられうる。この裏面MIS容量効果
の大きさを考慮した場合、絶縁膜の誘電率は低い方が好
ましい。
The material used for the insulating film is Si.
O 2 (dielectric constant 3.9), Si 3 N 4 (dielectric constant 7.5),
An insulating film such as SiO X N Y (dielectric constant 4 to 7) or tantalum oxide may be used. Considering the magnitude of the back surface MIS capacitance effect, it is preferable that the dielectric constant of the insulating film is low.

【0016】以下、図面を参照しながら本発明を説明す
る。図1は本発明のアクティブマトリクス表示素子に用
いる多結晶半導体TFTの断面を模式的に示し、図2は
アクティブマトリクス表示素子の多結晶半導体TFT近
傍の一部平面図である。
The present invention will be described below with reference to the drawings. FIG. 1 schematically shows a cross section of a polycrystalline semiconductor TFT used in the active matrix display element of the present invention, and FIG. 2 is a partial plan view of the vicinity of the polycrystalline semiconductor TFT of the active matrix display element.

【0017】図2の多結晶シリコン層5はI字形状のシ
リコンアイランドとして形成されている。ゲート電極配
線1とソース電極配線3はほぼ直交して配置されてい
る。ゲート電極配線1からゲート電極1aが延伸して形
成されている。ソース電極配線3からTFTのソース電
極との接続部3aが延伸して形成されている。TFTの
ドレイン電極には画素電極4が接続される。そして、ソ
ース電極配線3とゲート電極配線1、及び画素電極4と
それらの下方に位置するシリコンアイランドとの間に平
面的なオーバーラップが存在する。
The polycrystalline silicon layer 5 of FIG. 2 is formed as an I-shaped silicon island. The gate electrode wiring 1 and the source electrode wiring 3 are arranged substantially orthogonal to each other. The gate electrode 1a is formed by extending from the gate electrode wiring 1. A connecting portion 3a for connecting to the source electrode of the TFT is formed by extending from the source electrode wiring 3. The pixel electrode 4 is connected to the drain electrode of the TFT. Then, there is a planar overlap between the source electrode wiring 3, the gate electrode wiring 1, and the pixel electrode 4 and the silicon island located below them.

【0018】この多結晶半導体TFTには、ゲート電極
1a、ゲート絶縁膜2、ソース電極配線3(TFTのソ
ース電極との接続部3a)、画素電極4(TFTのドレ
イン電極との接続部4a)、チャネルとして機能する多
結晶シリコン層5、層間絶縁膜6、絶縁膜7、遮光膜8
がガラス基板9の上に設けられている。ゲート電極1a
とゲート絶縁膜2より構成されるゲート部には、ゲート
オフセット構造が形成されてリーク電流が低減されうる
ようになっている。
In this polycrystalline semiconductor TFT, the gate electrode 1a, the gate insulating film 2, the source electrode wiring 3 (the connection portion 3a with the source electrode of the TFT), the pixel electrode 4 (the connection portion 4a with the drain electrode of the TFT). , A polycrystalline silicon layer 5 functioning as a channel, an interlayer insulating film 6, an insulating film 7, and a light shielding film 8
Are provided on the glass substrate 9. Gate electrode 1a
A gate offset structure is formed in the gate portion constituted by the gate insulating film 2 and the leak current can be reduced.

【0019】遮光膜8が導電性である場合には、TFT
素子構造のチャネルの非ゲート側(図1に示す紙面での
下側、つまりチャネルの下側)に、本来のゲート部に似
た容量構造10が形成されてしまう。また、ゲート電極
配線1と導電性の遮光膜8の間、ソース電極配線3と導
電性の遮光膜8の間、画素電極4と導電性の遮光膜8の
間にもそれぞれ絶縁膜を挟んだ容量構造11、12、1
3がそれぞれ形成される。
If the light-shielding film 8 is conductive, the TFT
On the non-gate side of the channel of the element structure (the lower side of the paper surface shown in FIG. 1, that is, the lower side of the channel), the capacitance structure 10 similar to the original gate portion is formed. Insulating films are also sandwiched between the gate electrode wiring 1 and the conductive light shielding film 8, between the source electrode wiring 3 and the conductive light shielding film 8, and between the pixel electrode 4 and the conductive light shielding film 8. Capacitive structure 11, 12, 1
3 are formed respectively.

【0020】図3は多結晶シリコンTFTのゲート非選
択時(TFTの動作としてはオフ状態)のゲート電圧に
おいて、上述したチャネル下側の容量構造10の及ぼす
電気的な寄与を調べた一例である。横軸が遮光膜電位で
あり、縦軸がソースドレイン電流を示す。
FIG. 3 shows an example of examining the electrical contribution of the above-described capacitive structure 10 below the channel at the gate voltage of the polycrystalline silicon TFT when the gate is not selected (the TFT is in the off state as the operation). . The horizontal axis represents the light-shielding film potential, and the vertical axis represents the source / drain current.

【0021】つまり、ソースドレインに一定の定格電圧
を印加し、ゲート電極にはオフ電圧を印加し、遮光膜に
外部から電圧を印加してソースドレイン間の電流を測定
した。この場合のソースドレイン電流はTFTの所望の
動作としては不要なリーク電流を意味する。
That is, a constant rated voltage was applied to the source and drain, an off voltage was applied to the gate electrode, and a voltage was externally applied to the light-shielding film to measure the current between the source and drain. The source / drain current in this case means a leak current which is unnecessary for the desired operation of the TFT.

【0022】TFT素子構造としてはデュアルゲートと
しそのチャネル長が10μm、チャネル幅が4μm、ゲ
ートオフセットが合計2.4μmとした。絶縁膜7はS
iO2 で形成し、膜厚は800nmとした。
The TFT element structure was a dual gate, and its channel length was 10 μm, channel width was 4 μm, and gate offset was 2.4 μm in total. The insulating film 7 is S
formed by iO 2, film thickness was 800 nm.

【0023】そして、ソースドレイン間電圧を14V、
ゲート電位をゲートオフ状態にあたる−5Vとしたとき
に、遮光膜8の電位を可変してリーク電流(ソースドレ
イン電流)を測定した。つまり、この測定を行う際には
外部から電圧を印加して導電性の遮光膜の電位を定めて
いる。多結晶半導体TFTの実際の動作時には、遮光膜
8は外部の各回路の各電位から直接結合していない絶縁
された状態となり浮遊電位を持つ。他の回路の各電位と
容量結合してその浮遊電位が決まる。
The source-drain voltage is 14V,
When the gate potential was set to -5 V, which corresponds to the gate-off state, the potential of the light-shielding film 8 was varied and the leak current (source drain current) was measured. That is, when performing this measurement, a voltage is applied from the outside to determine the potential of the conductive light-shielding film. During the actual operation of the polycrystalline semiconductor TFT, the light shielding film 8 is in an insulated state in which it is not directly coupled to each potential of each external circuit and has a floating potential. The floating potential is determined by capacitively coupling with the potentials of other circuits.

【0024】この図3からリーク電流が、遮光膜8の電
位によって大きく変わることがわかる。そしてその最小
値を与える最小遮光膜電位(VBMIN(V))が存在して
いる。又は、特性曲線の鞍部を与える遮光膜電位VB
範囲が存在する。また、リーク電流の最小値を与える最
小遮光膜電位VBMINは、ゲート電圧に大きく依存して変
化することがわかった。リーク電流の最小値は容量構造
10の容量が小さいほど小さくなる。最小遮光膜電位V
B の値自体は、遮光膜8の上の絶縁膜7中の固定電荷、
あるいはシリコン膜5との界面状態などに依存する。な
お、特性曲線がほぼ単調な傾向を有しているので最小値
≒鞍部の極小値となっている。
It can be seen from FIG. 3 that the leak current greatly changes depending on the potential of the light shielding film 8. Then, there exists the minimum light-shielding film potential (V BMIN (V)) that gives the minimum value. Alternatively, there is a range of the light-shielding film potential V B that gives the saddle part of the characteristic curve. Further, it was found that the minimum light-shielding film potential V BMIN that gives the minimum value of the leak current changes greatly depending on the gate voltage. The minimum value of the leak current becomes smaller as the capacitance of the capacitive structure 10 becomes smaller. Minimum light-shielding film potential V
The value of B itself is the fixed charge in the insulating film 7 on the light shielding film 8,
Alternatively, it depends on the interface state with the silicon film 5. Since the characteristic curve has an almost monotonic tendency, the minimum value ≈ the minimum value of the saddle.

【0025】このように多結晶シリコンTFTを構成要
素とする画素の駆動素子の構造において、リーク電流を
低く抑えるためには、ゲート非選択時のゲートのオフ電
位において、容量構造10によるリーク電流を抑制する
ことが好ましい。上述した図3に示したようなリーク電
流の寄与が小さくなる特性曲線の鞍部に位置するように
遮光膜8の浮遊電位を設定することが好ましい。具体的
には特性曲線の最小値又はその近傍値を与える最小遮光
膜電位VBMINの±2.0Vの範囲に入るように設ける。
用いる動作電圧レンジなどとの関係によって、好ましく
は、±1.5V、さらに好ましくは±1.0Vの範囲に
入るように設定する。
As described above, in the structure of the driving element of the pixel having the polycrystalline silicon TFT as a constituent element, in order to suppress the leakage current to a low level, the leakage current due to the capacitive structure 10 is caused at the off potential of the gate when the gate is not selected. It is preferable to suppress. It is preferable to set the floating potential of the light-shielding film 8 so as to be located at the saddle portion of the characteristic curve in which the contribution of the leakage current as shown in FIG. Specifically, it is provided so as to fall within the range of ± 2.0 V of the minimum light-shielding film potential V BMIN which gives the minimum value of the characteristic curve or a value in the vicinity thereof.
Depending on the relationship with the operating voltage range used, etc., it is preferably set within ± 1.5 V, more preferably within ± 1.0 V.

【0026】言い換えれば、表示素子としての機能上、
当該TFTがオフの際に表示に影響が出ない範囲にリー
ク電流を抑えればよい。また、最小遮光膜電位VBMIN
絶縁膜材料の種類などによるが、およそ1〜5Vの間に
存在する。最小遮光膜電位V BMIN=1Vの場合にC2
1 ≒0.6、最小遮光膜電位VBMIN=5Vの場合にC
2 /C1 ≒5となるように設けることが好ましい。
In other words, in terms of the function as a display element,
When the TFT is turned off, the display is not affected within the range.
It is enough to suppress the current. In addition, the minimum light-shielding film potential VBMINIs
Depending on the type of insulating film material, etc.
Exists. Minimum light-shielding film potential V BMINC when = 1V2 /
C1 ≈0.6, minimum light-shielding film potential VBMIN= 5V C
2 / C1 It is preferable to provide so that ≈5.

【0027】この遮光膜電位VB は、図1及び図2に示
したようなTFTの場合には、ゲート電極配線1と導電
性の遮光膜8の間、ソース電極配線3と導電性の遮光膜
8の間、画素電極4と導電性の遮光膜8の間にもそれぞ
れ絶縁膜を挟んだそれぞれの容量構造11、12、13
の実効的な比率と、それぞれの電極の電位で主に決ま
る。また、基板垂直方向以外の斜め方向においても容量
結合を持ちうるが基板垂直方向における容量結合の量を
主に考察すればよい。
In the case of the TFT shown in FIGS. 1 and 2, this light-shielding film potential V B is between the gate electrode wiring 1 and the conductive light-shielding film 8 and between the source electrode wiring 3 and the conductive light-shielding film. Capacitance structures 11, 12, 13 in which insulating films are sandwiched between the films 8 and between the pixel electrode 4 and the conductive light-shielding film 8 are also provided.
It is mainly determined by the effective ratio and the potential of each electrode. Further, although capacitive coupling can be provided in an oblique direction other than the substrate vertical direction, the amount of capacitive coupling in the substrate vertical direction may be mainly considered.

【0028】TFTのゲート非選択時では、ソース電極
と画素電極間の電位差が最大の場合にリーク電流が最も
顕著な条件を与える。いまゲートの非選択電位をV
GL(V)、ソース電極の電位をVS (V)、画素電極の
電位をVP (V)、遮光膜8とゲート電極配線1の間、
遮光膜8とソース電極配線3の間、及び遮光膜8と画素
電極4の間の各容量をそれぞれC1 (F)、C2
(F)、C3 (F)とすると、遮光膜の電位VB は次の
数3でほぼ近似できる。
When the gate of the TFT is not selected, the leak current is most remarkable when the potential difference between the source electrode and the pixel electrode is maximum. Now, the non-selection potential of the gate is V
GL (V), the potential of the source electrode is V S (V), the potential of the pixel electrode is V P (V), between the light shielding film 8 and the gate electrode wiring 1,
Capacitances between the light-shielding film 8 and the source electrode wiring 3 and between the light-shielding film 8 and the pixel electrode 4 are C 1 (F) and C 2 respectively.
Assuming that (F) and C 3 (F), the potential V B of the light shielding film can be approximated by the following equation 3.

【0029】[0029]

【数3】VB =(VGL×C1 +VS ×C2 +VP ×C
3 )/(C1 +C2 +C3
[Formula 3] V B = (V GL × C 1 + V S × C 2 + V P × C
3 ) / (C 1 + C 2 + C 3 )

【0030】したがって、TFTのゲート非選択時で、
ソース電極と画素電極間の電位差が最大の場合、すなわ
ちリーク電流が最も顕著となる条件において、この数3
のVB が図3で示された最小のVBMINの近傍に位置する
ように、上記の容量C1 、C2 、及びC3 の比率を設定
することが好ましい。
Therefore, when the gate of the TFT is not selected,
When the potential difference between the source electrode and the pixel electrode is the maximum, that is, under the condition that the leak current becomes the most prominent, this number 3
It is preferable to set the above ratio of the capacitances C 1 , C 2 and C 3 so that V B of the capacitor is located near the minimum V BMIN shown in FIG.

【0031】このとき、各容量C1 、C2 、C3 の条件
としては、以下の範囲をさらに満たすことが好ましい。
まずソース、ドレインの等価性維持の観点より数4の条
件があげられる。
At this time, it is preferable that the conditions of the respective capacitances C 1 , C 2 and C 3 further satisfy the following range.
First, from the viewpoint of maintaining the equivalence of the source and the drain, the condition of Formula 4 can be mentioned.

【0032】[0032]

【数4】0.8×C2 ≦C3 ≦1.2×C2 [Formula 4] 0.8 x C 2 ≤ C 3 ≤ 1.2 x C 2

【0033】さらに、最小の値を与えるVBMIN(V)
は、遮光膜8の上の絶縁膜7中の固定電荷や、シリコン
膜5との界面状態などに依存するが、一般的な作製条件
では、おおむね次の数5が成り立つことがわかってい
る。
Further, V BMIN (V) giving the minimum value
Depends on the fixed charges in the insulating film 7 on the light-shielding film 8 and the state of the interface with the silicon film 5, but it is known that the following formula 5 is generally established under general manufacturing conditions.

【0034】[0034]

【数5】VS −2≦VBMIN≦VS +6 VS +1≦VBMIN≦VS +5[ Formula 5] V S -2 ≤ V BMIN ≤ V S +6 V S +1 ≤ V BMIN ≤ V S +5

【0035】したがって、次の数6の条件が満たされる
ことが好ましい。図2における遮光膜とその上面方向に
位置するゲート電極配線、ソース電極配線、画素電極と
の容量結合をダミーパターンを設けて調節できる。例え
ば、コンタクホール近傍で(図2の紙面下方向)、ソー
ス電極配線と絶縁膜とのオーバーラップ面積を増やして
1 を定めうる。以下に、実施例について説明する。
Therefore, it is preferable that the following condition (6) is satisfied. Capacitive coupling between the light-shielding film in FIG. 2 and the gate electrode wiring, source electrode wiring, and pixel electrode located in the upper surface direction can be adjusted by providing a dummy pattern. For example, in the vicinity of the contact hole (downward in the plane of FIG. 2), C 1 can be determined by increasing the overlap area between the source electrode wiring and the insulating film. Examples will be described below.

【0036】[0036]

【数6】0.6×C1 ≦C2 ≦5×C1 0.6×C1 ≦C3 ≦5×C1 ## EQU6 ## 0.6 × C 1 ≤C 2 ≤5 × C 1 0.6 × C 1 ≤C 3 ≤5 × C 1

【0037】[0037]

【実施例】【Example】

(実施例1)無アルカリ性のガラス基板上に、50nm
のCr遮光膜を形成し、800nmのSiO2 絶縁膜を
積層した。なお、遮光膜上の絶縁膜の材料はSiO2
限定されない。また、その膜厚も絶縁性を有する範囲で
あればよい。あるいは、図3に示したリーク電流への寄
与の最小値が十分小さくなるような範囲であればよい。
SiO2 においては上述したように100〜1000n
m程度が用いられうる。遮光膜についてもCrに限ら
ず、導電性の材料であればすべて本発明に適用できる。
(Example 1) 50 nm on a non-alkali glass substrate
Cr light shielding film was formed and a 800 nm SiO 2 insulating film was laminated. The material of the insulating film on the light shielding film is not limited to SiO 2 . Moreover, the film thickness may be in a range having an insulating property. Alternatively, the range may be such that the minimum value of the contribution to the leakage current shown in FIG. 3 is sufficiently small.
In the case of SiO 2 , 100 to 1000 n as described above.
About m can be used. The light-shielding film is not limited to Cr, and any conductive material can be applied to the present invention.

【0038】さらにアモルファスシリコン膜をプラズマ
CVDで積層し、アルゴンイオンレーザによってビーム
アニールして多結晶しシリコンを得た。得られた多結晶
シリコンをパターニングして半導体アイランドを形成
し、この上に120nmのSiO2 のゲート絶縁膜、1
50nmのCrゲート電極を積層、パターニングにより
形成した。さらに、多結晶シリコン層のソース部、ドレ
イン部に非質量分離のイオンシャワー装置を用いてPイ
オンを打込んでn型領域を形成した。
Further, an amorphous silicon film was laminated by plasma CVD and beam-annealed by an argon ion laser to obtain polycrystalline silicon. The obtained polycrystalline silicon is patterned to form a semiconductor island, and a 120 nm SiO 2 gate insulating film is formed on the semiconductor island.
A 50 nm Cr gate electrode was formed by stacking and patterning. Further, P ions were implanted into the source and drain portions of the polycrystalline silicon layer using a non-mass separated ion shower device to form n-type regions.

【0039】層間絶縁膜としてその上にSi34 膜3
00nmを積層し、ソース、ドレイン部にコンタクトホ
ールをあけ、CrとAlを順に積層した複合金属電極を
形成して多結晶シリコンTFTを形成した。TFT各部
の素子寸法としては、チャネル長はデュアルゲートで1
0μm、チャネル幅は4μmとし、ゲートオフセットは
合計2.4μmとした。
As an interlayer insulating film, a Si 3 N 4 film 3 is formed thereon.
A stack of 00 nm was formed, contact holes were formed in the source and drain portions, and a composite metal electrode was formed by sequentially stacking Cr and Al to form a polycrystalline silicon TFT. Regarding the element size of each part of the TFT, the channel length is 1 with dual gate.
The channel offset was 0 μm, the channel width was 4 μm, and the total gate offset was 2.4 μm.

【0040】遮光膜とゲート電極配線間、遮光膜とソー
ス電極配線間、遮光膜と画素電極間の各容量は、それぞ
れの重なり面積と絶縁膜の膜厚及び誘電率を用いて、お
おむね平行平板コンデンサと近似して容量値を算出でき
る。本実施例では、C2 =C3 =1.5×C1 となるよ
うに設計した。表1にそのシミュレーションの結果を示
す。各部をほぼ平行平板コンデンサとして近似してい
る。
The capacitances between the light-shielding film and the gate electrode wiring, between the light-shielding film and the source electrode wiring, and between the light-shielding film and the pixel electrode are roughly parallel plates using the respective overlapping areas, the film thickness and the dielectric constant of the insulating film. The capacitance value can be calculated by approximating a capacitor. In this example, the design was such that C 2 = C 3 = 1.5 × C 1 . Table 1 shows the result of the simulation. Each part is approximated as a parallel plate capacitor.

【0041】[0041]

【表1】 [Table 1]

【0042】本発明においては、ガラス基板上に遮光膜
を形成するので、用いる材料の種別にもよるが高温プロ
セスを用いることが通常困難となる。レーザアニールを
用いた多結晶シリコン形成方法と組み合わせることで耐
光性を有しかつ高速動作が可能な多結晶シリコンTFT
を生産性よく得ることができる。
In the present invention, since the light-shielding film is formed on the glass substrate, it is usually difficult to use a high temperature process although it depends on the type of material used. A polycrystalline silicon TFT having light resistance and capable of high-speed operation when combined with a polycrystalline silicon forming method using laser annealing
Can be obtained with high productivity.

【0043】図4にビームアニールの方法を模式的に示
す。連続発振アルゴンイオンレーザから出射されたレー
ザビームをシリンドリカルレンズやfθレンズなどの光
学系を通過せしめ調整する。そして、ビームスポット2
0として非晶質シリコン層5Aに照射する。被アニール
物体はガラス基板9上に遮光膜8、AR膜21などが積
層された半導体シリコン構造を有している。
FIG. 4 schematically shows the method of beam annealing. The laser beam emitted from the continuous wave argon ion laser is adjusted by passing it through an optical system such as a cylindrical lens or an fθ lens. And the beam spot 2
The amorphous silicon layer 5A is irradiated with 0. The object to be annealed has a semiconductor silicon structure in which a light shielding film 8, an AR film 21 and the like are laminated on a glass substrate 9.

【0044】ビームスポット20の高速走査(例えば、
12±3m/s)での照射により非晶質シリコン層5A
は多結晶シリコン層5Bに形成せしめられ、最終的に多
結晶シリコンのストライプ5Cが得られる。さらに、パ
ターニングなどの工程を経てTFTの素子構造を得る。
次に、多結晶シリコンTFTの電気的測定などについて
述べる。
High-speed scanning of the beam spot 20 (for example,
Amorphous silicon layer 5A by irradiation at 12 ± 3 m / s)
Is formed on the polycrystalline silicon layer 5B, and a stripe 5C of polycrystalline silicon is finally obtained. Further, the device structure of the TFT is obtained through a process such as patterning.
Next, electrical measurement of the polycrystalline silicon TFT will be described.

【0045】画素駆動の方法はフレーム反転とした。こ
の際、ソース信号の下限値を基準(0V)として、ゲー
ト選択電位を17V、ゲート非選択電位を−5V、ソー
ス信号電位を0〜12V、対向電極電位を6Vとして画
素駆動を行った。
The pixel driving method was frame inversion. At this time, with the lower limit value of the source signal as a reference (0 V), pixel selection was performed with a gate selection potential of 17 V, a gate non-selection potential of -5 V, a source signal potential of 0 to 12 V, and a counter electrode potential of 6 V.

【0046】ゲート非選択期間(ゲートのオフ電圧が−
5V)、ソース電極0V、画素電極12Vとすると、遮
光膜電位は3.25Vとなり図3で示されたVBMINにほ
ぼ一致する。
Gate non-selection period (gate off voltage is-
5 V), the source electrode is 0 V, and the pixel electrode is 12 V, the light-shielding film potential is 3.25 V, which is substantially equal to V BMIN shown in FIG.

【0047】この構成により画素を駆動した結果、多結
晶シリコンTFTのゲート非選択期間のリーク電流は2
pA以下に抑えられ、TFTの裏面側の遮光による光リ
ーク電流の低減と、さらにチャネル下側のMIS構造に
よるリーク電流の低減を両立した。
As a result of driving the pixel with this structure, the leak current in the gate non-selection period of the polycrystalline silicon TFT is 2
It was suppressed to pA or less, and both the reduction of the light leakage current due to the light shielding on the back surface side of the TFT and the reduction of the leakage current due to the MIS structure below the channel were achieved at the same time.

【0048】この結果、ゲート非選択期間において、光
制御層として用いられている液晶層の電位変動は十分小
さくなり、安定した高い表示品位を実現した。なお、液
晶表示素子の光制御層としては、従来からあるTNやS
TN以外に、液晶がカプセル化又は一部連通した連続カ
プセル構造とされ、樹脂などのマトリクス体中に形成さ
れた液晶・マトリクス複合体を備えたものにも用いう
る。
As a result, in the gate non-selection period, the potential fluctuation of the liquid crystal layer used as the light control layer was sufficiently small, and stable and high display quality was realized. The light control layer of the liquid crystal display element is a conventional TN or S
In addition to TN, a liquid crystal-matrix composite having a continuous capsule structure in which liquid crystal is encapsulated or partially connected and formed in a matrix such as a resin may be used.

【0049】[0049]

【発明の効果】本発明によって、アクティブマトリクス
表示素子に用いる多結晶シリコンTFTのリーク電流を
飛躍的に低減せしめることができた。例えば、投射型表
示装置においても、多結晶シリコンTFTのリーク電流
に起因する不良現象を解消できた。
According to the present invention, the leak current of the polycrystalline silicon TFT used for the active matrix display element can be remarkably reduced. For example, even in the projection type display device, the defect phenomenon due to the leak current of the polycrystalline silicon TFT could be eliminated.

【0050】言い換えれば、TFT構造においてその電
気的特性を損なうことなく遮光を達成できるようになっ
た。
In other words, it has become possible to achieve light shielding in the TFT structure without impairing its electrical characteristics.

【0051】また、電圧印加時にホワイトとなるノーマ
リーホワイト表示形式の場合であっても、黒の階調が正
しく表示され、コントラストの高い表示が表現できた。
またグレースケールを表示する場合でも黒の部分が浮か
び上がらずに高いコントラスト状態でパターン表示がで
きた。
Further, even in the case of the normally white display format in which white is displayed when a voltage is applied, the gradation of black is correctly displayed, and the display with high contrast can be expressed.
Further, even when displaying a gray scale, the black portion did not stand out and the pattern could be displayed in a high contrast state.

【0052】また、本発明はその効果を損しない範囲で
種々の応用ができる。
Further, the present invention can be applied in various ways within a range not impairing its effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における多結晶半導体TFTの一部断面
図。
FIG. 1 is a partial cross-sectional view of a polycrystalline semiconductor TFT according to the present invention.

【図2】本発明における多結晶半導体TFTの近傍にお
ける平面図。
FIG. 2 is a plan view in the vicinity of a polycrystalline semiconductor TFT according to the present invention.

【図3】多結晶シリコンTFTにおける遮光膜電位によ
るソースドレイン電流の変動を示す特性図。
FIG. 3 is a characteristic diagram showing a variation in source / drain current depending on a light shielding film potential in a polycrystalline silicon TFT.

【図4】ビームアニールの方法を示す模式図。FIG. 4 is a schematic diagram showing a method of beam annealing.

【符号の説明】[Explanation of symbols]

1a:ゲート電極 2:ゲート絶縁膜 3:ソース電極配線 4:画素電極 5:多結晶シリコン層 6:層間絶縁膜 7:絶縁膜 8:遮光膜 9:ガラス基板 1a: Gate electrode 2: Gate insulating film 3: Source electrode wiring 4: Pixel electrode 5: Polycrystalline silicon layer 6: Interlayer insulating film 7: Insulating film 8: Light-shielding film 9: Glass substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】画素電極と、画素電極を駆動する駆動素子
としてトップゲート型の多結晶半導体TFTが備えられ
た第1の基板と、画素電極に対向する対向電極が備えら
れた第2の基板と、第1の基板と第2の基板との間に光
制御層とが備えられ、第1の基板と多結晶半導体TFT
のチャネルとの間に絶縁膜と導電性の遮光膜が設けら
れ、絶縁膜はチャネルと遮光膜との間に配置されてなる
アクティブマトリクス表示素子であって、 前記遮光膜は各画素ごとに分離して形成されかつ絶縁さ
れ、前記遮光膜とゲート電極配線との間、前記遮光膜と
ソース電極配線との間、及び前記遮光膜と画素電極との
間に絶縁膜との重なりが設けられ、前記遮光膜とゲート
電極配線間の容量をC1 、前記遮光膜とソース電極配線
間の容量をC2 、及び前記遮光膜と画素電極間の容量を
3 とすると、ソースドレイン間に最大実効電圧が印加
され、かつゲート電極にオフ電圧が印加されてTFT非
選択状態となった際に、多結晶半導体TFTの寄生チャ
ネル電流がほぼ最小となる遮光膜電位VB を最小遮光膜
電位VBMINとすると、遮光膜電位VB が最小遮光膜電位
BMIN±2Vの範囲に入るように、C1 、C2 及びC3
の値が相対的に決められたことを特徴とするアクティブ
マトリクス表示素子。
1. A first substrate provided with a pixel electrode, a top gate type polycrystalline semiconductor TFT as a driving element for driving the pixel electrode, and a second substrate provided with a counter electrode facing the pixel electrode. And a light control layer between the first substrate and the second substrate, and the first substrate and the polycrystalline semiconductor TFT.
Is an active matrix display device in which an insulating film and a conductive light-shielding film are provided between the channel and the channel, and the insulating film is arranged between the channel and the light-shielding film, and the light-shielding film is separated for each pixel. Are formed and insulated from each other, and an overlap between the light-shielding film and the gate electrode wiring, between the light-shielding film and the source electrode wiring, and between the light-shielding film and the pixel electrode is provided. When the capacitance between the light-shielding film and the gate electrode wiring is C 1 , the capacitance between the light-shielding film and the source electrode wiring is C 2 , and the capacitance between the light-shielding film and the pixel electrode is C 3 , the maximum effective potential between the source and drain is obtained. When the voltage is applied and the OFF voltage is applied to the gate electrode to bring the TFT into the non-selected state, the light-shielding film potential V B at which the parasitic channel current of the polycrystalline semiconductor TFT is almost minimum is set to the minimum light-shielding film potential V BMIN. Then, the light-shielding film potential V C 1 , C 2 and C 3 so that B falls within the range of the minimum light-shielding film potential V BMIN ± 2V.
An active matrix display device characterized in that the value of is determined relatively.
【請求項2】C1 、C2 、C3 が次の数1の関係を満た
すことを特徴とする請求項1のアクティブマトリクス表
示素子。 【数1】0.6×C1 ≦C2 ≦5×C1 0.6×C1 ≦C3 ≦5×C1 0.8×C2 ≦C3 ≦1.2×C2
2. The active matrix display device according to claim 1 , wherein C 1 , C 2 and C 3 satisfy the following relationship of the following formula 1. ## EQU1 ## 0.6 × C 1 ≦ C 2 ≦ 5 × C 1 0.6 × C 1 ≦ C 3 ≦ 5 × C 1 0.8 × C 2 ≦ C 3 ≦ 1.2 × C 2
【請求項3】絶縁膜の膜厚が100〜1000nmとさ
れてなることを特徴とする請求項1又は2のアクティブ
マトリクス表示素子。
3. The active matrix display device according to claim 1, wherein the insulating film has a thickness of 100 to 1000 nm.
【請求項4】多結晶半導体TFTの多結晶半導体層がビ
ームアニールによって形成されてなることを特徴とする
請求項1、2又は3のアクティブマトリクス表示素子。
4. The active matrix display element according to claim 1, wherein the polycrystalline semiconductor layer of the polycrystalline semiconductor TFT is formed by beam annealing.
JP1615995A 1995-02-02 1995-02-02 Active matrix display element Pending JPH08211406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1615995A JPH08211406A (en) 1995-02-02 1995-02-02 Active matrix display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1615995A JPH08211406A (en) 1995-02-02 1995-02-02 Active matrix display element

Publications (1)

Publication Number Publication Date
JPH08211406A true JPH08211406A (en) 1996-08-20

Family

ID=11908737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1615995A Pending JPH08211406A (en) 1995-02-02 1995-02-02 Active matrix display element

Country Status (1)

Country Link
JP (1) JPH08211406A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737302B2 (en) 2001-10-31 2004-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US6828584B2 (en) 2001-05-18 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR100491920B1 (en) * 1996-09-18 2005-08-04 소니 가부시끼 가이샤 Liquid crystal display device
JP2008165031A (en) * 2006-12-28 2008-07-17 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display
WO2011027650A1 (en) * 2009-09-01 2011-03-10 シャープ株式会社 Semiconductor device, active matrix substrate, and display device
JP2013140377A (en) * 2002-11-26 2013-07-18 E Ink Corp Flexible electronic circuit and display
JP2014197211A (en) * 2006-05-16 2014-10-16 株式会社半導体エネルギー研究所 Semiconductor device
JP2015211089A (en) * 2014-04-24 2015-11-24 Nltテクノロジー株式会社 Thin film transistor and display device
WO2016190187A1 (en) * 2015-05-25 2016-12-01 シャープ株式会社 Drive circuit for display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491920B1 (en) * 1996-09-18 2005-08-04 소니 가부시끼 가이샤 Liquid crystal display device
US7253038B2 (en) 2001-05-18 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6828584B2 (en) 2001-05-18 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7078277B2 (en) 2001-05-18 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6737302B2 (en) 2001-10-31 2004-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US7718478B2 (en) 2001-10-31 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US7157317B2 (en) 2001-10-31 2007-01-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
JP2013140377A (en) * 2002-11-26 2013-07-18 E Ink Corp Flexible electronic circuit and display
US11726371B2 (en) 2006-05-16 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. FFS-mode liquid crystal display device comprising a top-gate transistor and an auxiliary wiring connected to a common electrode in a pixel portion
US11435626B2 (en) 2006-05-16 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US10001678B2 (en) 2006-05-16 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
JP2014197211A (en) * 2006-05-16 2014-10-16 株式会社半導体エネルギー研究所 Semiconductor device
US11106096B2 (en) 2006-05-16 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US9268188B2 (en) 2006-05-16 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11061285B2 (en) 2006-05-16 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a dogleg-like shaped pixel electrode in a plane view having a plurality of dogleg-like shaped openings and semiconductor device
US9709861B2 (en) 2006-05-16 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US10509271B2 (en) 2006-05-16 2019-12-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a semiconductor film having a channel formation region overlapping with a conductive film in a floating state
JP2008165031A (en) * 2006-12-28 2008-07-17 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display
JP5468612B2 (en) * 2009-09-01 2014-04-09 シャープ株式会社 Semiconductor device, active matrix substrate, and display device
CN102473736A (en) * 2009-09-01 2012-05-23 夏普株式会社 Semiconductor device, active matrix substrate, and display device
WO2011027650A1 (en) * 2009-09-01 2011-03-10 シャープ株式会社 Semiconductor device, active matrix substrate, and display device
US10263116B2 (en) 2014-04-24 2019-04-16 Nlt Technologies, Ltd. Thin film transistor and display device
JP2015211089A (en) * 2014-04-24 2015-11-24 Nltテクノロジー株式会社 Thin film transistor and display device
JPWO2016190187A1 (en) * 2015-05-25 2018-03-01 シャープ株式会社 Display device drive circuit
WO2016190187A1 (en) * 2015-05-25 2016-12-01 シャープ株式会社 Drive circuit for display device

Similar Documents

Publication Publication Date Title
US6310668B1 (en) LCD wherein opening in source electrode overlaps gate electrode to compensate variations in parasitic capacitance
JP2776376B2 (en) Active matrix liquid crystal display panel
JP3210437B2 (en) Liquid crystal display
US6259200B1 (en) Active-matrix display apparatus
KR100469342B1 (en) Liquid Crystal Display Device
JPH1031235A (en) Liquid crystal display
JPH07128685A (en) Liquid crystal display
US7268839B2 (en) Array substrate comprising an island shaped drain electrode enclosed by the source electrode and liquid crystal display device including the same
JPH05127195A (en) Liquid crystal display device
US20010045995A1 (en) Liquid crystal display and manufacturing method therfor
US6717630B1 (en) Liquid crystal display device and method of fabricating the same
US7615782B2 (en) Thin film transistor substrate and liquid crystal display panel having sub-pixels
US6927807B2 (en) Liquid crystal display device
KR20020036743A (en) Tft-lcd device having a reduced feed-through voltage
JPH06332007A (en) Liquid crystal display device
JP2735070B2 (en) Active matrix liquid crystal display panel
JPH08211406A (en) Active matrix display element
JPH0713196A (en) Active matrix type liquid crystal display device
JP3082277B2 (en) Liquid crystal display
JP3286843B2 (en) LCD panel
JP2000310766A (en) Driving method for active matrix substrate and liquid crystal display device
JP2755683B2 (en) Active matrix liquid crystal display
JP3049022B2 (en) Liquid crystal display
JPH0862579A (en) Active matrix display element
US20050146663A1 (en) Vertically aligned mode liquid crystal display