[go: up one dir, main page]

JPH08211018A - Gel electrophotretic method and apparatus - Google Patents

Gel electrophotretic method and apparatus

Info

Publication number
JPH08211018A
JPH08211018A JP7035931A JP3593195A JPH08211018A JP H08211018 A JPH08211018 A JP H08211018A JP 7035931 A JP7035931 A JP 7035931A JP 3593195 A JP3593195 A JP 3593195A JP H08211018 A JPH08211018 A JP H08211018A
Authority
JP
Japan
Prior art keywords
gel
migration
electrophoretic
sample
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7035931A
Other languages
Japanese (ja)
Inventor
Hideji Fujiwake
秀司 藤分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7035931A priority Critical patent/JPH08211018A/en
Publication of JPH08211018A publication Critical patent/JPH08211018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE: To suppress a smiling phenomenon and to accurately determine a base sequence by preheating an electrolyte in which the end part of a migration gel on the injection side of a nucleic acid fragment sample is immersed at the start of migration. CONSTITUTION: At the start of the migration of a DNA sample, the electrolyte of an electrolytic cell 8 is preheated at about 40-60 deg.C by a heater 24. The heating of the electrolyte is started before the sample is introduced into the sample charging slot 14 provided to the upper end of a slab-shaped migration gel 2 and performed even during the introduction of the sample to be continued up to the start of migration. After the start of migration, the heating of the electrolyte may be continued or stopped. This heated electrolyte becomes a heat source and the temp. of the gel 2 at the part where the slit 14 is provided becomes uniform. By this constitution, the smiling phenomenon caused by the non-uniformity of temp. is suppressed and a base sequence of nucleic acid can be accurately determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はDNAなどの核酸の塩基
配列を決定するゲル電気泳動方法とそれに用いる装置で
あって、特にスラブ状泳動ゲルを用いたゲル電気泳動方
法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrophoresis method for determining the base sequence of nucleic acid such as DNA and an apparatus used therefor, and more particularly to a gel electrophoresis method and apparatus using a slab-like electrophoresis gel. .

【0002】[0002]

【従来の技術】スラブ状ゲルを用いたゲル電気泳動装置
では、泳動中に発生するジュール熱により、ゲル中央部
の移動速度が周辺部の移動速度に比べて速くなる、いわ
ゆるスマイリング現象が発生する。DNAシーケンシン
グ(塩基配列決定)などでは各泳動レーンの信号を泳動
順に読み取って塩基配列を推定するが、スマイリング現
象が生じると配列の逆転が生じ配列決定に間違いを生じ
る。
2. Description of the Related Art In a gel electrophoresis apparatus using a slab-like gel, Joule heat generated during electrophoresis causes a so-called smileing phenomenon in which the moving speed of the central part of the gel is higher than the moving speed of the peripheral part. . In DNA sequencing (base sequence determination) or the like, the signals of the respective migration lanes are read in the migration order to estimate the base sequence, but if the smile phenomenon occurs, the sequence is reversed and an error occurs in the sequence determination.

【0003】そこで、スマイリング現象を軽減するため
に次のような対策がとられている。 (1)スラブ状ゲルは前後をガラス板で挾まれた状態で
使用されるが、その前後のガラス板の外側をアルミニウ
ム板などの熱伝導性のよい放熱プレートでサンドイッチ
状に挾み、泳動中に発生するジュール熱によってゲル全
体の温度が不均一にならないようにする。 (2)スラブ状ゲルを挾み込んだガラス板の外側を、温
水を循環させる装置でサンドイッチ状に挾み込み、外部
からゲルを強制的に加温してゲル全体を均一な温度にす
る。
Therefore, the following measures are taken to reduce the smiley phenomenon. (1) The slab-like gel is used with the front and back sandwiched by glass plates, but the outside of the front and back glass plates is sandwiched by a heat dissipation plate with good thermal conductivity such as an aluminum plate, and is running. Make sure that the temperature of the entire gel does not become non-uniform due to the Joule heat generated at. (2) The outside of the glass plate in which the slab-shaped gel is sandwiched is sandwiched by a device that circulates warm water, and the gel is forcibly heated from the outside to make the entire gel a uniform temperature.

【0004】[0004]

【発明が解決しようとする課題】上記の(1)や(2)
のような対策を講じるとスマイリング現象は軽減するこ
とができるが、それでも配列の誤読を十分に防ぐことは
できない。例えば、500塩基と501塩基との泳動度
差は0.2%(=1/500)であるが、温度制御によ
ってスマイリングによる泳動度差を0.2%以下に抑え
るためには、0.1℃以下の温度ムラに抑える必要があ
り、現実には困難である。本発明はスマイリング現象を
抑えて塩基配列を正しく決定することのできるゲル電気
泳動方法とそれを実現するゲル電気泳動装置を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] The above (1) and (2)
Although such a measure can reduce the smiley phenomenon, it still cannot sufficiently prevent misreading of sequences. For example, the migration difference between 500 bases and 501 bases is 0.2% (= 1/500), but in order to suppress the migration difference due to smileing to 0.2% or less by controlling the temperature, it is 0.1%. In reality, it is difficult to control the temperature unevenness below ℃. It is an object of the present invention to provide a gel electrophoresis method capable of suppressing the smile phenomenon and correctly determining a base sequence, and a gel electrophoresis apparatus for realizing the method.

【0005】[0005]

【課題を解決するための手段】本発明では、核酸断片試
料を注入する側の泳動ゲル端部が浸されている電解液を
少なくとも泳動開始時には加熱しておく。
In the present invention, the electrolytic solution in which the end of the electrophoretic gel on the side for injecting the nucleic acid fragment sample is immersed is heated at least at the start of electrophoresis.

【0006】[0006]

【実施例】図1と図2に本発明をオンライン式塩基配列
決定装置に適用した例を示す。図1は全体の概略斜視
図、図2は図1のX−X´線位置での断面図である。ス
ラブ状泳動ゲル2は前側の透明ガラス板4と後側の透明
がラス板6の間にはさみ込まれた状態で形成されてお
り、両ガラス板4,6にゲルをはさみ込んだものをゲル
板と称し、記号2aで示している。測定系が設けられて
いる側(図1では手前側、図2では右側)を後方とし、
その反対側を前方とする。ゲル板2aの上端部にはその
前方方向に上側電極槽8が設けられており、電極槽8は
ゲル板2aと接する面と上面が開口した箱状に形成され
ている。電極槽8のゲル板側の開口部の端面とガラス板
4の間には液漏れ防止用にゴム製シール10が介在し、
電極槽8がゲル板2aに押しつけられた状態で固定され
ている。ガラス板4の上端部には、電極槽8のゲル板方
向の開口部の内側に切欠き12が設けられている。ゲル
2はガラス板4,6の下端からガラス板4の切欠き12
の底部位置まで形成されており、ゲル2の上端には末端
塩基別のDNA試料を注入するための試料投入スロット
14が形成されている。
1 and 2 show an example in which the present invention is applied to an on-line type nucleotide sequencer. 1 is a schematic perspective view of the whole, and FIG. 2 is a sectional view taken along line XX ′ in FIG. The slab-like migration gel 2 is formed with a transparent glass plate 4 on the front side and a transparent plate on the rear side sandwiched between the lath plates 6, and the gel sandwiched between the glass plates 4 and 6 is a gel. It is called a plate and is indicated by the symbol 2a. The side where the measurement system is provided (the front side in FIG. 1, the right side in FIG. 2) is the rear,
The opposite side is the front. An upper electrode tank 8 is provided on the upper end portion of the gel plate 2a in the front direction thereof, and the electrode tank 8 is formed in a box shape having an opening on the surface in contact with the gel plate 2a and an upper surface. A rubber seal 10 is interposed between the glass plate 4 and the end face of the opening on the gel plate side of the electrode tank 8 to prevent liquid leakage,
The electrode tank 8 is fixed while being pressed against the gel plate 2a. At the upper end of the glass plate 4, a notch 12 is provided inside the opening of the electrode tank 8 in the gel plate direction. The gel 2 is formed by cutting the glass plate 4 from the lower end of the glass plate 4 and the cutout 12
Is formed up to the bottom position, and a sample introduction slot 14 for injecting a DNA sample for each end base is formed at the upper end of the gel 2.

【0007】電極槽8には電解液16が収容され、電解
液16はガラス板4の切欠き12を経てガラス板4,6
間に形成されたゲル2と接触している。ゲル板2aの下
端部は下側電極槽18に収容された電解液20中に浸さ
れている。上側電解液16と下側電解液20の間には高
圧電源部22により泳動電圧が印加されるようになって
いる。
An electrolytic solution 16 is contained in the electrode tank 8, and the electrolytic solution 16 passes through the notch 12 in the glass plate 4 and then the glass plates 4, 6 are formed.
It is in contact with the gel 2 formed between them. The lower end of the gel plate 2a is immersed in the electrolytic solution 20 contained in the lower electrode tank 18. A migration voltage is applied between the upper electrolytic solution 16 and the lower electrolytic solution 20 by a high voltage power supply unit 22.

【0008】ゲル2の上端の試料投入スロット14に注
入される試料は、螢光物質であるFITCにより既知の
方法で標識化され、サンガー法により末端に塩基A(ア
デニン)、G(グアニン)、T(チミン)、C(シトシ
ン)のそれぞれがくるように処理された4種類のDNA
断片試料である。FITCは488nmの波長のアルゴ
ンレーザ光で励起されると520nmの波長の螢光を発
する。
The sample to be injected into the sample introduction slot 14 at the upper end of the gel 2 is labeled by a known method with FITC which is a fluorescent substance, and the ends thereof are labeled with bases A (adenine), G (guanine), 4 types of DNA treated so that each of T (thymine) and C (cytosine) comes
It is a fragment sample. The FITC emits a fluorescence having a wavelength of 520 nm when excited by an argon laser beam having a wavelength of 488 nm.

【0009】上側電極槽8の内側壁面でゲル板2aから
遠い側の壁面には絶縁されたヒータ24が設置されてお
り、電源26によって電解液16の温度を40〜60℃
に加熱できるようになっている。
An insulated heater 24 is installed on the inner wall surface of the upper electrode tank 8 on the side far from the gel plate 2a, and the temperature of the electrolytic solution 16 is controlled to 40 to 60 ° C. by a power supply 26.
It can be heated to.

【0010】ゲル板2aのガラス板4には前側放熱プレ
ート28が接して設けられ、ガラス板6には後側放熱プ
レート30が接して設けられている。放熱プレート2
8,30はアルミニウムなどの熱伝導性のよい金属板で
ある。後側放熱プレート30はゲル板2aの下端よりも
上の位置まで配置されており、放熱プレート30から露
出したゲル板部分には測定部からの励起光ビーム32が
照射され、ゲル2から発生する螢光が測定部で検出され
る。
The glass plate 4 of the gel plate 2a is provided with a front heat radiating plate 28 in contact therewith, and the glass plate 6 is provided with a rear heat radiating plate 30 in contact therewith. Heat dissipation plate 2
Reference numerals 8 and 30 are metal plates having good heat conductivity such as aluminum. The rear heat radiating plate 30 is arranged to a position above the lower end of the gel plate 2 a, and the gel plate portion exposed from the heat radiating plate 30 is irradiated with the excitation light beam 32 from the measuring unit to generate from the gel 2. Fluorescence is detected by the measuring unit.

【0011】測定部は488nmのレーザ光を発するア
ルゴンレーザからの励起光ビーム32を集光レンズ34
とミラー36によってゲル板下端部のゲル2を照射する
励起系と、その励起光ビーム32が当った所に泳動して
きた試料の泳動バンド38があればその泳動バンド38
の螢光物質から発せられた螢光を集光し、520nmの
干渉フィルタ及び集光レンズを含む螢光集光部40から
光ファイバ41を経て光電子増倍管42で検出する検出
系とを含んでいる。集光レンズ34、ミラー36及び螢
光集光部40は、励起光ビーム32によるゲルの照射位
置が泳動方向44と直交する走査方向46の測定ライン
上を一定時間ごとに走査するように機械的に移動するリ
ニアステージ48上に固定されている。50はリニアス
テージ48を走査するACサーボモータである。
The measuring section collects an excitation light beam 32 from an argon laser emitting a 488 nm laser beam into a condenser lens 34.
And an excitation system for irradiating the gel 2 at the lower end of the gel plate with the mirror 36, and a migration band 38 of the sample that has migrated to the place where the excitation light beam 32 hits, the migration band 38
And a detection system for collecting the fluorescence emitted from the fluorescent substance and detecting it with the photomultiplier tube 42 from the fluorescence condensing unit 40 including the 520 nm interference filter and the condensing lens through the optical fiber 41. I'm out. The condenser lens 34, the mirror 36, and the fluorescence condenser 40 are mechanical so that the irradiation position of the gel by the excitation light beam 32 scans the measurement line in the scanning direction 46 orthogonal to the migration direction 44 at regular intervals. It is fixed on the linear stage 48 which moves to the. Reference numeral 50 is an AC servo motor that scans the linear stage 48.

【0012】CPU52は高圧電源部22による泳動電
圧の印加を制御し、ACサーボドライバ54を経てAC
サーボモータ50を制御しリニアステージ48を走査す
るとともに、光電子増倍管42の検出信号(螢光信号)
をA/D変換器56を経て取り込む。CPU52では励
起光ビーム32が泳動ゲル2上を照射するときに、その
照射部の位置に対応した情報を走査データとして利用す
ることができるので、励起光ビーム32による照射位置
が走査されて得られた全螢光信号がゲルの走査方向の場
所情報(A,G,C,Tのそれぞれの走査レーンに該当
する)とともに読み取られる。
The CPU 52 controls the application of the migration voltage from the high-voltage power supply unit 22, and the AC servo driver 54 controls the application of the AC voltage.
The servo motor 50 is controlled to scan the linear stage 48, and the detection signal (fluorescence signal) of the photomultiplier tube 42 is detected.
Is taken in through the A / D converter 56. In the CPU 52, when the excitation light beam 32 irradiates the electrophoretic gel 2, information corresponding to the position of the irradiation portion can be used as scanning data, and thus the irradiation position by the excitation light beam 32 is scanned and obtained. The total fluorescence signal is read together with the location information of the gel in the scanning direction (corresponding to each scanning lane of A, G, C, T).

【0013】この実施例の動作について説明すると、通
常のゲル電気泳動装置において行なわれる予備泳動中に
ヒータ24により上側の電解液16を加熱する。この予
備泳動はスマイリング現象を軽減するためにゲル2を予
熱するために行なわれているものであり、通常10〜3
0分間行なわれる。電解液16の温度はゲル2の温度よ
り高ければよく、DNA試料の泳動開始時に電解液16
を40〜60℃に加熱しておけばよい。ヒータ24によ
る電解液16の加熱は、試料をゲル2の上端の試料投入
スロット14に導入する前から初め、試料導入中も加熱
しておき、泳動を開始するまでは加熱を継続しておく必
要がある。泳動を開始した後も加熱を継続してもよい
が、泳動開始後は加熱を停止してもよい。この加熱され
た電解液16が熱源となり、試料投入スロット14のあ
る部分のゲル温度が均一となる。
To explain the operation of this embodiment, the upper electrolytic solution 16 is heated by the heater 24 during the pre-electrophoresis performed in the usual gel electrophoresis apparatus. This pre-electrophoresis is performed to preheat the gel 2 in order to reduce the smile phenomenon, and is usually 10 to 3
It will be held for 0 minutes. It suffices that the temperature of the electrolytic solution 16 is higher than the temperature of the gel 2, and the electrolytic solution 16 can be used at the start of the migration of the DNA sample.
May be heated to 40 to 60 ° C. The heating of the electrolytic solution 16 by the heater 24 needs to be started before the sample is introduced into the sample introduction slot 14 at the upper end of the gel 2 and heated during the sample introduction, and the heating must be continued until the migration is started. There is. The heating may be continued after the migration is started, or the heating may be stopped after the migration is started. The heated electrolytic solution 16 serves as a heat source, and the gel temperature of the portion where the sample introduction slot 14 is present becomes uniform.

【0014】一方、従来のように上側電解液16を加熱
しない場合には、予備泳動を行なっても試料投入スロッ
ト14のある部分のゲル温度は均一にはならず、この部
分の温度不均一が原因となってスマイリングが発生し、
発生したスマイリングは試料がゲル2中を移動する際に
さらに拡大される。また、試料投入スロット14の部分
のゲル温度不均一が原因となる現象として泳動の歪みも
生じる。この泳動の歪みも本発明により解消することが
できる。
On the other hand, when the upper electrolytic solution 16 is not heated as in the conventional case, the gel temperature in the portion where the sample introduction slot 14 is present is not uniform even if pre-electrophoresis is performed, and the temperature nonuniformity occurs in this portion. Smiles occur as a cause,
The generated smiley is further magnified as the sample moves through the gel 2. In addition, electrophoretic distortion also occurs as a phenomenon caused by nonuniform gel temperature in the sample insertion slot 14. This migration distortion can also be eliminated by the present invention.

【0015】A,G,C,Tの末端塩基別に調製された
DNAシーケンシング用試料を図1の装置により泳動さ
せ、オンラインで検出した例を図3に示す。図3で、上
側に示された泳動バンドほど先に検出された泳動バン
ド、すなわち塩基数の小さい泳動バンドであることを表
わしている。(A)は試料が注入される側の電解液を加
熱しない従来の方法で行なった場合、(B)は本発明に
より試料注入側電解液を泳動開始時まで60℃に加熱
し、泳動開始後は加熱を停止して泳動を行なった場合の
例である。ゲル2としては4%ロングレンジャ(21g
の尿素含有)を用い、泳動電圧として2750Vを印加
し、電解液には×1.2TBEを使用した。図3の結果
から、従来の方法(A)ではA,G,C,Tの泳動レー
ン間で泳動速度が不均一となってスマイリングが生じて
いるが、(B)に示されるように本発明により試料導入
側電解液を試料導入時まで加熱することによりスマイリ
ングが解消されていることが分かる。
FIG. 3 shows an example in which a DNA sequencing sample prepared for each terminal base of A, G, C and T was electrophoresed by the apparatus of FIG. 1 and detected online. In FIG. 3, the migration bands shown on the upper side represent the migration bands detected earlier, that is, the migration bands having a smaller number of bases. When (A) is a conventional method in which the electrolytic solution on the side where the sample is injected is not heated, (B) shows that the electrolytic solution on the sample injection side is heated to 60 ° C. until the start of migration according to the present invention, and after the start of migration. Is an example of the case where the heating is stopped and the electrophoresis is performed. 4% long ranger for gel 2 (21g
(Containing urea), 2750 V was applied as a migration voltage, and x1.2 TBE was used as an electrolytic solution. From the results of FIG. 3, in the conventional method (A), the migration velocities among the A, G, C, and T migration lanes become non-uniform and smiles occur, but as shown in FIG. Thus, it is understood that smiley is eliminated by heating the sample introduction side electrolytic solution until the sample introduction.

【0016】図1,2の実施例では試料導入側の電極槽
12の内壁面にヒータ24を設置してその電極槽12内
の電解液16を加熱している。ヒータ24の位置は図
1,2の実施例に限らず、電極槽12の底面側であって
もよい。また、ヒータ24を設置するのに代えて、電極
槽12の壁面に加熱水を循環させることによりその電極
槽12内の電解液16を加熱してもよい。
In the embodiment shown in FIGS. 1 and 2, a heater 24 is installed on the inner wall surface of the electrode tank 12 on the sample introduction side to heat the electrolytic solution 16 in the electrode tank 12. The position of the heater 24 is not limited to the embodiment shown in FIGS. 1 and 2, but may be on the bottom side of the electrode tank 12. Instead of installing the heater 24, the electrolytic solution 16 in the electrode tank 12 may be heated by circulating heated water on the wall surface of the electrode tank 12.

【0017】[0017]

【発明の効果】本発明ではDNAなどの核酸断片試料を
注入する側の泳動ゲル端部が浸されている電解液を少な
くとも泳動開始時には加熱しておくようにしたので、ス
マイリング現象を抑えることができ、そのような簡単な
構成により核酸の塩基配列を正しく決定することができ
ようになる。
According to the present invention, the electrolyte solution in which the end of the electrophoretic gel on the side where the nucleic acid fragment sample such as DNA is injected is immersed is heated at least at the start of the migration, so that the smile phenomenon can be suppressed. This makes it possible to correctly determine the base sequence of a nucleic acid with such a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an embodiment.

【図2】図1のX−X´線位置での断面図である。FIG. 2 is a cross-sectional view taken along the line XX ′ in FIG.

【図3】実施例により検出された泳動パターンを示す図
であり、(A)は電解液を加熱しない従来の方法による
もの、(B)は試料導入側電解液を加熱した本発明によ
るものである。
3A and 3B are diagrams showing migration patterns detected in Examples, where FIG. 3A shows a conventional method in which the electrolyte solution is not heated, and FIG. 3B shows a sample introduction side electrolyte solution in the present invention. is there.

【符号の説明】[Explanation of symbols]

2 スラブ状泳動ゲル 2a ゲル板 4,6 ガラス板 8 試料導入側電極槽 14 試料投入スロット 16 試料導入側電極槽 22 高圧電源部 24 ヒータ 2 Slab-like migration gel 2a Gel plate 4,6 Glass plate 8 Sample introduction side electrode tank 14 Sample introduction slot 16 Sample introduction side electrode tank 22 High voltage power supply section 24 Heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラブ状泳動ゲルの両端をそれぞれの電
解液に浸し、一方の電解液に浸された泳動ゲルの一端に
は末端塩基の種類別に調製された核酸断片試料をそれぞ
れの泳動レーンに分けて注入し、両電解液間に泳動電圧
を印加して複数の泳動レーンで同時に電気泳動させるゲ
ル電気泳動方法において、 核酸断片試料を注入する側の泳動ゲル端部が浸されてい
る電解液を少なくとも泳動開始時には加熱しておくこと
を特徴とするゲル電気泳動方法。
1. A slab-like electrophoretic gel is dipped in both ends of the electrophoretic solution, and at one end of the electrophoretic gel immersed in one of the electrophoretic solutions, a nucleic acid fragment sample prepared for each type of terminal base is placed in each electrophoretic lane. In a gel electrophoresis method, in which the sample is injected separately, and a migration voltage is applied between both electrolytes to simultaneously perform electrophoresis in multiple migration lanes, the electrolyte solution in which the end of the migration gel on the side where the nucleic acid fragment sample is injected is immersed. A method of gel electrophoresis, wherein the gel is heated at least at the start of electrophoresis.
【請求項2】 両端がそれぞれの電解液に浸され、その
内の一端には末端塩基の種類別に調製された核酸断片試
料をそれぞれ注入する試料注入部を有するスラブ状泳動
ゲルと、両電解液間に泳動電圧を印加して複数の泳動レ
ーンで同時に電気泳動させる泳動電圧印加部とを備えた
ゲル電気泳動装置において、 核酸断片試料を注入する側の泳動ゲル端部が浸されてい
る電解液を加熱する機構を設けたことを特徴とするゲル
電気泳動装置。
2. A slab-like electrophoretic gel having both ends immersed in respective electrolyte solutions, and one end of which has a sample injection part for injecting a nucleic acid fragment sample prepared for each type of terminal base, and both electrolyte solutions. In a gel electrophoresis apparatus equipped with an electrophoretic voltage application unit that applies an electrophoretic voltage between the electrophoretic cells and simultaneously electrophores in a plurality of electrophoretic lanes, an electrolytic solution in which the end of the electrophoretic gel on which the nucleic acid fragment sample is injected is immersed. A gel electrophoresis apparatus comprising a mechanism for heating a gel.
JP7035931A 1995-01-31 1995-01-31 Gel electrophotretic method and apparatus Pending JPH08211018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7035931A JPH08211018A (en) 1995-01-31 1995-01-31 Gel electrophotretic method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035931A JPH08211018A (en) 1995-01-31 1995-01-31 Gel electrophotretic method and apparatus

Publications (1)

Publication Number Publication Date
JPH08211018A true JPH08211018A (en) 1996-08-20

Family

ID=12455782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035931A Pending JPH08211018A (en) 1995-01-31 1995-01-31 Gel electrophotretic method and apparatus

Country Status (1)

Country Link
JP (1) JPH08211018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424282A (en) * 2005-03-09 2006-09-20 Shimadzu Corp Electrophoresis Method Using Capillary Plate Where Solution Is Maintained At Temperature Substaintially Same As Maintained Temperature Of Capillary Plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424282A (en) * 2005-03-09 2006-09-20 Shimadzu Corp Electrophoresis Method Using Capillary Plate Where Solution Is Maintained At Temperature Substaintially Same As Maintained Temperature Of Capillary Plate
GB2424282B (en) * 2005-03-09 2009-11-18 Shimadzu Corp Electrophoresis method using capillary plate
US7850834B2 (en) 2005-03-09 2010-12-14 Shimadzu Corporation Electrophoresis method using capillary plate

Similar Documents

Publication Publication Date Title
JP3418292B2 (en) Gene analyzer
US5324401A (en) Multiplexed fluorescence detector system for capillary electrophoresis
JP3467995B2 (en) Capillary electrophoresis device
JP2853745B2 (en) Light detection electrophoresis device
WO2001016586A1 (en) Electrophoretic system for real time detection of multiple electrophoresed biopolymers
JPH08211018A (en) Gel electrophotretic method and apparatus
Chan et al. Separation of DNA restriction fragments using capillary electrophoresis
US20250067706A1 (en) Electrophoresis system
JPH0593711A (en) Narrow-groove type electrophoresis device
JP2840586B2 (en) Light detection electrophoresis device
JPH10132784A (en) Apparatus for determining dna base sequence
JPH07239317A (en) Electrophoreetic device
JPH10325826A (en) Apparatus for determining dna nucleotide sequence
JP2508404B2 (en) Nucleotide sequencer
JP3544812B2 (en) Multi-capillary base sequencer
JPH0720090A (en) Capillary electrophoresis device
JP3675056B2 (en) Gel electrophoresis
JP2003247981A (en) Fluorescence detecting type capillary array electrophoretic device
JPH07134101A (en) Dna base sequence determining apparatus
JPH10132785A (en) Electrophoresis device
JPH0827258B2 (en) Nucleotide sequencer
JPS61278753A (en) Electrophoretic instrument
JPH09178703A (en) Base arrangement determining device
JP2000304722A (en) Electrophoretic apparatus
JPH08271479A (en) Sample injector for electrophoresis