[go: up one dir, main page]

JPH08210837A - Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus - Google Patents

Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus

Info

Publication number
JPH08210837A
JPH08210837A JP4236395A JP4236395A JPH08210837A JP H08210837 A JPH08210837 A JP H08210837A JP 4236395 A JP4236395 A JP 4236395A JP 4236395 A JP4236395 A JP 4236395A JP H08210837 A JPH08210837 A JP H08210837A
Authority
JP
Japan
Prior art keywords
probe
coordinate value
correction
sphere
dimensional coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4236395A
Other languages
Japanese (ja)
Inventor
Seiji Yamamoto
清二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP4236395A priority Critical patent/JPH08210837A/en
Publication of JPH08210837A publication Critical patent/JPH08210837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To provide the probe position vector computing device, which can obtain the vector of the position of a probe readily in a short time, in the correction of the rotary angle error of a three dimensional coordinate measuring apparatus. CONSTITUTION: In a table 12 of a three dimensional coordinate measuring apparatus having the correcting function of rotary angle errors in the directions of three axes and an absolute original point 19 of the coordinate values, a female screw 12a, whose coordinate values from the absolute original point 19 are known, is provided. A reference gage 20, wherein a height H of the center of a reference ball is known and a set screw 23 is provided at the approximately direct lower part of the reference ball 22, is fixed to the female screw 12a. Thus, the coordinate values of the center 22a of the reference ball 22 from the absolute original point 19 is specified. Therefore, when the reference ball 22 is measured at four or more points by a probe 18 having the measuring piece, whose tip has the spherical shape, the vector of the position of the center 18a of the tip ball of the measuring piece of the probe 18 with respect to a correction reference point 17a of a probe attaching part 17 is computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は互いに直交する3軸方向
にプローブを移動自在に支持し、ワークの形状寸法を測
定する三次元座標測定機に係わり、特に、その運動精度
の回転角度誤差を補正する場合において、プローブ取付
部に設定された補正基準点に対するプローブの測定子先
端球の中心の位置ベクトル(距離及び方向で、本明細書
ではこれを「プローブ位置ベクトル」と称す)算出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional coordinate measuring machine for movably supporting probes in directions orthogonal to each other and measuring the shape and size of a work. The present invention relates to a position vector (in terms of distance and direction, referred to herein as a "probe position vector") of a center of a probe tip sphere of a probe with respect to a correction reference point set in a probe mounting portion in the case of correction. .

【0002】[0002]

【従来の技術】三次元座標測定機はプローブを互いに直
交する3軸方向に移動自在に支持するとともに、プロー
ブの座標位置を検出する位置検出手段を各軸に備え、ワ
ークの測定位置にプローブを当接したときのプローブの
座標位置のデータを演算することによって、ワークの形
状寸法を測定する。
2. Description of the Related Art A three-dimensional coordinate measuring machine supports a probe so as to be movable in three axial directions which are orthogonal to each other, and is equipped with position detecting means for detecting the coordinate position of the probe on each axis so that the probe can be placed at the measuring position of a workpiece. The geometrical dimension of the work is measured by calculating the data of the coordinate position of the probe when it abuts.

【0003】図3に三次元座標測定機の一例の斜視図を
示す。図3に示す三次元座標測定機10はブリッジ移動
形でモータ駆動の三次元座標測定機である。三次元座標
測定機10には、架台11の上にテーブル12が載置さ
れるとともに、テーブル12の両側に右Yキャリッジ1
4aと左Yキャリッジ14bが立設され、右Yキャリッ
ジ14aと左Yキャリッジ14bの上部がXガイド14
cで連結されてブリッジ14が構成されている。テーブ
ル12の両側の上面には上下方向(以下、「Z軸方向」
という)の摺動面が、Y軸案内駆動部13にはX軸方向
(水平方向)の摺動面が各々Y軸方向(X軸方向と直角
な水平方向)に形成され、右Yキャリッジ14aと左Y
キャリッジ14bの下部にはこれに対抗するエアベアリ
ングが設けられている。ブリッジ14はZ軸方向とX軸
方向を拘束されながらY軸方向に移動自在となってい
る。
FIG. 3 shows a perspective view of an example of a three-dimensional coordinate measuring machine. The three-dimensional coordinate measuring machine 10 shown in FIG. 3 is a bridge-moving type motor-driven three-dimensional coordinate measuring machine. In the three-dimensional coordinate measuring machine 10, a table 12 is placed on a pedestal 11, and the right Y carriage 1 is provided on both sides of the table 12.
4a and the left Y carriage 14b are erected, and the upper portions of the right Y carriage 14a and the left Y carriage 14b are the X guides 14
The bridge 14 is configured by being connected by c. The upper surface on both sides of the table 12 has a vertical direction (hereinafter, “Z-axis direction”).
Sliding surfaces in the X-axis direction (horizontal direction) are formed in the Y-axis guide driving unit 13 in the Y-axis direction (horizontal direction perpendicular to the X-axis direction). And left Y
An air bearing that opposes the carriage 14b is provided below the carriage 14b. The bridge 14 is movable in the Y-axis direction while being constrained in the Z-axis direction and the X-axis direction.

【0004】また、Xガイド14cにはY軸方向とZ軸
方向の摺動面が各々X軸方向に形成され、エアベアリン
グが内蔵されたXキャリッジ15がY軸方向とZ軸方向
を拘束されながらX軸方向に移動自在に設けられてい
る。さらに、Xキャリッジ15にはZ軸方向案内用のエ
アベアリングも内蔵されており、これに沿ってZスピン
ドル16がZ軸方向に移動自在に設けられている。Zス
ピンドル16の下端にはプローブ取付部17が固着さ
れ、プローブ取付部17にプローブ18が取り付けられ
ている。
Further, the X guide 14c is formed with sliding surfaces in the Y-axis direction and the Z-axis direction respectively in the X-axis direction, and an X-carriage 15 having a built-in air bearing is constrained in the Y-axis direction and the Z-axis direction. However, it is provided so as to be movable in the X-axis direction. Further, an air bearing for guiding in the Z-axis direction is also built in the X-carriage 15, along which a Z spindle 16 is provided so as to be movable in the Z-axis direction. A probe mounting portion 17 is fixed to the lower end of the Z spindle 16, and a probe 18 is mounted on the probe mounting portion 17.

【0005】これによって、プローブ18はXYZの3
軸方向に移動自在となり、各軸に設けられた駆動機構に
よってモータ駆動(コンピュータによる自動制御駆動や
ジョイスティック操作による駆動)がされる。さらに、
テーブル12の右側にはY軸方向、Xガイド14cには
X軸方向、Zスピンドル16にはZ軸方向スケールが各
々設けられ、右Yキャリッジ14aにはY軸方向の検出
ヘッド、Xキャリッジ15にはX軸方向およびZ軸方向
の検出ヘッドが取り付けられていて、プローブ18の三
次元座標位置を検出する(いずれも図示省略)。なお、
本明細書でいう「プローブ」はワークの測定位置にプロ
ーブを当接したときに電気信号が発生する電子プローブ
である。
As a result, the probe 18 has the XYZ 3
It is movable in the axial direction, and motors are driven (automatically controlled drive by a computer or drive by joystick operation) by a drive mechanism provided for each axis. further,
The right side of the table 12 is provided with a Y-axis direction, the X guide 14c is provided with an X-axis direction, the Z spindle 16 is provided with a Z-axis direction scale, the right Y carriage 14a is provided with a Y-axis direction detection head, and the X carriage 15 is provided with a scale. Is attached with detection heads in the X-axis direction and the Z-axis direction, and detects the three-dimensional coordinate position of the probe 18 (both not shown). In addition,
The “probe” referred to in the present specification is an electronic probe that generates an electric signal when the probe is brought into contact with the measurement position of the work.

【0006】三次元座標測定機はこのように構成されて
いるが、三次元座標測定機の測定精度に影響を与える要
素の1つとして各軸の案内機構の運動精度(指示精度・
真直度・直角度・ピッチング・ヨーイング・ローリン
グ)がある。そこで、測定精度を向上するために、スケ
ール精度の向上や案内構造材・案内機構の改良等、物理
的な対策が行われているが、物理的な対策では高価にな
りがちであるため、あるいは、さらに運動精度を向上さ
せるために、近年、ソフトウェアで運動精度を補正する
方法が増加している。本発明は、このうちピッチング・
ヨーイング・ローリング(以下まとめて「回転角度誤
差」という)についてソフトウェアで補正する装置に関
するものである。
The three-dimensional coordinate measuring machine is constructed in this way, but as one of the factors affecting the measuring accuracy of the three-dimensional coordinate measuring machine, the movement accuracy (instruction accuracy
Straightness, squareness, pitching, yawing, rolling). Therefore, in order to improve the measurement accuracy, physical measures such as improvement of scale accuracy and improvement of guide structure material and guide mechanism are taken, but physical measures tend to be expensive, or In recent years, in order to further improve the motion accuracy, a method of correcting the motion accuracy by software is increasing. The present invention includes pitching
The present invention relates to a device for correcting yawing / rolling (hereinafter collectively referred to as "rotational angle error") with software.

【0007】回転角度誤差をソフトウェアで補正するに
は、まず、各種の測定器を用いて、Zスピンドル16下
端のプローブ取付部17の特定の点(補正基準点17
a)におけるXYZ3軸方向各々の回転角度誤差を、測
定空間全体にわたって所定の測定間隔ごとに求め記憶す
る。この場合、回転角度誤差は角度であり、必要なのは
プローブ18の測定子先端球の位置における補正である
ので、あらかじめ補正基準点17aに対するプローブ1
8の測定子先端球の中心18aの位置ベクトルを求めて
おく必要がある。
In order to correct the rotation angle error by software, first, various measuring instruments are used and a specific point (correction reference point 17) of the probe mounting portion 17 at the lower end of the Z spindle 16 is used.
The rotation angle error in each of the XYZ three-axis directions in a) is obtained and stored at predetermined measurement intervals over the entire measurement space. In this case, the rotation angle error is an angle, and what is necessary is a correction at the position of the probe tip sphere of the probe 18, so that the probe 1 with respect to the correction reference point 17a is beforehand adjusted.
It is necessary to obtain the position vector of the center 18a of the probe tip sphere 8 of FIG.

【0008】そこで、ワーク測定に使用するプローブ1
8ごとに、プローブ位置ベクトルを次に述べる方法で算
出して記憶した後、ワークを測定する。これによって、
補正基準点17aにおける回転角度誤差とプローブ位置
ベクトルから補正値が計算され、補正値が測定データに
加算または測定データから減算されて測定値が算出され
る。図4はこれを説明するために簡易的にXZ2次元に
ついての補正例を示したもので、補正基準点17aにお
ける回転角度誤差をα、プローブ長さがS、SのX軸方
向成分がBx、Z軸方向成分がBz、補正後の補正基準
点17aからのX軸方向距離がCx、Z軸方向距離がC
zである。
Therefore, the probe 1 used for the work measurement
For each 8, the probe position vector is calculated and stored by the method described below, and then the work is measured. by this,
A correction value is calculated from the rotation angle error at the correction reference point 17a and the probe position vector, and the correction value is added to or subtracted from the measurement data to calculate the measurement value. FIG. 4 simply shows an example of correction in the XZ two-dimensional for explaining this. The rotation angle error at the correction reference point 17a is α, the probe length is S, the component of S in the X-axis direction is Bx, The Z-axis direction component is Bz, the X-axis direction distance from the corrected reference point 17a after correction is Cx, and the Z-axis direction distance is C.
z.

【0009】次に、従来のプローブ位置ベクトル算出方
法の2つの例を説明する。図5に示す第1の方法では、
Zスピンドル16下端のプローブ取付部17の下面の中
央が補正基準点17aになっている。また、取付台21
に基準球22が固着されて構成された基準ゲージ20が
テーブル12に固定されている。ただし、図5は簡易的
にXZ2次元で表しており、紙面と直角方向がY軸方向
となる。したがって、以下に記述するY軸方向の値につ
いても図示を省略している。
Next, two examples of conventional probe position vector calculation methods will be described. In the first method shown in FIG. 5,
The center of the lower surface of the probe mounting portion 17 at the lower end of the Z spindle 16 is the correction reference point 17a. Also, the mount 21
A reference gauge 20 configured by a reference sphere 22 being fixed to the table 12 is fixed to the table 12. However, FIG. 5 is simply expressed in the XZ two-dimensional manner, and the direction perpendicular to the paper surface is the Y-axis direction. Therefore, illustration of values in the Y-axis direction described below is also omitted.

【0010】この状態から、まず、プローブ取付部17
に取付面から測定子先端球の中心41aまでの長さP
(この場合は、プローブ取付部17と測定子先端球の中
心41aのXY軸方向座標値がほぼ一致しているので、
プローブ位置ベクトルの値はZ軸方向のみでよい)が既
知のプローブ41を取り付け、プローブ41で基準球2
2を4点以上を測定する。
From this state, first, the probe mounting portion 17
The length P from the mounting surface to the center 41a of the probe tip sphere
(In this case, since the XY-axis coordinate values of the probe mounting portion 17 and the center 41a of the probe tip sphere are substantially the same,
The value of the probe position vector may be only in the Z-axis direction).
2 is measured at 4 points or more.

【0011】基準球22を4点以上を測定すると、三次
元座標測定機の座標値の絶対原点19からの補正基準点
17aのX軸座標値、Y軸座標値及びZ軸座標値(以
下、単にそれぞれ「補正基準点X軸座標値」、「補正基
準点Y軸座標値」、「補正基準点Z軸座標値」という)
が各々4点以上得られるので、これから測定子先端球の
中心41aが基準球22の中心22aに一致した位置
(計算上の位置で、以下、「プローブ原点位置」とい
う)における補正基準点X軸座標値Xc、補正基準点Y
軸座標値Yc及び補正基準点Z軸座標値Zcが次のよう
にして算出される(図5の左側)。
When the reference sphere 22 is measured at four or more points, the X-axis coordinate value, the Y-axis coordinate value, and the Z-axis coordinate value of the correction reference point 17a from the absolute origin 19 of the coordinate value of the three-dimensional coordinate measuring machine (hereinafter, Simply referred to as "correction reference point X-axis coordinate value", "correction reference point Y-axis coordinate value", and "correction reference point Z-axis coordinate value" respectively)
Since four or more points are obtained respectively, the corrected reference point X-axis at the position where the center 41a of the probe tip sphere coincides with the center 22a of the reference sphere 22 (calculated position, hereinafter referred to as "probe origin position"). Coordinate value Xc, correction reference point Y
The axis coordinate value Yc and the correction reference point Z axis coordinate value Zc are calculated as follows (on the left side in FIG. 5).

【0012】すなわち、基準球22を4点測定した場
合、得られた補正基準点X軸座標値をXc1・Xc2・Xc3
・Xc4、補正基準点Y軸座標値YcをYc1・Yc2・Yc3
・Yc4、補正基準点Z軸座標値をZc1・Zc2・Zc3・Z
c4とし、基準球22の中心22aと測定子先端球の中心
41aの距離をRとすると、次の式が得られる。 (Xc−Xc1)2+(Yc−Yc1)2+(Zc−Zc1)2=R2 ……(1) (Xc−Xc2)2+(Yc−Yc2)2+(Zc−Zc2)2=R2 ……(2) (Xc−Xc3)2+(Yc−Yc3)2+(Zc−Zc3)2=R2 ……(3) (Xc−Xc4)2+(Yc−Yc4)2+(Zc−Zc4)2=R2 ……(4) これから、Rに関係なくXc・Yc・Zcが算出され
る。
That is, when the reference sphere 22 is measured at four points, the correction reference point X-axis coordinate values obtained are Xc1, Xc2, Xc3.
・ Xc4, correction reference point Y-axis coordinate value Yc is Yc1, Yc2, Yc3
・ Yc4, correction reference point Z-axis coordinate value is Zc1, Zc2, Zc3, Z
If c4 and the distance between the center 22a of the reference sphere 22 and the center 41a of the probe tip sphere are R, then the following equation is obtained. (Xc-Xc1) 2 + (Yc-Yc1) 2 + (Zc-Zc1) 2 = R 2 (1) (Xc-Xc2) 2 + (Yc-Yc2) 2 + (Zc-Zc2) 2 = R 2 (2) (Xc-Xc3) 2 + (Yc-Yc3) 2 + (Zc-Zc3) 2 = R 2 (3) (Xc-Xc4) 2 + (Yc-Yc4) 2 + (Zc −Zc4) 2 = R 2 (4) From this, Xc · Yc · Zc is calculated regardless of R.

【0013】したがって、絶対原点19からの基準球2
2の中心22aのX軸座標値(以下、単に「基準球X軸
座標値」」という)Mx、Y軸座標値(以下、単に「基
準球Y軸座標値」という)My及びZ軸座標値(以下、
単に「基準球Z軸座標値」という)Mzは、 Mx=Xc ……(5) My=Yc ……(6) Mz=Zc+P ……(7) となる。
Therefore, the reference sphere 2 from the absolute origin 19
The X-axis coordinate value (hereinafter, simply referred to as "reference sphere X-axis coordinate value") Mx, the Y-axis coordinate value (hereinafter, simply referred to as "reference sphere Y-axis coordinate value") My, and the Z-axis coordinate value of the center 22a of 2 (Less than,
Mz is simply referred to as “reference sphere Z-axis coordinate value”. Mx = Xc (5) My = Yc (6) Mz = Zc + P (7)

【0014】この後、ワーク測定に使用するプローブ1
8に取り替え、基準球22を4点以上測定し、同様に、
プローブ原点位置における補正基準点X軸座標値Xd、
補正基準点Y軸座標値Yd及び補正基準点Z軸座標値Z
dを求める(図5の右側)。
After this, the probe 1 used for measuring the workpiece
Replace with 8 and measure 4 or more reference spheres 22.
Correction reference point X-axis coordinate value Xd at the probe origin position,
Correction reference point Y-axis coordinate value Yd and correction reference point Z-axis coordinate value Z
Find d (right side of FIG. 5).

【0015】この結果、補正基準点17aに対するプロ
ーブ18の測定子先端球の中心18aの位置ベクトルの
X軸方向成分Dx、Y軸方向成分Dy及びZ軸方向成分
Dzは、プローブ41によって算出した基準球X軸座標
値Mx、基準球Y軸座標値My及び基準球Z軸座標値M
zを用いて次の式から算出される。 Dx=Mx−Xd ……(8) Dy=My−Yd ……(9) Dz=Mz−Zd ……(10)
As a result, the X-axis direction component Dx, the Y-axis direction component Dy, and the Z-axis direction component Dz of the position vector of the center 18a of the probe tip sphere of the probe 18 with respect to the correction reference point 17a are calculated by the probe 41. Sphere X-axis coordinate value Mx, reference sphere Y-axis coordinate value My and reference sphere Z-axis coordinate value M
It is calculated from the following formula using z. Dx = Mx-Xd (8) Dy = My-Yd (9) Dz = Mz-Zd (10)

【0016】図6に示す第2の方法では、Zスピンドル
16下端にプローブ取付部45が固着されている。プロ
ーブ取付部45は先端に基準穴45aが形成されている
ところが前述した第1の方法のプローブ取付部17と異
なるが、第1の方法と同様に、プローブ取付部45の下
面の中央が補正基準点45bになっている。基準ゲージ
20は第1の方法と同じである。ただし、図6は図5と
同様に簡易的にXZ2次元で表しており、紙面と直角方
向がY軸方向となる。したがって、以下に記述するY軸
方向の値についても図示を省略している。
In the second method shown in FIG. 6, the probe mounting portion 45 is fixed to the lower end of the Z spindle 16. The probe mounting portion 45 is different from the probe mounting portion 17 of the first method described above in that the reference hole 45a is formed at the tip, but like the first method, the center of the lower surface of the probe mounting portion 45 is the correction reference. It is point 45b. The reference gauge 20 is the same as in the first method. However, FIG. 6 is simply expressed in the XZ two-dimensional manner as in FIG. 5, and the direction perpendicular to the paper surface is the Y-axis direction. Therefore, illustration of values in the Y-axis direction described below is also omitted.

【0017】この状態から、まず、プローブ取付部45
の基準穴45aを基準球22に当接し、そのときの補正
基準点X軸座標値Xe、補正基準点Y軸座標値Ye及び
補正基準点Z軸座標値Zeを求める(図6の左側)。基
準穴45aを基準球22に当接したときプローブ取付部
45の下面と基準球22の中心22aとの距離Qは既知
であるので、この結果、基準球X軸座標値Nx、基準球
Y軸座標値Ny及び基準球Z軸座標値Nzは次の式から
算出される。 Nx=Xe ……(11) Ny=Ye ……(12) Nz=Ze+Q ……(13)
From this state, first, the probe mounting portion 45
The reference hole 45a of the above is brought into contact with the reference sphere 22, and the correction reference point X-axis coordinate value Xe, the correction reference point Y-axis coordinate value Ye and the correction reference point Z-axis coordinate value Ze at that time are obtained (left side of FIG. 6). Since the distance Q between the lower surface of the probe mounting portion 45 and the center 22a of the reference sphere 22 when the reference hole 45a is brought into contact with the reference sphere 22 is known, as a result, the reference sphere X-axis coordinate value Nx and the reference sphere Y-axis are obtained. The coordinate value Ny and the reference sphere Z-axis coordinate value Nz are calculated from the following equations. Nx = Xe (11) Ny = Ye (12) Nz = Ze + Q (13)

【0018】この後、ワーク測定に使用するプローブ1
8を取り付けて基準球22を4点以上測定し、プローブ
原点位置における補正基準点X軸座標値Xf、補正基準
点Y軸座標値Yf及び補正基準点Z軸座標値Zfを求め
る(図6の右側)。
After this, the probe 1 used for measuring the workpiece
8 is attached and the reference sphere 22 is measured at four or more points, and the correction reference point X-axis coordinate value Xf, the correction reference point Y-axis coordinate value Yf, and the correction reference point Z-axis coordinate value Zf at the probe origin position are obtained (see FIG. 6). Right side).

【0019】この結果、補正基準点45bに対するプロ
ーブ18の測定子先端球の中心18aの位置ベクトルの
X軸方向成分Ex、Y軸方向成分Ey及びZ軸方向成分
Ezは、先ほど算出した基準球X軸座標値Nx、基準球
Y軸座標値Ny及び基準球Z軸座標値Nzを用いて次の
式から算出される。 Ex=Nx−Xf ……(14) Ey=Ny−Yf ……(15) Ez=Nz−Zf ……(16)
As a result, the X-axis direction component Ex, the Y-axis direction component Ey, and the Z-axis direction component Ez of the position vector of the center 18a of the probe tip sphere of the probe 18 with respect to the correction reference point 45b are the reference sphere X calculated previously. It is calculated from the following equation using the axis coordinate value Nx, the reference sphere Y axis coordinate value Ny, and the reference sphere Z axis coordinate value Nz. Ex = Nx-Xf (14) Ey = Ny-Yf (15) Ez = Nz-Zf (16)

【0020】また、これらの方法の他に、作業者がプロ
ーブ位置ベクトルを個別に測定して外部入力部から入力
する方法もある。
In addition to these methods, there is also a method in which the operator individually measures the probe position vector and inputs it from the external input section.

【0021】[0021]

【発明が解決しようとする課題】しかしながら、第1及
び第2の方法では、絶対原点19から基準球22の中心
22aまでの距離(基準球座標値)を算出する必要があ
り、これを記憶するデータ処理装置の電源を入れ直すた
びに設定しなければならない。この場合、第1の方法で
は、取付面から測定子先端球の中心41aまでの長さP
が既知のプローブ41をこの目的のために用意する必要
がある。
However, in the first and second methods, it is necessary to calculate the distance (reference sphere coordinate value) from the absolute origin 19 to the center 22a of the reference sphere 22, and this is stored. Must be set each time the data processor is cycled. In this case, in the first method, the length P from the attachment surface to the center 41a of the probe tip sphere P
A known probe 41 must be prepared for this purpose.

【0022】また、第2の方法では、プローブ18を取
り外す必要があるため、データ処理装置の電源を入れ直
すたびにプローブ取付姿勢が変化するおそれがある。
In the second method, since the probe 18 needs to be removed, the probe mounting posture may change every time the power of the data processing device is turned on again.

【0023】さらに、作業者が外部入力部から入力する
方法では、プローブ位置ベクトルを測定することが容易
でないとともに、入力ミスを起こしやすいという問題が
ある。特に、3軸方向やその+−符号を間違えると、補
正することによってワークの測定値がかえって悪化して
しまうことになる。いずれの方法でも、プローブ交換や
数値入力等の手動作業が必要であり、作業者の介在を要
するため、時間がかかるという問題がある。
Further, in the method in which the operator inputs from the external input section, there are problems that it is not easy to measure the probe position vector and that an input error is likely to occur. In particular, if the three-axis direction or its +/- sign is wrong, the measured value of the work will rather deteriorate due to the correction. Either method requires manual work such as probe replacement and numerical input, and requires the intervention of an operator, so that there is a problem that it takes time.

【0024】本発明はこのような事情を鑑みてなされた
もので、三次元座標測定機の運動精度の回転角度誤差補
正において、プローブ交換等が不要で、プローブ位置ベ
クトルを容易に短時間で求めることができるプローブ位
置ベクトル算出装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and in the correction of the rotation angle error of the motion accuracy of the three-dimensional coordinate measuring machine, probe replacement is not necessary and the probe position vector can be easily obtained in a short time. An object of the present invention is to provide a probe position vector calculation device capable of performing the above.

【0025】[0025]

【課題を解決するための手段】本発明は、前記目的を達
成するために、三次元座標測定機の回転角度誤差補正に
おけるプローブ位置ベクトル算出装置を次のように構成
する。 (イ)互いに直交する3軸方向にプローブ18を移動自
在に支持してワークの形状寸法を測定するとともに、3
軸方向の回転角度誤差補正機能を有し、さらに、座標値
の絶対原点19を備えた三次元座標測定機10のテーブ
ル12に、絶対原点19からの座標値が既知のメネジ1
2aを設ける。 (ロ)取付台21に基準球22を固着するとともに、基
準球22のほぼ真下にテーブル12への取付ネジを設け
た基準ゲージ20を、テーブル12上面でメネジ12a
に固定する。取付台21のテーブル取付面から基準球2
2の中心22aの高さ(以下、単に「基準球中心高さ」
という)Hは既知である。 (ハ)三次元座標測定機10のプローブ取付部17にワ
ーク測定に使用するプローブ18を取り付ける。プロー
ブ18の測定子の先端は球形である。 (ニ)データ処理装置で、 絶対原点19からのメネジ12aの座標値 絶対原点19からのテーブル12上面の座標値 基準球中心高さH を記憶するとともに、これらの値とプローブ18で基準
球22を4点以上測定したときの測定値から、プローブ
取付部17の補正基準点17aに対するプローブ18の
測定子先端球の中心の位置ベクトルを算出する。
In order to achieve the above object, the present invention comprises a probe position vector calculating device for correcting a rotation angle error of a three-dimensional coordinate measuring machine as follows. (A) The probe 18 is movably supported in the directions of three axes that are orthogonal to each other to measure the shape and size of the work, and
The table 12 of the three-dimensional coordinate measuring machine 10 which has the function of correcting the rotational angle error in the axial direction and further has the absolute origin 19 of the coordinate value is stored in the table 12 of the female screw 1 whose coordinate value from the absolute origin 19 is known.
2a is provided. (B) The reference sphere 22 is fixed to the mounting base 21, and the reference gauge 20 provided with a mounting screw for the table 12 is provided just below the reference sphere 22.
Fixed to. From the table mounting surface of the mounting base 21 to the reference ball 2
Height of the center 22a of 2 (hereinafter, simply referred to as "reference sphere center height")
H) is known. (C) The probe 18 used for measuring the work is attached to the probe attachment portion 17 of the three-dimensional coordinate measuring machine 10. The tip of the probe of the probe 18 is spherical. (D) The data processing device stores the coordinate value of the female screw 12a from the absolute origin 19, the coordinate value of the upper surface of the table 12 from the absolute origin 19, and the reference sphere center height H, and these values and the reference sphere 22 by the probe 18. The position vector of the center of the probe tip sphere of the probe 18 with respect to the correction reference point 17a of the probe mounting portion 17 is calculated from the measurement values obtained when four or more points are measured.

【0026】[0026]

【作用】本発明によれば、基準ゲージ20を取り付ける
テーブル12上面とメネジ12aの位置が特定され、基
準球22のほぼ真下にテーブル12への取付ネジが設け
られているとともに、基準球中心高さHが既知であるの
で、基準ゲージ20をテーブル12上面でメネジ12a
の位置に取り付けると、基準球22の中心22aの絶対
原点19からの座標値が特定される。したがって、これ
らの値をデータ処理装置に記憶しておけば、ワーク測定
に使用するプローブ18で基準球22を4点以上測定す
るだけで、プローブ18のプローブ位置ベクトルを算出
することができる。
According to the present invention, the position of the upper surface of the table 12 to which the reference gauge 20 is attached and the position of the female screw 12a are specified, the attaching screw to the table 12 is provided almost directly below the reference sphere 22, and the center height of the reference sphere is set. Since the height H is known, the reference gauge 20 is attached to the upper surface of the table 12 by the female screw 12a.
When it is attached at the position of, the coordinate value of the center 22a of the reference sphere 22 from the absolute origin 19 is specified. Therefore, if these values are stored in the data processing device, the probe position vector of the probe 18 can be calculated only by measuring four or more reference spheres 22 with the probe 18 used for workpiece measurement.

【0027】[0027]

【実施例】図1に本発明に係るプローブ位置ベクトル算
出方法の実施例の説明図を示す。図1は従来の技術で説
明した例と同様に簡易的にXZ2次元で表しており、紙
面と直角方向がY軸方向となる。したがって、以下に記
述するY軸方向の値についても図示を省略している。図
1において、従来の技術で説明した第1の方法と同様
に、Zスピンドル16下端にプローブ取付部17が固着
され、プローブ取付部17の下面の中央が補正基準点1
7aになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an explanatory view of an embodiment of a probe position vector calculating method according to the present invention. Similar to the example described in the related art, FIG. 1 is simply expressed in the XZ two-dimensional form, and the direction perpendicular to the paper surface is the Y-axis direction. Therefore, illustration of values in the Y-axis direction described below is also omitted. In FIG. 1, similarly to the first method described in the related art, the probe mounting portion 17 is fixed to the lower end of the Z spindle 16, and the center of the lower surface of the probe mounting portion 17 is the correction reference point 1.
7a.

【0028】また、略コの字形の取付台21の上部に基
準球22が固着されて構成された基準ゲージ20が、ボ
ルト23でテーブル12に固定されているが、ボルト2
3を通す取付台21の下面の取付穴21aは、基準球2
2のほぼ真下に位置している。基準球中心高さHは既知
である。
Further, the reference gauge 20 constituted by the reference sphere 22 fixed to the upper portion of the substantially U-shaped mount 21 is fixed to the table 12 by the bolt 23.
The mounting hole 21a on the lower surface of the mounting base 21 through which the reference numeral 3 passes
It is located just below 2. The reference ball center height H is known.

【0029】さらに、基準ゲージ20を固定するテーブ
ル12のメネジ12aはワークを固定する他のメネジの
中から特定してあり、三次元座標測定機10の絶対原点
19からのメネジ12aの座標値(XY軸方向)及びテ
ーブル12の上面の座標値(Z軸方向)があらかじめデ
ータ処理装置(図示省略)に記憶されている。したがっ
て、この状態から、すぐにワーク測定に使用するプロー
ブを取り付け基準球22を4点以上測定することによっ
て、プローブ位置ベクトルが算出できる。
Further, the female screw 12a of the table 12 for fixing the reference gauge 20 is specified from other female screws for fixing the work, and the coordinate value of the female screw 12a from the absolute origin 19 of the three-dimensional coordinate measuring machine 10 ( The XY axis directions) and the coordinate values of the upper surface of the table 12 (Z axis directions) are stored in advance in a data processing device (not shown). Therefore, from this state, the probe position vector can be calculated by immediately attaching the probe used for the workpiece measurement and measuring the reference sphere 22 at four or more points.

【0030】すなわち、図1において、絶対原点19か
らのメネジ12aのX軸座標値(以下、単に「メネジX
軸座標値」という)をLx、Y軸座標値(以下、単に
「メネジY軸座標値」という)をLy、Z軸座標値(以
下、単に「テーブルZ軸座標値」という)をLz、プロ
ーブ原点位置における補正基準点X軸座標値をXa、補
正基準点Y軸座標値をYa及び補正基準点Z軸座標値を
Zaとすると、補正基準点17aに対するプローブ18
の測定子先端球の中心18aの位置ベクトルのX軸方向
成分Ax、Y軸方向成分Ay及びZ軸方向成分Azは、
次の式から算出される。 Ax=Lx−Xa ……(17) Ay=Ly−Ya ……(18) Az=Lz−Za−H……(19)
That is, in FIG. 1, the X-axis coordinate value of the female screw 12a from the absolute origin 19 (hereinafter simply referred to as "female screw X").
The axis coordinate value is referred to as "Lx", the Y axis coordinate value (hereinafter referred to simply as "female Y-axis coordinate value") is referred to as Ly, the Z axis coordinate value (hereinafter referred to as "table Z axis coordinate value") is referred to as Lz, and the probe is used. When the correction reference point X-axis coordinate value at the origin position is Xa, the correction reference point Y-axis coordinate value is Ya, and the correction reference point Z-axis coordinate value is Za, the probe 18 for the correction reference point 17a is shown.
The X-axis direction component Ax, the Y-axis direction component Ay, and the Z-axis direction component Az of the position vector of the center 18a of the probe tip sphere are
It is calculated from the following formula. Ax = Lx-Xa (17) Ay = Ly-Ya (18) Az = Lz-Za-H (19)

【0031】この場合、基準ゲージ20の取付穴21a
が基準球22のほぼ真下にあるので、基準ゲージ20を
どのような方向に向けてもテーブル12の特定のメネジ
12aに対して、基準球22の位置が特定される。
In this case, the mounting hole 21a of the reference gauge 20
Is almost directly below the reference sphere 22, the position of the reference sphere 22 is specified with respect to the specific female screw 12a of the table 12 in any direction of the reference gauge 20.

【0032】したがって、基準ゲージ20の代わりに、
図2に示すように軸状の取付台26に基準球22が固着
され、取付台26に形成されたネジ26aでテーブル1
2に固定する基準ゲージ25としてもよい。また、テー
ブル12の特定のメネジ12aに対して、基準球22の
位置が特定される形状であれば他の基準ゲージでもよい
し、別に位置決め治具を併用して特定する形式の基準ゲ
ージでも、本発明は適用できる。
Therefore, instead of the reference gauge 20,
As shown in FIG. 2, the reference sphere 22 is fixed to the shaft-shaped mounting base 26, and the table 1 is attached by the screw 26 a formed on the mounting base 26.
The reference gauge 25 fixed to 2 may be used. Further, as long as the position of the reference sphere 22 is specified with respect to the specific female screw 12a of the table 12, another reference gauge may be used, or a reference gauge of a type in which a positioning jig is also specified separately is used. The present invention can be applied.

【0033】なお、一般的に回転角度誤差は微小である
から基準球22の中心22aの座標値の精度は数mm程
度で充分であるので、取付穴21aとメネジ12aの隙
間は普通許容差でよい。同様に、メネジX軸座標値L
x、メネジY軸座標値Ly及びテーブルZ軸座標値Lz
をデータ処理装置に入力する場合は、正確に測定する必
要がなく、三次元座標測定機10の設計値で十分であ
る。
Since the rotation angle error is generally small, the accuracy of the coordinate value of the center 22a of the reference sphere 22 is about several mm, so the clearance between the mounting hole 21a and the female screw 12a is usually a tolerance. Good. Similarly, female screw X-axis coordinate value L
x, female screw Y-axis coordinate value Ly and table Z-axis coordinate value Lz
Is input to the data processing device, it is not necessary to perform accurate measurement, and the design value of the three-dimensional coordinate measuring machine 10 is sufficient.

【0034】なお、実施例ではブリッジ移動形でモータ
駆動の三次元座標測定機10について説明したが、絶対
原点19を備えていれば、他の構造形式の三次元座標測
定機でも、手動駆動式の三次元座標測定機についても本
発明は適用できる。
In the embodiment, the bridge-moving type three-dimensional coordinate measuring machine 10 driven by a motor has been described. However, if the absolute origin 19 is provided, a three-dimensional coordinate measuring machine of another structural type can be manually driven. The present invention can be applied to the three-dimensional coordinate measuring machine.

【0035】[0035]

【発明の効果】以上説明したように本発明に係る三次元
座標測定機の回転角度誤差補正におけるプローブ位置ベ
クトル算出装置によれば、基準ゲージ20を取り付ける
テーブル12上面とメネジ12aの位置が特定され、基
準球22のほぼ真下にテーブル12への取付ネジが設け
られているとともに、基準球中心高さHが既知であるの
で、基準ゲージ20をテーブル12上面でメネジ12a
の位置に取り付けると、絶対原点19からの基準球22
の中心22aの座標値が特定される。これによって、こ
れらの値をデータ処理装置に記憶しておくことによっ
て、ワーク測定に使用するプローブ18で基準球22を
4点以上測定するだけで、プローブ18のプローブ位置
ベクトルを算出することができる。
As described above, according to the probe position vector calculating device for correcting the rotation angle error of the three-dimensional coordinate measuring machine according to the present invention, the positions of the upper surface of the table 12 to which the reference gauge 20 is attached and the female screw 12a are specified. Since a mounting screw for the table 12 is provided almost directly below the reference sphere 22 and the center height H of the reference sphere is known, the reference gauge 20 is attached to the female screw 12a on the upper surface of the table 12.
When installed at the position of, the reference sphere 22 from the absolute origin 19
The coordinate value of the center 22a of is specified. As a result, by storing these values in the data processing device, the probe position vector of the probe 18 can be calculated only by measuring the reference sphere 22 at four or more points with the probe 18 used for workpiece measurement. .

【0036】したがって、プローブ位置ベクトルが既知
のプローブで基準球22を測定したり、プローブを取り
外してプローブ取付部45を基準球22に当接して、絶
対原点19からの基準球22の中心22aの座標値を求
める必要がなく、プローブ位置ベクトルを容易に短時間
で求めることができるプローブ位置ベクトル算出装置を
提供することができる。
Therefore, the reference sphere 22 is measured with a probe having a known probe position vector, or the probe is detached and the probe mounting portion 45 is brought into contact with the reference sphere 22 so that the center 22a of the reference sphere 22 from the absolute origin 19 is detected. It is possible to provide a probe position vector calculation device that can easily calculate a probe position vector in a short time without having to calculate coordinate values.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るプローブ位置ベクトル算出方法の
実施例の説明図
FIG. 1 is an explanatory diagram of an embodiment of a probe position vector calculation method according to the present invention.

【図2】本発明に係る別の基準ゲージの図FIG. 2 is a diagram of another reference gauge according to the present invention.

【図3】三次元座標測定機の一例の斜視図FIG. 3 is a perspective view of an example of a three-dimensional coordinate measuring machine.

【図4】回転角度誤差補正を説明する図FIG. 4 is a diagram illustrating rotation angle error correction.

【図5】従来のプローブ位置ベクトル算出の第1の方法
の説明図
FIG. 5 is an explanatory diagram of a first method for calculating a conventional probe position vector.

【図6】従来のプローブ位置ベクトル算出の第2の方法
の説明図
FIG. 6 is an explanatory view of a second conventional method for calculating a probe position vector.

【符号の説明】[Explanation of symbols]

12……テーブル 12a…メネジ 16……Zスピンドル 17……プローブ取付部 17a…補正基準点 18……プローブ 18a…測定子先端球の中心 19……絶対原点 20……基準ゲージ 21……取付台 21a…取付穴 22……基準球 22a…基準球の中心 23……ボルト Lx……メネジX軸座標値 Lz……テーブルZ軸座標値 H………基準球中心高さ 12 ... table 12a ... female screw 16 ... Z spindle 17 ... probe mounting part 17a ... correction reference point 18 ... probe 18a ... center of probe tip ball 19 ... absolute origin 20 ... reference gauge 21 ... mounting base 21a ... Mounting hole 22 ... Reference sphere 22a ... Center of reference sphere 23 ... Bolt Lx ... Female screw X-axis coordinate value Lz ... Table Z-axis coordinate value H ...

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに直交する3軸方向にプローブを移動
自在に支持してワークの形状寸法を測定するとともに、
3軸方向の回転角度誤差補正機能を有し、さらに、座標
値の絶対原点を備えた三次元座標測定機と、 前記三次元座標測定機のテーブルに設けられ、前記絶対
原点からの座標値が既知のメネジと、 取付台に基準球が固着されて構成され、該取付台の前記
テーブル取付面からの該基準球の中心高さが既知である
とともに、該取付台の前記テーブルへの取付ネジが該基
準球のほぼ真下に設けられ、前記テーブル上面で前記メ
ネジに固定された基準ゲージと、 前記三次元座標測定機のプローブ取付部に取り付けら
れ、先端が球形の測定子を有し、ワーク測定に使用する
前記プローブと、 前記絶対原点からの前記メネジの座標値及び前記絶対原
点からの前記テーブル上面の座標値並びに前記テーブル
上面からの前記基準球の中心高さを記憶するとととも
に、これらの値と前記プローブで前記基準球を少なくと
も4点測定したときの測定値から、前記プローブ取付部
の補正基準点に対する前記測定子の先端球の中心の位置
ベクトルを算出するデータ処理装置と、 から構成されたことを特徴とする三次元座標測定機の回
転角度誤差補正におけるプローブ位置ベクトル算出装
置。
1. A probe is movably supported in three axial directions orthogonal to each other to measure the shape and size of a work, and
A three-dimensional coordinate measuring machine having a rotation angle error correction function in the three-axis directions and further provided with an absolute origin of coordinate values, and a coordinate value from the absolute origin provided on the table of the three-dimensional coordinate measuring machine. A known female screw and a reference sphere fixed to a mounting base. The center height of the reference sphere from the table mounting surface of the mounting base is known, and the mounting screw of the mounting base to the table is also known. Is provided almost directly below the reference sphere, a reference gauge fixed to the female screw on the table upper surface, and attached to the probe attachment portion of the three-dimensional coordinate measuring machine, the tip has a spherical probe, the workpiece With the probe used for measurement, storing the coordinate value of the female screw from the absolute origin, the coordinate value of the table upper surface from the absolute origin, and the center height of the reference sphere from the table upper surface. Data processing for calculating the position vector of the center of the tip sphere of the probe with respect to the correction reference point of the probe mounting portion from these values and the measured values when the reference sphere is measured at least four points with the probe. An apparatus for calculating a probe position vector for correcting a rotation angle error of a three-dimensional coordinate measuring machine, comprising:
JP4236395A 1995-02-07 1995-02-07 Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus Pending JPH08210837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236395A JPH08210837A (en) 1995-02-07 1995-02-07 Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236395A JPH08210837A (en) 1995-02-07 1995-02-07 Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08210837A true JPH08210837A (en) 1996-08-20

Family

ID=12633962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236395A Pending JPH08210837A (en) 1995-02-07 1995-02-07 Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08210837A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451847B1 (en) * 2002-07-13 2004-10-08 현대모비스 주식회사 position correction apparatus for x-y-z axial measuring machine
CN100453970C (en) * 2003-11-13 2009-01-21 瑞尼斯豪公司 Method of Error Compensation for Coordinate Measuring Machines with Articulated Probes
JP2013221820A (en) * 2012-04-16 2013-10-28 Tokyo Seimitsu Co Ltd Three-dimensional coordinate measuring machine
JP2015092172A (en) * 2014-12-16 2015-05-14 株式会社東京精密 3D coordinate measuring machine
JP2015163886A (en) * 2015-04-06 2015-09-10 株式会社東京精密 Three-dimensional coordinate measuring instrument
CN110530314A (en) * 2019-08-22 2019-12-03 成都飞机工业(集团)有限责任公司 A kind of coordinate measuring machine measurement accuracy rapid detection method
CN112025412A (en) * 2020-07-31 2020-12-04 格致汽车科技股份有限公司 Rapid determination and correction method for large gantry 3+ 2-axis numerical control machine tool
CN114136212A (en) * 2021-11-30 2022-03-04 问好 Method for calibrating light emitting direction of point laser measuring head of three-coordinate measuring machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451847B1 (en) * 2002-07-13 2004-10-08 현대모비스 주식회사 position correction apparatus for x-y-z axial measuring machine
CN100453970C (en) * 2003-11-13 2009-01-21 瑞尼斯豪公司 Method of Error Compensation for Coordinate Measuring Machines with Articulated Probes
JP2013221820A (en) * 2012-04-16 2013-10-28 Tokyo Seimitsu Co Ltd Three-dimensional coordinate measuring machine
JP2015092172A (en) * 2014-12-16 2015-05-14 株式会社東京精密 3D coordinate measuring machine
JP2015163886A (en) * 2015-04-06 2015-09-10 株式会社東京精密 Three-dimensional coordinate measuring instrument
CN110530314A (en) * 2019-08-22 2019-12-03 成都飞机工业(集团)有限责任公司 A kind of coordinate measuring machine measurement accuracy rapid detection method
CN112025412A (en) * 2020-07-31 2020-12-04 格致汽车科技股份有限公司 Rapid determination and correction method for large gantry 3+ 2-axis numerical control machine tool
CN112025412B (en) * 2020-07-31 2021-07-13 格致汽车科技股份有限公司 Rapid determination and correction method for large gantry 3+ 2-axis numerical control machine tool
CN114136212A (en) * 2021-11-30 2022-03-04 问好 Method for calibrating light emitting direction of point laser measuring head of three-coordinate measuring machine

Similar Documents

Publication Publication Date Title
US10145682B2 (en) Reduction of errors of a rotating device used during the determination of coordinates of a workpiece or during the machining of a workpiece
CA2807204C (en) Device for error correction for cnc machines
JP6599832B2 (en) Machine tool and work plane machining method
US20030069709A1 (en) Method for calibrating scanning probe and computer-readable medium therefor
JP6570957B2 (en) Geometric error identification method for mechanical structure, numerical control method using the geometric error identification method, numerical control apparatus, and machining center
JP5968749B2 (en) Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method
JP5355037B2 (en) Accuracy measuring method, error control method for numerically controlled machine tool, and numerically controlled machine tool having error correcting function
JP2016097459A (en) Rotary shaft center position measuring jig, and rotary shaft center position measuring method using the jig
CN106247927B (en) Device and method for measuring surface roughness of negative curvature ruled surface
JPH08210837A (en) Probe position vector computing device in correction of rotary angle error of three dimensional coordinate measuring apparatus
JP2831610B2 (en) measuring device
JP2904248B2 (en) Calibration method of rotary table for coordinate measuring machine
JP2755346B2 (en) Method and apparatus for measuring motion accuracy of automatic machine tool
JP5297749B2 (en) Automatic dimension measuring device
JP6425009B2 (en) Three-dimensional measuring machine and shape measuring method using the same
JP2005121556A (en) Measuring method of work curved surface, its program and medium
JP2858926B2 (en) Master measuring device for measuring machine static accuracy
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
JPH11320266A (en) Wire electric discharge machining method and apparatus
JPH06201303A (en) Three dimensional measuring device
JPH1123256A (en) Circularity measuring machine
JP2758810B2 (en) Shape measurement method
JP4552101B2 (en) Workpiece positioning method and apparatus for surface profile measuring machine
JP2572936B2 (en) Shape measuring instruments
KR20250002980A (en) Geometric error measuring device for 5-axis machine tool