JPH08208317A - Alumina sintered body and method for producing the same - Google Patents
Alumina sintered body and method for producing the sameInfo
- Publication number
- JPH08208317A JPH08208317A JP7013453A JP1345395A JPH08208317A JP H08208317 A JPH08208317 A JP H08208317A JP 7013453 A JP7013453 A JP 7013453A JP 1345395 A JP1345395 A JP 1345395A JP H08208317 A JPH08208317 A JP H08208317A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- sintered body
- phase
- powder
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000013078 crystal Substances 0.000 claims abstract description 116
- 239000000843 powder Substances 0.000 claims abstract description 59
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 20
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 20
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 19
- 229910052788 barium Inorganic materials 0.000 claims abstract description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims abstract description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 20
- 239000002245 particle Substances 0.000 abstract description 18
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000011575 calcium Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910000018 strontium carbonate Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】
【目的】高温での耐酸化性に優れ、さらに、室温から高
温まで優れた強度と破壊靭性を有するアルミナ質焼結体
およびその製造方法を提供する。
【構成】アルミナ母相と異方性形状の第2相結晶粒子と
を含有するアルミナ質焼結体であって、前記アルミナ母
相の平均結晶粒径が10μm以下であり、かつ、長径方
向の長さが20μm以上の第2相結晶粒子が、焼結体全
量中1〜20体積%存在するもので、第2相結晶粒子が
La2 O3 ・11Al2 O3 ,CaO・6Al2 O3 ,
SrO・6Al2 O3 およびBaO・6Al2 O3 のう
ち少なくとも一種を含むものが望ましい。このようなア
ルミナ質焼結体は、第2相結晶粉末を予め種結晶として
添加したり、La,Ca,Sr,Baの原料粉末の平均
結晶粒径を1〜10μmとすることにより製造される。
(57) [Summary] [Object] To provide an alumina-based sintered body having excellent oxidation resistance at high temperature and further having excellent strength and fracture toughness from room temperature to high temperature, and a method for producing the same. An alumina sintered body containing an alumina mother phase and anisotropic second-phase crystal grains, wherein the alumina mother phase has an average crystal grain size of 10 μm or less, The second phase crystal particles having a length of 20 μm or more are present in an amount of 1 to 20% by volume in the total amount of the sintered body, and the second phase crystal particles are La 2 O 3 .11Al 2 O 3 , CaO.6Al 2 O 3 ,
Those containing at least one of SrO · 6Al 2 O 3, and BaO · 6Al 2 O 3 is desirable. Such an alumina-based sintered body is manufactured by adding the second phase crystal powder as a seed crystal in advance or by setting the average crystal grain size of the raw material powder of La, Ca, Sr, and Ba to 1 to 10 μm. .
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温強度特性,高温安
定性,耐酸化性に優れたアルミナ質焼結体およびその製
造方法に関わり、特に、航空・宇宙業界,製錬業界,化
学業界等で用いられたり、ガスタ−ビン,エンジン用部
品等に使用される耐高温構造材料のアルミナ質焼結体お
よびその製造方法に関する。FIELD OF THE INVENTION The present invention relates to an alumina-based sintered body excellent in high-temperature strength characteristics, high-temperature stability and oxidation resistance and a method for producing the same, and particularly to the aerospace industry, smelting industry, chemical industry. The present invention relates to an alumina-based sintered body of a high temperature resistant structural material used in gas turbines, engine parts and the like, and a method for producing the same.
【0002】[0002]
【従来の技術】従来から、アルミナ質焼結体は、耐高温
の構造部材として、耐環境性,高温強度ともに優れるこ
とで注目されてきた。また、その高温強度と破壊靭性を
さらに向上させるために、種々の複合化が試みられてい
る。例えば、Al2 O3 −SiCコンポジィット、Al
2 O3 −ZrO2 複合材料、形状異方性のβ−Al2 O
3 結晶分散アルミナ材料が知られており(特開昭61−
122164号公報、特開昭63−139044号公
報、特開昭63−134551号公報等参照)、このよ
うな複合材料によれば、純粋なアルミナ焼結体よりも強
度および靭性を向上することができる。2. Description of the Related Art Alumina-based sintered bodies have hitherto attracted attention as a high temperature resistant structural member because of their excellent environmental resistance and high temperature strength. In addition, various composites have been tried in order to further improve the high temperature strength and fracture toughness. For example, Al 2 O 3 -SiC composite, Al
2 O 3 -ZrO 2 composite material, β-Al 2 O having shape anisotropy
Three crystal dispersed alumina materials are known (Japanese Patent Laid-Open No. 61-
122164, JP-A-63-139044, JP-A-63-134551 and the like), and such a composite material can improve strength and toughness as compared with a pure alumina sintered body. it can.
【0003】[0003]
【発明が解決しようとする問題点】しかしながら、上記
したAl2 O3 −SiCコンポジィットでは、アルミナ
中に非酸化物のSiCを分散させているために、酸化雰
囲気において高温状態で使1される場合には耐酸化性に
欠けるという問題があった。However, in the above Al 2 O 3 —SiC composite, since non-oxide SiC is dispersed in alumina, it is used at a high temperature in an oxidizing atmosphere. In some cases, there was a problem of lack of oxidation resistance.
【0004】また、Al2 O3 −ZrO2 複合材料は9
00℃付近の温度で強度が急激に低下するため、高温下
において応力が作用するような状態での使用には適しな
いという問題があった。Al 2 O 3 -ZrO 2 composite material is 9
Since the strength sharply decreases at a temperature near 00 ° C., there is a problem that it is not suitable for use in a state where stress acts at high temperature.
【0005】さらに、特開昭63−134551号公報
に開示されるβ−Al2 O3 分散アルミナ材料は、β−
Al2 O3 結晶の成長速度が低いために、アルミナ母材
の中で発達しにくく(5〜10μm程度)、強度と靭性
の向上に対する寄与が小さい問題があった。例えば、室
温における破壊靱性は、3.2〜3.4MPa・m1/ 2
であり小さかった。Further, the β-Al 2 O 3 -dispersed alumina material disclosed in Japanese Patent Laid-Open No. 63-134551 is a β-Al 2 O 3 -dispersed alumina material.
Since the growth rate of Al 2 O 3 crystal is low, it is difficult to develop in the alumina base material (about 5 to 10 μm), and there is a problem that the contribution to the improvement of strength and toughness is small. For example, the fracture toughness at room temperature, 3.2~3.4MPa · m 1/2
It was small.
【0006】本発明は、高温での耐酸化性に優れ、さら
に、破壊靭性と高温強度に優れたアルミナ質焼結体およ
びその製造方法を提供することを目的とするものであ
る。It is an object of the present invention to provide an alumina-based sintered body which is excellent in oxidation resistance at high temperature and further excellent in fracture toughness and high temperature strength, and a method for producing the same.
【0007】[0007]
【問題点を解決するための手段】本発明者は、アルミナ
の室温強度、高温強度および破壊靭性を同時に上げるた
めの複合化では、異方性形状を有する第2相結晶の分散
だけでなく、一定量の異方性結晶がある程度以上のサイ
ズを有することが重要であるという見地に基づいて研究
を重ねた結果、平均結晶粒径が10μm以下のアルミナ
母相に、長径方向の長さが20μm以上の第2相結晶粒
子が、焼結体全量中1〜20体積%であると、クラック
の進展および高温での粒界の滑りによる変形を効果的に
抑制できることを見出し、本発明に至った。The inventors of the present invention have found that not only the dispersion of the second phase crystal having an anisotropic shape but also the dispersion of the second phase crystal having an anisotropic shape can be realized in the compounding for simultaneously increasing the room temperature strength, the high temperature strength and the fracture toughness of alumina. As a result of repeated research from the viewpoint that it is important that a certain amount of anisotropic crystals have a certain size or more, it was found that an alumina matrix having an average crystal grain size of 10 μm or less and a length in the major axis direction of 20 μm. The present invention has been found out that the above-mentioned second phase crystal particles can effectively suppress the development of cracks and the deformation due to the sliding of grain boundaries at high temperatures when the amount of the second phase crystal particles is 1 to 20% by volume in the total amount of the sintered body. .
【0008】また、本発明者は、異方性形状の第2相結
晶粒子の成長は、原料粉末として、第2相結晶を種結晶
として添加することにより促進され、長径方向の長さを
20μm以上に成長できることを見い出し、本発明に至
った。Further, the present inventors have found that the growth of anisotropic second-phase crystal grains is promoted by adding the second-phase crystal as a seed crystal as a raw material powder, and the length in the major axis direction is 20 μm. The inventors have found that they can grow as described above and have completed the present invention.
【0009】さらに、本発明者は、Al2 O3 粉末とL
a,Ca,Sr,Baの特定元素を含む粉末とを混合
し、成形し、焼結する際に、La,Ca,Sr,Baを
含む粉末の平均結晶粒径が1〜10μmである場合に
は、第2相結晶の核形成速度が遅くなり、また、第2相
結晶を形成する元素原子の拡散距離が短くなり、第2相
結晶のアルミナ母材中における成長速度が早くなること
を見出し、本発明に至った。Further, the present inventor has found that Al 2 O 3 powder and L
When a powder containing a specific element of a, Ca, Sr, or Ba is mixed, shaped, and sintered, the average crystal grain size of the powder containing La, Ca, Sr, or Ba is 1 to 10 μm. Found that the nucleation rate of the second phase crystal becomes slower, the diffusion distance of the element atoms forming the second phase crystal becomes shorter, and the growth rate of the second phase crystal in the alumina matrix becomes faster. The present invention has been reached.
【0010】即ち、本発明のアルミナ質焼結体は、アル
ミナ母相と、少なくともLa,Ca,Sr,Ba,S
m,Nd,Tiのうち一種を含みAlとの複合酸化物か
らなる異方性形状の第2相結晶粒子とを含有するアルミ
ナ質焼結体であって、前記アルミナ母相の平均結晶粒径
が10μm以下であり、かつ、長径方向の長さが20μ
m以上の前記第2相結晶粒子が、焼結体全量中1〜20
体積%存在するものである。また、第2相結晶粒子がL
a2 O3 ・11Al2 O3 ,CaO・6Al2 O3 ,S
rO・6Al2 O3 およびBaO・6Al2 O3 のうち
少なくとも一種を含むことが望ましい。That is, the alumina-based sintered body of the present invention contains the alumina matrix and at least La, Ca, Sr, Ba, S.
An average particle diameter of the alumina matrix, which is an alumina-based sintered body containing anisotropic second-phase crystal particles composed of a complex oxide with Al and containing one of m, Nd, and Ti. Is 10 μm or less, and the length in the major axis direction is 20 μm.
The second phase crystal particles of m or more are 1 to 20 in the total amount of the sintered body.
It is present by volume%. In addition, the second phase crystal grains are L
a 2 O 3 · 11Al 2 O 3 , CaO · 6Al 2 O 3 , S
It is desirable to include at least one of rO · 6Al 2 O 3, and BaO · 6Al 2 O 3.
【0011】また、本発明のアルミナ質焼結体の製造方
法は、La,Ca,Sr,Ba,Sm,Nd,Tiのう
ち少なくとも一種を含みAlとの複合酸化物からなる第
2相結晶粉末と、Al2 O3 粉末と、La,Ca,S
r,Ba,Sm,Nd,Tiのうち少なくとも一種を含
む粉末を添加混合し、成形し、焼結する方法である。Further, the method for producing an alumina-based sintered body of the present invention is the second phase crystal powder comprising a complex oxide containing at least one of La, Ca, Sr, Ba, Sm, Nd, and Ti. , Al 2 O 3 powder, La, Ca, S
This is a method in which powder containing at least one of r, Ba, Sm, Nd, and Ti is added, mixed, molded, and sintered.
【0012】さらに、本発明のアルミナ質焼結体の製造
方法は、Al2 O3 粉末と、La,Ca,SrおよびB
aのうち少なくとも一種を含む粉末とを混合し、成形
し、焼結することにより、アルミナ母相と第2相結晶粒
子とからなる焼結体を作製するアルミナ質焼結体の製造
方法であって、前記La,Ca,Sr,Baを含む粉末
の平均結晶粒径が1〜10μmである方法である。Further, according to the method for producing an alumina-based sintered body of the present invention, Al 2 O 3 powder, La, Ca, Sr and B are added.
A method for producing an alumina-based sintered body, which comprises producing a sintered body composed of an alumina mother phase and second-phase crystal grains by mixing with a powder containing at least one of a, shaping and sintering. The average crystal grain size of the powder containing La, Ca, Sr, and Ba is 1 to 10 μm.
【0013】以下、本発明を詳述する。従来、上記公報
等におけるβ−Al2 O3 分散アルミナでは、アルミナ
母材中で形成する異方性形状の第2相の結晶成長は、原
子の拡散によって律速される。The present invention will be described in detail below. Conventionally, in the β-Al 2 O 3 -dispersed alumina disclosed in the above publications, the crystal growth of the anisotropic second phase formed in the alumina base material is controlled by the diffusion of atoms.
【0014】普通の焼成法で得られる第2相結晶は長径
方向で10μm程度にとどまる。よって、クラックの架
橋、偏向効果が小さく、強度と靭性の向上に対する寄与
が小さかった。The second phase crystal obtained by the ordinary firing method has a length of about 10 μm in the major axis direction. Therefore, the effect of crack bridging and deflection was small, and the contribution to the improvement of strength and toughness was small.
【0015】本発明のアルミナ質焼結体では、アルミナ
母相の平均結晶粒径を10μm以下に制御し、異方性形
状の第2相結晶粒子のうち長径方向の長さが20μm以
上のものが一定量存在することにより、上記の問題を解
決し、高強度と高靭性を実現できるのである。In the alumina-based sintered body of the present invention, the average crystal grain size of the alumina mother phase is controlled to 10 μm or less, and the anisotropic second phase crystal grains having a major axis length of 20 μm or more. The presence of a certain amount of satisfactorily solves the above problems and realizes high strength and high toughness.
【0016】即ち、アルミナ母相の平均結晶粒径が10
μmよりも大きいと、焼結体の強度を低下させるととも
に、異方性形状の第2相結晶粒子による強化、靭化効果
が著しく低下するからである。アルミナ母相の平均結晶
粒径は8μm以下であることが望ましい。That is, the average crystal grain size of the alumina matrix is 10
If it is larger than μm, the strength of the sintered body is lowered, and the strengthening and toughening effects by the anisotropic second phase crystal grains are remarkably lowered. The average crystal grain size of the alumina mother phase is preferably 8 μm or less.
【0017】第2相としては、La2 O3 ・11Al2
O3 ,CaO・6Al2 O3 ,SrO・6Al2 O3 お
よびBaO・6Al2 O3 ,Sm2 O3 ・11Al2 O
3 ,Nd2 O3 ・11Al2 O3 ,Al2 TiO5 等が
望ましい。The second phase is La 2 O 3 .11Al 2
O 3 , CaO · 6Al 2 O 3 , SrO · 6Al 2 O 3 and BaO · 6Al 2 O 3 , Sm 2 O 3 · 11Al 2 O
3 , Nd 2 O 3 .11Al 2 O 3 , Al 2 TiO 5 and the like are desirable.
【0018】これらのうち、La2 O3 ・11Al2 O
3 ,CaO・6Al2 O3 ,SrO・6Al2 O3 およ
びBaO・6Al2 O3 は、結晶が異方性形状に成長し
やすく、また結晶自身の強度、ヤング率は高く、高温で
も安定であるため、好適な第2相結晶である。Of these, La 2 O 3 .11Al 2 O
3 , CaO · 6Al 2 O 3 , SrO · 6Al 2 O 3 and BaO · 6Al 2 O 3 are easy to grow in an anisotropic shape, and the strength and Young's modulus of the crystal itself are high and stable even at high temperature. Therefore, it is a preferable second phase crystal.
【0019】また、本発明のアルミナ質焼結体では、長
径方向の長さが20μm以上である第2相結晶粒子が、
全量中1〜20体積%存在することが重要である。長径
方向の長さが20μm以上の第2相結晶粒子が全量中1
体積%よりも少ない場合には、材料の強化、靭化に十分
な効果を示すことができず、また、20体積%を超える
とかえって焼結体の強度を低下させるからである。第2
相結晶粒子の長径方向の長さが20μm以上のものは、
焼結体の強度および靱性がともに向上するという点から
全量中3〜10体積%であることが好ましい。尚、異方
性形状の第2相結晶粒子は全量中5〜60体積%である
ことが、焼結体の強度の点から最も望ましい。また、第
2相結晶粒子としては、板状のものウイスカー状のもの
等が存在するが、本願における長径方向の長さとは、種
々の形状の粒子における最大長さをいう。Further, in the alumina-based sintered body of the present invention, the second phase crystal grains having a length in the major axis direction of 20 μm or more are
It is important that 1 to 20% by volume is present in the total amount. 1% of the total amount of second phase crystal grains with a length in the major axis direction of 20 μm or more
This is because if the content is less than the volume%, the effect of strengthening and toughening the material cannot be sufficiently exhibited, and if it exceeds 20 volume%, the strength of the sintered body is rather lowered. Second
If the length of the phase crystal grains in the major axis direction is 20 μm or more,
From the viewpoint that both strength and toughness of the sintered body are improved, the total amount is preferably 3 to 10% by volume. From the viewpoint of strength of the sintered body, it is most desirable that the amount of the anisotropically-shaped second phase crystal particles is 5 to 60% by volume in the total amount. As the second-phase crystal particles, there are plate-like particles and whisker-like particles, and the length in the major axis direction in the present application means the maximum length of particles having various shapes.
【0020】本発明のアルミナ質焼結体は、図1に示す
ように、アルミナ母相1と、異方性形状の第2相結晶粒
子2とから構成されるものである。As shown in FIG. 1, the alumina-based sintered body of the present invention is composed of an alumina matrix 1 and anisotropic second-phase crystal grains 2.
【0021】次に本発明のアルミナ質焼結体の製法につ
いて述べる。本発明のアルミナ質焼結体を作製するに
は、まず、異方性形状の第2相結晶の合成粉末を作製す
ることが必要である。即ち、α−Al2 O3 粉末と、第
2相結晶を生成する粉末と、さらに、第2相結晶の合成
粉末を添加し、混合、成形、焼結することにより、本発
明のアルミナ質焼結体が得られる。Next, a method for producing the alumina-based sintered body of the present invention will be described. In order to produce the alumina-based sintered body of the present invention, it is first necessary to produce a synthetic powder of anisotropic second-phase crystals. That is, the α-Al 2 O 3 powder, the powder that produces the second-phase crystals, and the synthetic powder of the second-phase crystals are added, mixed, molded, and sintered to obtain the alumina-based sintered material of the present invention. A union is obtained.
【0022】第2相結晶の合成粉末は、公知の原料、例
えば酸化物粉末、金属粉末、当該金属を含む有機、無機
物およびその溶液を用い、所定の異方性形状の第2相結
晶の組成に調合し、その混合粉末を仮焼し、第2相結晶
を作製する。仮焼温度が低いと反応速度が遅く、また得
られた第2相結晶のサイズが小さく、さらには中間化合
物が多く残存する場合もあるため、前記の結晶成長促進
効果が小さい。従って、仮焼温度は1100℃以上、特
に1300℃以上であることが好ましい。As the synthetic powder of the second phase crystal, known compositions such as oxide powder, metal powder, organic and inorganic materials containing the metal and a solution thereof are used, and the composition of the second phase crystal having a predetermined anisotropic shape. And the mixed powder is calcined to produce a second phase crystal. When the calcination temperature is low, the reaction rate is slow, the size of the obtained second phase crystal is small, and more intermediate compounds may remain. Therefore, the above-mentioned crystal growth promoting effect is small. Therefore, the calcination temperature is preferably 1100 ° C or higher, and particularly preferably 1300 ° C or higher.
【0023】また、第2相結晶からなる合成粉末の添加
量は、焼結体中の第2相結晶の総量の3〜50%である
ことが望ましい。合成粉末の添加量が第2相結晶の総量
の3%よりも少ない場合には、種結晶添加効果が小さ
く、また、合成粉末の添加量が第2相結晶の総量の50
%よりも多くなると、焼成中の反応に関与する原料が少
なく、結晶の成長速度を低下させる傾向にあるからであ
る。この合成粉末の添加量は、第2相総量の5〜30%
であることが、本発明の焼結体の組織形成の点から特に
望ましい。The addition amount of the synthetic powder composed of the second phase crystals is preferably 3 to 50% of the total amount of the second phase crystals in the sintered body. When the added amount of the synthetic powder is less than 3% of the total amount of the second phase crystals, the seed crystal addition effect is small, and the added amount of the synthetic powder is 50% of the total amount of the second phase crystals.
This is because if it is more than%, the amount of raw materials involved in the reaction during firing is small and the crystal growth rate tends to be lowered. The amount of the synthetic powder added is 5 to 30% of the total amount of the second phase.
Is particularly preferable from the viewpoint of forming the texture of the sintered body of the present invention.
【0024】上記の混合粉末を公知の成形技術、例え
ば、金型プレス,鋳込み成型,押出成型,射出成型,冷
間静水圧プレスなどにより任意の形状に成形する。この
成形体を公知の焼結法、例えば、ホットプレス法,常圧
焼成法,ガス加圧焼成法、更に、これらの焼成後に熱間
静水圧処理(HIP)処理、およびガラスシール後HI
P処理して、対理論密度比95%以上の緻密な焼結体を
得る。焼結温度が低ければ、緻密化しにくく、逆に高す
ぎるとアルミナ母相結晶の異常粒成長を起こしやすいた
め、1500〜1800℃の温度範囲、特には、150
0〜1750℃の温度が好適である。The above-mentioned mixed powder is molded into a desired shape by a known molding technique such as a die press, a casting molding, an extrusion molding, an injection molding, a cold isostatic pressing and the like. A known sintering method such as a hot pressing method, a normal pressure firing method, a gas pressure firing method, a hot isostatic treatment (HIP) treatment after these firings, and a HI after glass sealing are performed on the molded body.
P treatment is performed to obtain a dense sintered body having a theoretical density ratio of 95% or more. If the sintering temperature is low, it is difficult to densify. On the contrary, if it is too high, abnormal grain growth of the alumina matrix crystal is likely to occur, so that the temperature range of 1500 to 1800 ° C., particularly 150 ° C.
A temperature of 0 to 1750 ° C. is suitable.
【0025】また、本発明の製造方法は、Al2 O3 粉
末とLa,Ca,Sr,Baを含む粉末とを混合し、成
形し、焼結することにより、アルミナ母相と第2相結晶
粒子とからなるアルミナ質焼結体を製造方法において、
La,Ca,Sr,Baを含む粉末の平均結晶粒径を1
〜10μmとすることにより、第2相結晶を成長促進さ
せたものである。Further, according to the manufacturing method of the present invention, the Al 2 O 3 powder and the powder containing La, Ca, Sr and Ba are mixed, shaped and sintered to form an alumina mother phase and a second phase crystal. In the method for producing an alumina-based sintered body consisting of particles,
The average crystal grain size of the powder containing La, Ca, Sr, Ba is 1
By setting the thickness to 10 μm, the growth of the second phase crystal is promoted.
【0026】また、La,Ca,Sr,Baの原料粉末
の平均結晶粒径を1〜10μmとしたのは、1μmより
も小さい場合には、第2相結晶粒子の長径方向の長さを
10μm程度しか生成することができず、長径方向の長
さが20μm以上の第2相結晶粒子を、焼結体全量中1
〜20体積%存在させることが困難となるからである。
また、La,Ca,Sr,Baの原料粉末の平均結晶粒
径が10μmよりも大きくなると、反応不十分により未
反応相や、中間生成物が焼結体に残存し易く、結晶が十
分に成長しなくなるからである。このLa,Ca,S
r,Baの原料粉末の平均結晶粒径は第2相結晶の発達
と反応性という点から2〜8μmとすることが望まし
い。The average crystal grain size of the raw material powders of La, Ca, Sr, and Ba is set to 1 to 10 μm. When the average grain size is smaller than 1 μm, the length of the second phase crystal grains in the major axis direction is 10 μm. The second-phase crystal particles, which can generate only a small amount and have a length in the major axis direction of 20 μm or more, in 1% of the total amount of the sintered body.
This is because it becomes difficult to make it exist at 20% by volume.
Further, when the average crystal grain size of the raw material powder of La, Ca, Sr, and Ba is larger than 10 μm, the unreacted phase and the intermediate product are likely to remain in the sintered body due to insufficient reaction, and the crystal grows sufficiently. Because it will not do. This La, Ca, S
The average crystal grain size of the raw material powders of r and Ba is preferably 2 to 8 μm from the viewpoint of the development and reactivity of the second phase crystals.
【0027】本発明の具体的な製造方法は、La,C
a,Sr,Baを含む原料粉末のうち少なくとも一種
と、アルミナ原料粉末とを混合する。アルミナ原料粉末
は、アルミナ母相の異常成長を防止するため、平均結晶
粒径を1μm以下とすることが望ましい。また、混合法
としては、La,Ca,Sr,Baの原料粉末をあまり
粉砕しないように、十分均一に混合できれば、粉砕時間
は短い方が望ましい。例えば、回転ミルで24時間以内
混合粉砕する。The specific manufacturing method of the present invention is as follows.
At least one of the raw material powders containing a, Sr, and Ba is mixed with the alumina raw material powder. The alumina raw material powder preferably has an average crystal grain size of 1 μm or less in order to prevent abnormal growth of the alumina mother phase. In addition, as a mixing method, it is desirable that the crushing time is short if the raw material powders of La, Ca, Sr, and Ba can be mixed sufficiently uniformly so as not to be crushed so much. For example, it is mixed and pulverized in a rotary mill within 24 hours.
【0028】このような混合粉末を、前記と同様な方法
により成形し、焼成することにより、本発明のアルミナ
質焼結体を得ることができる。The alumina powder of the present invention can be obtained by molding and firing such a mixed powder by the same method as described above.
【0029】本発明の高強度高靭性アルミナ質焼結体
は、例えば、マグネシア,ジルコニア,ムライト等の酸
化物を一定量添加して製造しても良く、この場合には、
焼結体の特性への影響が小さく、焼結性と靱性を向上す
るという効果を有する。The high-strength and high-toughness alumina-based sintered body of the present invention may be manufactured by adding a certain amount of oxide such as magnesia, zirconia, or mullite. In this case,
It has a small effect on the properties of the sintered body and has the effect of improving the sinterability and toughness.
【0030】[0030]
【作用】本発明のアルミナ質焼結体は、平均結晶粒径が
10μm以下のアルミナ母相に、長径方向の長さが20
μm以上の第2相結晶を、全量中1〜20体積%存在さ
せることによって、焼結体中におけるクラックの進展お
よび高温での粒界の滑りによる変形を効果的に抑制でき
る。In the alumina sintered body of the present invention, the alumina matrix having an average crystal grain size of 10 μm or less has a length in the major axis direction of 20.
The presence of 1 to 20% by volume of the second phase crystals of μm or more in the total amount can effectively suppress the development of cracks in the sintered body and the deformation due to the sliding of grain boundaries at high temperature.
【0031】また、原料粉末として第2相結晶粉末を添
加することにより、原料粉末としての第2相結晶粉末が
結晶成長の種結晶となり、異方性結晶の成長を著しく促
進し、長径方向の長さを20μm以上に成長させること
ができる。Further, by adding the second phase crystal powder as the raw material powder, the second phase crystal powder as the raw material powder becomes a seed crystal for crystal growth, which significantly promotes the growth of anisotropic crystals, and the crystal in the major axis direction is increased. It is possible to grow the length to 20 μm or more.
【0032】さらに、原料粉末中のLa,Ca,Sr,
Baの酸化物粉末の平均結晶粒径を1〜10μmとする
ことにより、第2相結晶の核を減少させ、第2相結晶を
形成する元素の拡散距離を短縮し、異方性形状の第2相
結晶を成長させることができる。Furthermore, La, Ca, Sr,
By setting the average crystal grain size of the Ba oxide powder to 1 to 10 μm, the nuclei of the second phase crystals are reduced, the diffusion distance of the elements forming the second phase crystals is shortened, and the anisotropic shape of Two phase crystals can be grown.
【0033】即ち、アルミナ母相中で第2相結晶は、第
2相結晶を形成する元素とAl2 O3 の反応により形成
される。上記第2相結晶を形成する元素の原子がアルミ
ナ母相の中で拡散が困難であるため、第2相結晶の最終
的な長径方向の長さは上記元素原料粉末に左右される。
原料粉末の平均結晶粒径か小さいほど、母相中に当該元
素の分布が均一となり、多くの第2相結晶核を形成する
が、拡散による結晶成長が遅いため、第2相結晶は大き
く成長できない。本発明の製法においては、第2相を形
成する特定元素酸化物粉末の平均結晶粒径を1〜10μ
mとしたので、第2相結晶の長径方向の長さを10μm
以上に発達させることができる。That is, the second phase crystal is formed in the alumina matrix by the reaction of the element forming the second phase crystal and Al 2 O 3 . Since the atoms of the element forming the second phase crystal are difficult to diffuse in the alumina mother phase, the final length in the major axis direction of the second phase crystal depends on the element raw material powder.
The smaller the average crystal grain size of the raw material powder, the more uniform the distribution of the element in the matrix and the formation of a large number of second-phase crystal nuclei, but since the crystal growth due to diffusion is slow, the second-phase crystal grows large. Can not. In the manufacturing method of the present invention, the average crystal grain size of the specific element oxide powder forming the second phase is set to 1 to 10 μm.
Therefore, the length of the second phase crystal in the major axis direction is 10 μm.
Can be developed above.
【0034】[0034]
実施例1 酸化ランタニウム,炭酸化カルシウム,炭酸化ストロン
チウムおよび炭酸化バリウムのうちの一種と、酸化アル
ミニウムとを出発原料とし、それぞれLa2 O3 ・11
Al2 O3 、CaO・6Al2 O3 、SrO・6Al2
O3 、BaO・6Al2 O3 になるように調合し、この
混合粉末を1600℃の温度で5時間仮焼し、異方性結
晶の第2相結晶の合成粉末を得た。Example 1 One of lanthanum oxide, calcium carbonate, strontium carbonate and barium carbonate, and aluminum oxide were used as starting materials, and were each La 2 O 3 .11.
Al 2 O 3 , CaO · 6Al 2 O 3 , SrO · 6Al 2
O 3 and BaO · 6Al 2 O 3 were mixed and the mixed powder was calcined at a temperature of 1600 ° C. for 5 hours to obtain a synthetic powder of anisotropic second-phase crystals.
【0035】そして、この第2相結晶の合成粉末と、酸
化ランタニウム,炭酸化カルシウム,炭酸化ストロチウ
ムおよび炭酸化バリウムのうち少なくとも一種と、酸化
アルミニウムとを用い、焼結体の組成が、表1に示すよ
うになるように調合し、この混合粉末を1t/cm2 の
圧力でプレス成形した後、3t/cm2 の圧力で静水圧
処理を加えた。上記成形体を大気中において1700℃
の温度で5時間常圧で焼成した。尚、試料No.6と試
料No.7は、粒成長させるために、1750℃で5時
間焼成した。尚、表1の第2相結晶粉末の比率とは、焼
結体中における第2相量に対する比を示す。The composition of the sintered body was obtained by using the synthetic powder of this second phase crystal, at least one of lanthanum oxide, calcium carbonate, strontium carbonate and barium carbonate, and aluminum oxide. formulated so as to become shown, after the mixed powder was press-molded at a pressure of 1t / cm 2, was added isostatic pressing at a pressure of 3t / cm 2. The above-mentioned molded product is 1700 ° C in the atmosphere.
Calcination was performed for 5 hours at normal pressure. Sample No. 6 and sample No. No. 7 was fired at 1750 ° C. for 5 hours to grow grains. The ratio of the second phase crystal powder in Table 1 indicates the ratio to the amount of the second phase in the sintered body.
【0036】[0036]
【表1】 [Table 1]
【0037】得られた焼結体をX線回折測定により同定
したところ、焼結体は、α−Al2O3 とLa2 O3 ・
11Al2 O3 、CaO・6Al2 O3 、SrO・6A
l2O3 、BaO・6Al2 O3 (第2相)により構成
されていることが判った。焼結体を切り出して鏡面に研
磨し、光学顕微鏡および走査型電子顕微鏡で組織を観察
した。また、格子点数集計法によりアルミナ母相の平均
結晶粒径および20μm以上の第2相結晶の全量に対す
る体積分率を測定した。その結果を表1に示した。When the obtained sintered body was identified by X-ray diffraction measurement, the sintered body was found to be α-Al 2 O 3 and La 2 O 3 .multidot.
11Al 2 O 3 , CaO ・ 6Al 2 O 3 , SrO ・ 6A
It was found to be composed of 1 2 O 3 and BaO.6Al 2 O 3 (second phase). The sintered body was cut out and polished to a mirror surface, and the structure was observed with an optical microscope and a scanning electron microscope. Further, the average crystal grain size of the alumina mother phase and the volume fraction of the total amount of the second phase crystals of 20 μm or more were measured by the lattice point number counting method. The results are shown in Table 1.
【0038】さらに、焼結体をJIS−R1601にて
指定されている形状まで研磨し抗折試料を作製した。こ
の試料についてJIS−R1601に基づく室温および
1400℃での4点曲げ抗折強度試験を実施した。ま
た、ビッカース圧痕法により破壊靭性(K1c)を測定し
た。測定結果を表1に示す。Further, the sintered body was ground to a shape specified in JIS-R1601 to prepare a bending sample. This sample was subjected to a 4-point bending bending strength test at room temperature and 1400 ° C. based on JIS-R1601. Further, the fracture toughness (K 1c ) was measured by the Vickers indentation method. Table 1 shows the measurement results.
【0039】表1の結果から、本発明に基づいて得られ
たアルミナ質焼結体は、従来のアルミナ材料および本発
明以外のアルミナ基複合材料に比べて、より優れた室温
強度(580MPa以上)と高温強度(380MPa以
上)および破壊靭性(4MPa・m1/2 以上)を示すこ
とが判る。From the results shown in Table 1, the alumina-based sintered body obtained according to the present invention is superior in room temperature strength (580 MPa or more) to conventional alumina materials and alumina-based composite materials other than the present invention. It is understood that it exhibits high temperature strength (380 MPa or more) and fracture toughness (4 MPa · m 1/2 or more).
【0040】実施例2 酸化ランタニウム,炭酸化カルシウム,炭酸化ストロチ
ウムおよび炭酸化バリウムを1600℃で20時間熱処
理し、平均粒径5μm以上の粗大粒酸化物原料粉末を得
た。これらの粉末を回転ミルで表2に示す種々の粒径に
粉砕した。さらに、上述の原料をアルミナ原料粉(平均
結晶粒径0.8μm)と表2に示す組成で秤量し、回転
ミルで10時間混合し、上記実施例1と同様にして成形
し、焼成した。Example 2 Lanthanum oxide, calcium carbonate, strontium carbonate and barium carbonate were heat-treated at 1600 ° C. for 20 hours to obtain a coarse oxide raw material powder having an average particle size of 5 μm or more. These powders were pulverized with a rotary mill into various particle sizes shown in Table 2. Further, the above raw materials were weighed with alumina raw material powder (average crystal grain size 0.8 μm) in a composition shown in Table 2, mixed in a rotary mill for 10 hours, shaped and fired in the same manner as in Example 1 above.
【0041】[0041]
【表2】 [Table 2]
【0042】得られた焼結体をX線回折測定により同定
したところ、本発明の焼結体はα−Al2 O3 とLa2
O3 ・11Al2 O3 、CaO・6Al2 O3 、SrO
・6Al2 O3 、BaO・6Al2 O3 (第2相)によ
り構成されていることが判った。また、上記実施例1と
同様にして組織を観察し、アルミナ母相の平均粒径およ
び20μm以上の第2相結晶の全量に対する体積分率を
測定し、さらに、室温および1400℃での4点曲げ抗
折強度を測定し、破壊靭性(K1c)を測定した。測定結
果を表2に示す。When the obtained sintered body was identified by X-ray diffraction measurement, the sintered body of the present invention was found to have α-Al 2 O 3 and La 2
O 3 · 11Al 2 O 3, CaO · 6Al 2 O 3, SrO
· 6Al was found to be composed by 2 O 3, BaO · 6Al 2 O 3 ( second phase). Further, the structure was observed in the same manner as in Example 1 above to measure the average particle size of the alumina matrix and the volume fraction of the total amount of the second phase crystals having a diameter of 20 μm or more, and further, 4 points at room temperature and 1400 ° C. The bending transverse strength was measured and the fracture toughness (K 1c ) was measured. The measurement results are shown in Table 2.
【0043】表2の結果から、本発明に基づいて得られ
たアルミナ質焼結体は、従来のアルミナ材料および本発
明以外のアルミナ基複合材料に比べて、より優れた室温
強度(580MPa以上)と高温強度(410MPa以
上)および破壊靭性(4.7MPa・m1/2 以上)を示
すことが判る。尚、試料No.15については、焼結体中
に未反応相が残存していることを確認した。From the results shown in Table 2, the alumina-based sintered body obtained according to the present invention is superior in room temperature strength (580 MPa or more) to conventional alumina materials and alumina-based composite materials other than the present invention. It can be seen that it exhibits high temperature strength (410 MPa or more) and fracture toughness (4.7 MPa · m 1/2 or more). For sample No. 15, it was confirmed that the unreacted phase remained in the sintered body.
【0044】[0044]
【発明の効果】本発明のアルミナ質焼結体では、平均結
晶粒径が10μm以下のアルミナ母相に、長径方向の長
さが20μm以上の異方性第2相を、全量中1〜20体
積%存在させることによって、焼結体中におけるクラッ
クの進展および高温での粒界の滑りによる変形を効果的
に抑制でき、室温から高温まで優れた強度と破壊靭性を
有することができる。EFFECT OF THE INVENTION In the alumina-based sintered body of the present invention, an anisotropic second phase having a length in the major axis direction of 20 μm or more is added to an alumina matrix having an average crystal grain size of 10 μm or less in a total amount of 1 to 20. By making it exist by volume%, it is possible to effectively suppress the development of cracks in the sintered body and the deformation due to the sliding of grain boundaries at high temperature, and it is possible to have excellent strength and fracture toughness from room temperature to high temperature.
【0045】また、本発明のアルミナ質焼結体の製造方
法によれば、原料粉末として第2相結晶粉末を添加する
ことにより、原料粉末としての第2相結晶粉末が結晶成
長の種結晶となり、異方性結晶の成長を著しく促進し、
長径方向の長さを20μm以上とすることができ、本発
明のアルミナ質焼結体を容易に得ることができる。Further, according to the method for producing an alumina-based sintered body of the present invention, by adding the second phase crystal powder as the raw material powder, the second phase crystal powder as the raw material powder becomes a seed crystal for crystal growth. , Significantly promotes the growth of anisotropic crystals,
The length in the major axis direction can be 20 μm or more, and the alumina-based sintered body of the present invention can be easily obtained.
【0046】さらに、第2相のLa,Ca,Sr,Ba
の原料粉末の平均結晶粒径を1〜10μmとすることに
より、第2相結晶の核を減少させ、第2相結晶を形成す
る元素の拡散距離を短縮し、異方性形状の第2相結晶を
成長させ、本発明のアルミナ質焼結体を容易に得ること
ができる。Further, the second phase La, Ca, Sr, Ba
By setting the average crystal grain size of the raw material powder of 1 to 10 μm, the nuclei of the second phase crystals are reduced, the diffusion distance of the elements forming the second phase crystals is shortened, and the anisotropic second phase is formed. By growing crystals, the alumina-based sintered body of the present invention can be easily obtained.
【図1】本発明のアルミナ質焼結体の組織図である。FIG. 1 is a structural diagram of an alumina-based sintered body of the present invention.
1・・・アルミナ母相 2・・・第2相結晶粒子 1 ... Alumina mother phase 2 ... Second phase crystal particles
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年3月2日[Submission date] March 2, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図1[Name of item to be corrected] Figure 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 FIG.
Claims (4)
Sr,Ba,Sm,Nd,Tiのうち一種を含みAlと
の複合酸化物からなる異方性形状の第2相結晶粒子とを
含有するアルミナ質焼結体であって、前記アルミナ母相
の平均結晶粒径が10μm以下であり、かつ、長径方向
の長さが20μm以上の前記第2相結晶粒子が、焼結体
全量中1〜20体積%存在することを特徴とするアルミ
ナ質焼結体。1. An alumina matrix and at least La, Ca,
What is claimed is: 1. An alumina-based sintered body, which contains one of Sr, Ba, Sm, Nd, and Ti and has anisotropic second-phase crystal grains made of a composite oxide with Al. Alumina-based sintering characterized in that the second phase crystal grains having an average crystal grain size of 10 μm or less and a length in the major axis direction of 20 μm or more are present in an amount of 1 to 20% by volume in the total amount of the sintered body. body.
O3 ,CaO・6Al2 O3 ,SrO・6Al2 O3 お
よびBaO・6Al2 O3 のうち少なくとも一種を含む
請求項1記載のアルミナ質焼結体。2. The second phase crystal grains are La 2 O 3 .11Al 2
The alumina sintered body according to claim 1, containing at least one of O 3 , CaO · 6Al 2 O 3 , SrO · 6Al 2 O 3 and BaO · 6Al 2 O 3 .
iのうち少なくとも一種を含みAlとの複合酸化物から
なる第2相結晶粉末と、Al2 O3 粉末と、La,C
a,Sr,Ba,Sm,Nd,Tiのうち少なくとも一
種を含む粉末を添加混合し、成形し、焼結することを特
徴とするアルミナ質焼結体の製造方法。3. La, Ca, Sr, Ba, Sm, Nd, T
a second phase crystal powder containing at least one of i and composed of a composite oxide with Al, Al 2 O 3 powder, La, C
A method for producing an alumina-based sintered body, which comprises adding and mixing powder containing at least one of a, Sr, Ba, Sm, Nd, and Ti, shaping and sintering.
びBaのうち少なくとも一種を含む粉末とを混合し、成
形し、焼結することにより、アルミナ母相と第2相結晶
粒子とからなる焼結体を作製するアルミナ質焼結体の製
造方法であって、前記La,Ca,Sr,Baを含む粉
末の平均結晶粒径が1〜10μmであることを特徴とす
るアルミナ質焼結体の製造方法。4. An Al 2 O 3 powder and a powder containing at least one of La, Ca, Sr and Ba are mixed, shaped and sintered to form an alumina mother phase and second phase crystal grains. A method of manufacturing an alumina-based sintered body, the method comprising the steps of: producing an alumina-based sintered body, wherein the powder containing La, Ca, Sr, and Ba has an average crystal grain size of 1 to 10 μm. A method for producing a bound body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7013453A JPH08208317A (en) | 1995-01-31 | 1995-01-31 | Alumina sintered body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7013453A JPH08208317A (en) | 1995-01-31 | 1995-01-31 | Alumina sintered body and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08208317A true JPH08208317A (en) | 1996-08-13 |
Family
ID=11833571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7013453A Pending JPH08208317A (en) | 1995-01-31 | 1995-01-31 | Alumina sintered body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08208317A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1295127C (en) * | 1997-03-18 | 2007-01-17 | 三菱电机株式会社 | Lift device for elevator |
WO2009069770A1 (en) * | 2007-11-28 | 2009-06-04 | Kyocera Corporation | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator |
JP2010105884A (en) * | 2008-10-31 | 2010-05-13 | Tosoh Corp | Tough and transparent alumina sintered compact, and manufacturing process and application for the same |
US8247337B2 (en) | 2007-11-28 | 2012-08-21 | Kyocera Corporation | Alumina sintered article |
CN114180980A (en) * | 2021-12-28 | 2022-03-15 | 德阳三环科技有限公司 | Self-toughening 99 aluminum oxide ceramic substrate and preparation method thereof |
-
1995
- 1995-01-31 JP JP7013453A patent/JPH08208317A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1295127C (en) * | 1997-03-18 | 2007-01-17 | 三菱电机株式会社 | Lift device for elevator |
CN1295126C (en) * | 1997-03-18 | 2007-01-17 | 三菱电机株式会社 | Lift device for elevator |
CN1295128C (en) * | 1997-03-18 | 2007-01-17 | 三菱电机株式会社 | Lift device for elevator |
WO2009069770A1 (en) * | 2007-11-28 | 2009-06-04 | Kyocera Corporation | Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator |
US8247337B2 (en) | 2007-11-28 | 2012-08-21 | Kyocera Corporation | Alumina sintered article |
JP2010105884A (en) * | 2008-10-31 | 2010-05-13 | Tosoh Corp | Tough and transparent alumina sintered compact, and manufacturing process and application for the same |
CN114180980A (en) * | 2021-12-28 | 2022-03-15 | 德阳三环科技有限公司 | Self-toughening 99 aluminum oxide ceramic substrate and preparation method thereof |
CN114180980B (en) * | 2021-12-28 | 2023-06-23 | 德阳三环科技有限公司 | Self-toughening 99 alumina ceramic substrate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6168373A (en) | Silicon nitride sintered body and manufacture | |
JP2507479B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
JP3273099B2 (en) | Rare earth composite oxide-based sintered body and method for producing the same | |
JPH08208317A (en) | Alumina sintered body and method for producing the same | |
JP3145597B2 (en) | Alumina sintered body and method for producing the same | |
JPH0812417A (en) | Rare earth silicate-based sintered body and method for producing the same | |
JP2631115B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
JP3101972B2 (en) | Alumina sintered body and method for producing the same | |
JP3152853B2 (en) | Alumina sintered body and method for producing the same | |
JP3124865B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3359443B2 (en) | Alumina sintered body and method for producing the same | |
JP2746761B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JPS63252967A (en) | Method for manufacturing silicon nitride sintered body | |
JPH05117030A (en) | Complex ceramic and its production | |
JP3078462B2 (en) | Alumina sintered body and method for producing the same | |
JPS63134551A (en) | Alumina base sintered body and manufacture | |
JP2742622B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2811493B2 (en) | Silicon nitride sintered body | |
JP2687634B2 (en) | Method for producing silicon nitride sintered body | |
JPH10158055A (en) | Alumina sintered body | |
JPH09183648A (en) | Alumina sintered body | |
JPH1059773A (en) | Silicon nitride sintered compact and its production | |
JPH0524926A (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JPH0840774A (en) | Silicon nitride sintered body |