JPH08205862A - Escherichia coli ribonuclease hi stabilized by filling intramolecular void - Google Patents
Escherichia coli ribonuclease hi stabilized by filling intramolecular voidInfo
- Publication number
- JPH08205862A JPH08205862A JP7214457A JP21445795A JPH08205862A JP H08205862 A JPH08205862 A JP H08205862A JP 7214457 A JP7214457 A JP 7214457A JP 21445795 A JP21445795 A JP 21445795A JP H08205862 A JPH08205862 A JP H08205862A
- Authority
- JP
- Japan
- Prior art keywords
- ribonuclease
- escherichia coli
- mutant
- coli
- helix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 101900032180 Escherichia coli Ribonuclease HI Proteins 0.000 title claims abstract description 17
- 238000011049 filling Methods 0.000 title abstract description 6
- 239000011800 void material Substances 0.000 title description 6
- 108010052833 ribonuclease HI Proteins 0.000 claims abstract description 58
- 241000588724 Escherichia coli Species 0.000 claims abstract description 29
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 21
- 239000013612 plasmid Substances 0.000 claims abstract description 19
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims abstract description 10
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical group CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims abstract description 7
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims abstract description 7
- 239000004474 valine Substances 0.000 claims abstract description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical group CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims abstract description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Chemical group CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 235000004279 alanine Nutrition 0.000 claims abstract description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims abstract description 3
- 238000012258 culturing Methods 0.000 claims abstract description 3
- 229960000310 isoleucine Drugs 0.000 claims abstract description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Chemical group CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 241001131785 Escherichia coli HB101 Species 0.000 claims description 4
- 108010083644 Ribonucleases Proteins 0.000 claims description 4
- 102000006382 Ribonucleases Human genes 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 241001646716 Escherichia coli K-12 Species 0.000 claims description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 claims description 2
- 125000000539 amino acid group Chemical group 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 15
- 108090000790 Enzymes Proteins 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 11
- 238000000746 purification Methods 0.000 abstract description 5
- 241000894006 Bacteria Species 0.000 abstract description 2
- 239000003607 modifier Substances 0.000 abstract 1
- 102220047407 rs587776452 Human genes 0.000 description 19
- 239000012634 fragment Substances 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 14
- 229940024606 amino acid Drugs 0.000 description 13
- 102100034343 Integrase Human genes 0.000 description 12
- 101710203526 Integrase Proteins 0.000 description 12
- 102220493444 Putative uncharacterized protein encoded by MIR7-3HG_A52I_mutation Human genes 0.000 description 10
- 102220493445 Putative uncharacterized protein encoded by MIR7-3HG_A52V_mutation Human genes 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 101150031555 rnh gene Proteins 0.000 description 9
- 102220076573 rs796052533 Human genes 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 102220201851 rs143406017 Human genes 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000001142 circular dichroism spectrum Methods 0.000 description 2
- 239000000287 crude extract Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000003505 heat denaturation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- -1 V) Chemical compound 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 101150017040 I gene Proteins 0.000 description 1
- 241000899717 Itaya Species 0.000 description 1
- 108010053229 Lysyl endopeptidase Proteins 0.000 description 1
- 101100037766 Mus musculus Rnaseh2a gene Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 238000010357 RNA editing Methods 0.000 description 1
- 230000026279 RNA modification Effects 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 108090000731 ribonuclease HII Proteins 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、安定性が改良され
た変異型大腸菌リボヌクレアーゼHI、該変異型大腸菌
リボヌクレアーゼHIをコードしている遺伝子、該遺伝
子を含有し、大腸菌内で発現可能な発現ベクター、該発
現ベクターを含有している形質転換体、および該形質転
換体を用いて変異型大腸菌リボヌクレアーゼHIを製造
する方法に関する。TECHNICAL FIELD The present invention relates to a mutant E. coli ribonuclease HI having improved stability, a gene encoding the mutant E. coli ribonuclease HI, and an expression vector containing the gene and capable of expression in E. coli. , A transformant containing the expression vector, and a method for producing a mutant Escherichia coli ribonuclease HI using the transformant.
【0002】本発明が対象としているリボヌクレアーゼ
HIは従来リボヌクレアーゼHと認識されていた物質で
ある。最近になって、従来のリボヌクレアーゼHとは異
なる物質であるが、それと類似の酵素活性を有する物質
の存在が判明した[板谷、プロシーディング・オブ・ナ
ショナル・アカデミー・オブ・サイエンス,USA,8
7,8587−8591(1990)]。従って、従来の
リボヌクレアーゼHとその新たに見いだされた物質とを
峻別するため、従来のリボヌクレアーゼHはリボヌクレ
アーゼHIと、そして新しく見いだされた物質はリボヌ
クレアーゼHIIと命名された。このように、本明細書に
て使用しているリボヌクレアーゼHIなる用語は従来の
リボヌクレアーゼHを表すために使用される用語であ
る。The ribonuclease HI targeted by the present invention is a substance conventionally recognized as ribonuclease H. Recently, the existence of a substance that is different from the conventional ribonuclease H but has a similar enzymatic activity has been found [Itaya, Proceeding of National Academy of Sciences, USA, 8
7 , 8587-8591 (1990)]. Therefore, in order to distinguish between the conventional ribonuclease H and its newly found substance, the conventional ribonuclease H was named ribonuclease HI and the newly found substance was named ribonuclease HII. As such, the term ribonuclease HI as used herein is the term used to refer to conventional ribonuclease H.
【0003】大腸菌の天然型リボヌクレアーゼHI(本
明細書に於いては、単にリボヌクレアーゼHI、または
RNaseHIと称する場合は、天然型の大腸菌リボヌク
レアーゼHIを意味するものとする)は155アミノ酸
からなる分子量約18Kdの加水分解酵素であって、D
NA/RNAハイブリッドのRNA鎖のみを特異的にエ
ンド作用で切断するという基質特異性を有する。この酵
素は、その基質特異性に基づき、下記の如き様々な用途
を有し、極めて利用価値の高い酵素として注目されてい
る。 1) cDNAのクローニングの際の鋳型mRNAの除去。 2) mRNAのポリA領域の除去。 3) RNAの編集(エディッティング)。 かかる利用価値を有するリボヌクレアーゼHIの重要性
は遺伝子工学の発展に伴ってますます増大すると思われ
る。A natural ribonuclease HI of Escherichia coli (in the present specification, simply referred to as ribonuclease HI or RNase HI means natural E. coli ribonuclease HI) has a molecular weight of about 155 amino acids of about 18 Kd. A hydrolase of D,
It has a substrate specificity of specifically cleaving only the RNA chain of the NA / RNA hybrid by the endo action. This enzyme has various uses as described below based on its substrate specificity, and is attracting attention as an enzyme having a very high utility value. 1) Removal of template mRNA during cloning of cDNA. 2) Removal of poly A region of mRNA. 3) RNA editing. The importance of ribonuclease HI having such utility value is expected to increase with the development of genetic engineering.
【0004】[0004]
【従来の技術】上記のような高い利用価値を有するリボ
ヌクレアーゼHIの安定性、例えば変性剤や熱に対する
耐性を高めることができれば、従来の組換えリボヌクレ
アーゼHIでは利用できなかった条件下での利用が可能
となる。これまでに、天然型リボヌクレアーゼHIより
も高い安定性を有する、ある種の変異を有する変異型リ
ボヌクレアーゼHIは幾つか開発されている(特開平0
3−147785、特開平05−038286、特開平
05−003787、特開平05−064585、特開
平05−076359)。ごく最近になって、これらの
変異を組み合わせれば、リボヌクレアーゼHIの安定性
がさらに高まることが示されたので[木村ら、ジャーナ
ル・オブ・バイオロジカル・ケミストリー、267、2
1535−21542(1992);特開平05−076
358、特願平5−314750]、リボヌクレアーゼ
HIの安定性を高める別の変異を開発することは、組み
合わせる手段の選択の幅を広げる意味から重要である。
そして、これにより、より高い安定性を有するリボヌク
レアーゼHIが得られる可能性も増す。2. Description of the Related Art If the stability of ribonuclease HI having a high utility value as described above, for example, the resistance to denaturing agents and heat can be increased, it can be used under conditions that conventional recombinant ribonuclease HI could not use. It will be possible. To date, several mutant ribonucleases HI having certain mutations, which have higher stability than the natural ribonuclease HI, have been developed (Japanese Patent Laid-open No. HEI 0)
3-147785, JP-A-05-038286, JP-A-05-003787, JP-A-05-064585, and JP-A-05-076359). Most recently, the combination of these mutations was shown to further enhance the stability of ribonuclease HI [Kimura et al., Journal of Biological Chemistry, 267 , 2;
1535-21542 (1992); JP-A-05-076.
358, Japanese Patent Application No. 5-314750], the development of another mutation that enhances the stability of ribonuclease HI is important in the sense of broadening the range of means for combining.
And this also increases the possibility of obtaining a ribonuclease HI with higher stability.
【0005】大腸菌リボヌクレアーゼHIよりも遥かに
高い安定性を有する好熱菌由来のリボヌクレアーゼHが
知られており、この好熱菌リボヌクレアーゼHを大腸菌
において組換え的に製造する方法が報告されている(金
谷ら、ジャーナル・オブ・バイオロジカル・ケミストリ
ー、267、10184−10192(1992);特開
平04−008294)。しかし、大腸菌を用いて産生
された好熱菌リボヌクレアーゼHの37℃における酵素
活性は大腸菌リボヌクレアーゼHIのそれよりもかなり
低いものであった(約5%)。また、大腸菌から産生さ
れる好熱菌リボヌクレアーゼHの場合、その精製には尿
素を用いて可溶化するという操作が必要であり、大腸菌
リボヌクレアーゼHIの場合に較べてその製造方法が複
雑であるという欠点もあった。従って、より酵素活性、
安定性にすぐれた酵素であって、その製造および精製も
好熱菌リボヌクレアーゼHよりも容易である変異型リボ
ヌクレアーゼHIを造ることができれば、産業上の利用
価値がより高くなると考えられる。A ribonuclease H derived from a thermophile having a much higher stability than that of Escherichia coli ribonuclease HI is known, and a method for recombinantly producing this thermophile ribonuclease H in E. coli has been reported ( Kanaya et al., Journal of Biological Chemistry, 267 , 10184-10192 (1992); JP-A-04-008294). However, the enzyme activity of thermophile ribonuclease H produced using E. coli at 37 ° C was considerably lower than that of E. coli ribonuclease HI (about 5%). Further, in the case of thermophilic ribonuclease H produced from Escherichia coli, the operation of solubilizing it with urea is necessary for its purification, and its production method is more complicated than that of Escherichia coli ribonuclease HI. There was also. Therefore, more enzyme activity,
It is considered that if a mutant ribonuclease HI, which is an enzyme having excellent stability and is easier to produce and purify than thermophilic bacterium ribonuclease H, can be constructed, it will have higher industrial utility value.
【0006】[0006]
【発明が解決しようとする課題】大腸菌リボヌクレアー
ゼHI酵素は、分子レベルでみればαI−ヘリックス、
αIII−ヘリックス、αIV−ヘリックス、βD−鎖及び
βE−鎖に囲まれた疎水性コアー部分に大きな分子内空
隙(キャビティー)を有しているが(片柳ら、Nature
Vol. 347,p.306−309(1990))、本発
明者らは、この分子内空隙に面している第74番目のV
al(バリン)をLeu(ロイシン)に置換することにより
本酵素の安定性が上昇することを見いだしている(特願
平04−329470)。次いで、この安定性の上昇し
た変異体の立体構造をX線を用いて解析することによ
り、第74番目のValをLeuに置換することにより本酵
素の安定性が上昇した理由は、本酵素の疎水性コアーに
存在する分子内空隙が部分的に埋められたためであるこ
とを明らかにした(石川ら、バイオケミストリー、3
2、6171−6178(1993))。しかしなが
ら、分子内空隙の充填は、選択する疎水性コアー内のア
ミノ酸部位と選択する置換アミノ酸の数の組合せが数多
くあることから容易でなく、また、本酵素の酵素活性が
保持されるべき点にも配慮しなければならない。The E. coli ribonuclease HI enzyme is an αI-helix at the molecular level.
Although it has a large intramolecular cavity (cavity) in the hydrophobic core portion surrounded by αIII-helix, αIV-helix, βD-chain and βE-chain (Katayanagi et al., Nature)
Vol. 347, p. 306-309 (1990)), the present inventors have identified the 74th V facing this intramolecular cavity.
It has been found that the stability of this enzyme is increased by substituting Le (leucine) for al (valine) (Japanese Patent Application No. 04-329470). Then, the three-dimensional structure of this mutant with increased stability was analyzed using X-rays, and the reason why the stability of this enzyme was increased by substituting Leu at the 74th Val was It was clarified that the intramolecular voids in the hydrophobic core were partially filled (Ishikawa et al., Biochemistry, 3
2 , 6171-6178 (1993)). However, the filling of the intramolecular void is not easy because there are many combinations of the amino acid site in the hydrophobic core to be selected and the number of substituted amino acids to be selected, and that the enzymatic activity of this enzyme should be retained. Must also be considered.
【0007】[0007]
【課題を解決するための手段】そこで、本発明者らは上
記の観点から、大腸菌リボヌクレアーゼHI酵素の酵素
活性を保持しながら、その安定性を高めることを目的と
して、種々の改変を試みた。その結果、分子内空隙を構
成する別のアミノ酸である第52番目のAla(アラニ
ン、A)をかさ高いアミノ酸、例えばVal(バリン、
V)、Leu(ロイシン、L)、またはIle(イソロイシ
ン、I)に置換した変異体が、天然型のリボヌクレアー
ゼHIよりも熱に対する安定性が高められていることを
見い出し、かつ、その酵素活性が損なわれていないこと
を確認した。更に、この変異体の74位のValをLeuに
置換することで、52位または74位の単変異体よりも
安定なリボヌクレアーゼHIを得ることができた。即
ち、本発明は大腸菌リボヌクレアーゼHI酵素の第52
番目のAlaの他のアミノ酸による置換、および第52番
目のAlaと第74番目のValの他のアミノ酸による同時
置換、により分子内空隙を埋めることによる該酵素の安
定化法、およびかかる方法により得られる安定化された
変異型リボヌクレアーゼHIを提供するものである。Therefore, from the above viewpoints, the present inventors tried various modifications for the purpose of enhancing the stability of Escherichia coli ribonuclease HI enzyme while retaining its enzymatic activity. As a result, the 52nd Ala (alanine, A), which is another amino acid that constitutes the intramolecular void, is a bulky amino acid such as Val (valine,
V), Leu (leucine, L), or Ile (isoleucine, I) was found to be more stable to heat than the natural ribonuclease HI, and its enzymatic activity was found to be higher. It was confirmed that it was not damaged. Furthermore, by replacing Val at position 74 of this mutant with Leu, ribonuclease HI more stable than the single mutant at position 52 or 74 could be obtained. That is, the present invention relates to the 52nd E. coli ribonuclease HI enzyme.
A method for stabilizing the enzyme by filling the intramolecular void by substitution of the other amino acid at position Ala with another amino acid, and simultaneous substitution with the other amino acid at position Ala at position 52 and another amino acid at Val at position 74, The present invention provides a stabilized mutant ribonuclease HI.
【0008】さらに本発明は、上記変異型リボヌクレア
ーゼHIをコードする構造遺伝子、該構造遺伝子を含有
する発現ベクター、該発現ベクターを導入された形質転
換体、および該形質転換体を培養することによる、高い
安定性を有する変異型リボヌクレアーゼHIの製造方法
を提供するものである。大腸菌を用いての遺伝子操作法
は成書(Maniatisら、Molecular Cloning(1982):
A Laboratory Manual, Cold Spring Harbor Lab
oratory)に詳述されており、上記変異型リボヌクレアー
ゼHI構造遺伝子、発現ベクター、形質転換体は、この
成書に記載の一般的手法に従って、例えば後記実施例に
示した様に常法通り作製することができる。尚、本発明
の発現ベクターは、大腸菌内で機能するものであれば特
に制限はないが、バクテリオファージλのPLおよびPR
プロモーターの支配下に上記変異型リボヌクレアーゼH
I遺伝子を含有しているものが好ましい。Further, the present invention provides a structural gene encoding the above mutant ribonuclease HI, an expression vector containing the structural gene, a transformant introduced with the expression vector, and culturing the transformant. The present invention provides a method for producing a mutant ribonuclease HI having high stability. Gene manipulation methods using Escherichia coli have been published (Maniatis et al., Molecular Cloning (1982):
A Laboratory Manual, Cold Spring Harbor Lab
The mutated ribonuclease HI structural gene, expression vector, and transformant described above are prepared in accordance with the general method described in this document, for example, by a conventional method as shown in Examples below. be able to. The expression vector of the present invention is not particularly limited as long as it functions in Escherichia coli, but it is not limited to P L and P R of bacteriophage λ.
The above mutant ribonuclease H under the control of a promoter
Those containing the I gene are preferred.
【0009】[0009]
【発明の効果】本発明により安定性が高められた変異型
大腸菌リボヌクレアーゼHIは、従来のリボヌクレアー
ゼHIでは変性してしまう高い温度下でさえも変性する
ことがない(試験例1参照)ので、このような条件下で
の取扱いが可能である。さらに、本発明の変異型大腸菌
リボヌクレアーゼHIは、耐久性等も向上していると期
待されるので、従来のリボヌクレアーゼHIよりも失活
しにくく、安定に保存でき、従って取り扱いが容易にな
ることは理解されよう。INDUSTRIAL APPLICABILITY The mutant Escherichia coli ribonuclease HI having improved stability according to the present invention does not denature even at a high temperature which would denature with conventional ribonuclease HI (see Test Example 1). It can be handled under such conditions. Furthermore, since the mutant Escherichia coli ribonuclease HI of the present invention is expected to have improved durability and the like, it is less likely to be inactivated than the conventional ribonuclease HI, can be stably stored, and is therefore easy to handle. Be understood.
【0010】以下に実施例を挙げて本発明をさらに詳細
に説明する。以下に述べる遺伝子操作の一般的手法は、
マニュアル書(Maniatisら、Molecular Cloning(19
82): A Laboratory Manual, Cold Sping Harbo
r Laboratory)および試薬の仕様書に従った。The present invention will be described in more detail below with reference to examples. The general method of genetic manipulation described below is
Manual (Maniatis et al., Molecular Cloning (19
82): A Laboratory Manual, Cold Sping Harbo
r Laboratory) and reagent specifications.
【0011】実施例1 変異型リボヌクレアーゼHI(A52I)の調製 A.プラスミドpJAL52Iの作製 プラスミドpJAL52Iの作製の概略を図1に示す。
まず、天然型リボヌクレアーゼHIの大腸菌での発現プ
ラスミドpJAL600のrnh遺伝子を鋳型とし、プライ
マーを用いてPCR法によりrnh遺伝子への点突然変異
の導入を行った。尚、出発プラスミドpJAL600の
調製は、プラスミドpJAL135C(特開平05−0
03786)中の変異型rnh遺伝子部分を天然型rnh遺伝
子部分(特開平01−202286に記載されるプラス
ミドpDR600由来)と置き換えることによって行っ
た。 Example 1 Preparation of mutant ribonuclease HI (A52I) Construction of plasmid pJAL52I The outline of construction of plasmid pJAL52I is shown in FIG.
First, a point mutation was introduced into the rnh gene by PCR using the rnh gene of the expression plasmid pJAL600 of E. coli expressing the natural ribonuclease HI as a template and the PCR method. The starting plasmid pJAL600 was prepared by using plasmid pJAL135C (Japanese Patent Laid-Open No. 05-0.
This was carried out by replacing the mutant rnh gene part in (03786) with the natural rnh gene part (derived from the plasmid pDR600 described in JP-A 01-202286).
【0012】プライマーとしては、図2に示す化学合成
したオリゴヌクレオチドを用いた。図1および図2に示
すように、まず、pJAL600を鋳型DNAとし、Bg
lIIの制限酵素部位を含む5'−プライマー(1)とSstI
部位を含む3'−プライマー(2)により約150bpのD
NA断片を、また、変異導入用5'−プライマー(3)と
SalI部位を含む3'−プライマー(4)により約350b
pのDNA断片をそれぞれPCR反応により増幅し、遺
伝子断片2種を得た。この2種の遺伝子断片を、前者の
3'末端と後者の5'末端との間で部分的にアニーリング
させる。次いで、部分的にアニーリングした断片を鋳型
DNAとし、5'−プライマー(1)と3'−プライマー
(4)により約500bpのDNA断片をPCR反応により
増幅した。PCR反応は市販のGene Amp Kit(Takar
a)の説明書に従って行った。得られた約500bpの遺伝
子断片を制限酵素BglIIおよびSalIで消化した後、得
られた消化物を1.5%アガロースゲル電気泳動にか
け、約500bpのDNA断片を得た。As the primer, the chemically synthesized oligonucleotide shown in FIG. 2 was used. As shown in FIGS. 1 and 2, first, pJAL600 was used as a template DNA and Bg
5'-primer (1) containing the restriction enzyme site of lII and SstI
Approximately 150 bp D by 3'-primer (2) containing site
The NA fragment was treated with the 5'-primer (3) for mutagenesis and the 3'-primer (4) containing a SalI site to give about 350 b.
Each DNA fragment of p was amplified by PCR reaction to obtain two gene fragments. The two gene fragments are partially annealed between the former 3'end and the latter 5'end. Then, using the partially annealed fragment as the template DNA, 5'-primer (1) and 3'-primer
According to (4), a DNA fragment of about 500 bp was amplified by PCR reaction. The PCR reaction is a commercially available Gene Amp Kit (Takar
Follow the instructions in a). The obtained gene fragment of about 500 bp was digested with restriction enzymes BglII and SalI, and the obtained digestion product was subjected to 1.5% agarose gel electrophoresis to obtain a DNA fragment of about 500 bp.
【0013】次に、このようにして得られた変異遺伝子
断片を、大腸菌での発現ベクターにサブクローニング
し、発現ベクターを作製した。プラスミドpJAL60
0をBglIIおよびSalIで消化し、約4.9kbの断片を
0.7%アガロース電気泳動により精製した後、上記約
500bpの変異rnh遺伝子断片とライゲーションするこ
とにより環化した。ライゲーションは市販のライゲーシ
ョンキット(Takara)を用い、添付の説明書に正確に従
って行った。このようにして得られたプラスミドで大腸
菌HB101株を形質転換し、形質転換体より変異型リ
ボヌクレアーゼHI発現用プラスミドベクターpJAL
52Iを得た。変異遺伝子中、目的の部位以外に変異の
導入されていないことは、変異遺伝子の全DNA配列を
決定することにより確認した。上記のようにして得られ
た形質転換菌エシエリシア・コリ(E.coli)K12/H
B101/pJAL52Iは通産省工業技術院生命工学
工業技術研究所に寄託されている(FERM P−14
674号、受託日:平成6年11月29日)。Next, the mutant gene fragment thus obtained was subcloned into an expression vector in Escherichia coli to prepare an expression vector. Plasmid pJAL60
0 was digested with BglII and SalI, a fragment of about 4.9 kb was purified by 0.7% agarose electrophoresis, and then ligated with the above-mentioned mutant rnh gene fragment of about 500 bp for cyclization. Ligation was carried out using a commercially available ligation kit (Takara) according to the attached instructions. Escherichia coli HB101 strain was transformed with the thus obtained plasmid, and a plasmid vector pJAL for expressing mutant ribonuclease HI was obtained from the transformant.
I got 52I. It was confirmed by determining the entire DNA sequence of the mutated gene that the mutated gene had no mutation introduced at sites other than the intended site. The transformant E. coli K12 / H obtained as described above
B101 / pJAL52I has been deposited at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (FERM P-14).
674, contract date: November 29, 1994).
【0014】B.変異型リボヌクレアーゼHI(A52
I)の大腸菌における生産と精製 大腸菌形質転換体HB101/pJAL52Iを100m
g/lのアンピシリンを含むLB培地200ml中、30
℃で振盪培養した。培養液の濁度がクレット値で約10
0まで生育した時点で、培養温度を42℃に上げ、更に
3.5時間振盪を続け、次いで遠心して集菌した。この
時のクレット値は約250であった。B. Mutant ribonuclease HI (A52
Production and purification of I) in E. coli 100 ml of E. coli transformant HB101 / pJAL52I
30 ml in 200 ml LB medium containing g / l ampicillin
The cells were cultured with shaking at ℃. The turbidity of the culture solution is about 10 in terms of Klett value.
At the time of growing to 0, the culture temperature was raised to 42 ° C., shaking was continued for another 3.5 hours, and then the cells were collected by centrifugation. The clet value at this time was about 250.
【0015】得られた菌体を1mM EDTAを含む10
mMトリス塩酸緩衝液(TE)(pH7.5)15mlに懸濁し
た後、氷中で超音波処理により菌体を破砕した。15,
000rpmで30分間、4℃で遠心して得た遠心上清(粗
抽出液)を、TE(pH7.5)5lに対して4℃で一夜透析
した。透析後の粗抽出液を、同緩衝液で平衡化したP−
11カラム(2ml)に通した。この条件下、変異型リボヌ
クレアーゼHI(A52I)は、P−11カラムに吸着す
る。TE(pH7.5)を4ml流した後、NaCl濃度を0.
5Mまで直線的に上昇させることによりP−11カラム
から変異型リボヌクレアーゼHI(A52I)を溶出させ
た。変異型リボヌクレアーゼHI(A52I)を含むP−
11溶出画分をまとめ、精製標品とした。精製標品は1
5%SDS−PAGEで単一バンドを与え、逆相HPL
Cでも単一ピークを示した。精製収量は52mg/l培養
液であった。精製標品の同定は、リジルエンドペプチダ
ーゼにより消化して得られるペプチドフラグメントを逆
相HPLCでマッピングして各フラグメントピークの溶
出位置を確認するとともに、52位のアミノ酸を含むペ
プチドを分取後アミノ酸配列分析により行った。The obtained cells were treated with 10 mM containing 1 mM EDTA.
After suspending in 15 ml of mM Tris-HCl buffer (TE) (pH 7.5), the cells were disrupted by sonication in ice. Fifteen,
The centrifugation supernatant (crude extract) obtained by centrifugation at 000 rpm for 30 minutes at 4 ° C. was dialyzed against 5 L of TE (pH 7.5) at 4 ° C. overnight. The crude extract after dialysis was P- equilibrated with the same buffer.
Pass through 11 columns (2 ml). Under this condition, the mutant ribonuclease HI (A52I) is adsorbed on the P-11 column. After flowing 4 ml of TE (pH 7.5), the NaCl concentration was adjusted to 0.
Mutant ribonuclease HI (A52I) was eluted from the P-11 column by linearly increasing to 5M. P-containing mutant ribonuclease HI (A52I)
The 11 elution fractions were combined and used as a purified standard. 1 for purified standard
5% SDS-PAGE gave a single band, reverse phase HPL
C also showed a single peak. The purification yield was 52 mg / l culture. To identify the purified sample, the peptide fragment obtained by digestion with lysyl endopeptidase was mapped by reverse phase HPLC to confirm the elution position of each fragment peak, and the peptide containing the amino acid at the 52nd position was isolated and the amino acid sequence was determined. It was done by analysis.
【0016】得られた精製標品の0.1M NaClを含む
10mM酢酸ナトリウム緩衝液(pH5.5)中における2
00〜250nmでのCDスペクトルは天然型と同一であ
り、CDスペクトルで検出できるような2次構造の変化
は見られなかった。2 of the obtained purified standard in 10 mM sodium acetate buffer (pH 5.5) containing 0.1 M NaCl.
The CD spectrum at 00 to 250 nm was the same as that of the natural type, and no change in the secondary structure which could be detected by the CD spectrum was observed.
【0017】実施例2 変異型リボヌクレアーゼHI(A52LおよびA52
V)の調製 実施例1に記載の操作に実質的に従い、天然型リボヌク
レアーゼHIの52番目のAlaがLeuまたはValに置換
された変異型リボヌクレアーゼHI、A52LおよびA
52Vをそれぞれ調製した。用いた出発プラスミド、プ
ライマーは次の通りである。なお、プライマーは図2に
おける変異アミノ酸に対応する塩基のみを記す。 Example 2 Mutant Ribonuclease HI (A52L and A52
Preparation of V) Substantially following the procedure described in Example 1, mutant ribonucleases HI, A52L and A in which Ala at position 52 of natural ribonuclease HI was replaced with Leu or Val.
52V was prepared respectively. The starting plasmids and primers used are as follows. It should be noted that for the primer, only the bases corresponding to the mutant amino acids in FIG. 2 are shown.
【表1】 出発プラスミド プライマー A52L pJAL600 CTGA52V pJAL600 GTT [Table 1] Starting plasmid Primer A52L pJAL600 CTG A52V pJAL600 GTT
【0018】実施例3 変異型リボヌクレアーゼHI(A52I/V74L、A
52L/V74L、A52V/V74L)の調製 A.プラスミドpJAL52I74L、pJAL52L7
4L、pJAL52V74Lの作製 プラスミドpJAL52I74L、pJAL52L74
L、pJAL52V74Lの作製の概略を図3に示す。 Example 3 Mutant Ribonuclease HI (A52I / V74L, A
52L / V74L, A52V / V74L) . Plasmid pJAL52I74L, pJAL52L7
Construction of 4L, pJAL52V74L Plasmid pJAL52I74L, pJAL52L74
An outline of the preparation of L and pJAL52V74L is shown in FIG.
【0019】まず、pJAL52I、pJAL52L、p
JAL52Vのrnh遺伝子を鋳型とし、図2で示すプラ
イマー(1)および(5)を用いてPCR法によりrnh遺伝
子の66から68位にAfl IIの制限酵素部位を導入し
た。PCR反応は市販のGeneAmp Kit(Takara)の
説明書に従って行った。この増幅した約190bpの遺伝
子断片を制限酵素Bgl IIおよびAfl IIで消化した後、
得られた消化物を1.5%アガロースゲル電気泳動にか
け、約190bpのDNA断片を得た。First, pJAL52I, pJAL52L, p
Using the rnh gene of JAL52V as a template and the primers (1) and (5) shown in FIG. 2, the Afl II restriction enzyme sites were introduced at positions 66 to 68 of the rnh gene by the PCR method. The PCR reaction was performed according to the instructions of a commercially available GeneAmp Kit (Takara). After digesting the amplified gene fragment of about 190 bp with restriction enzymes Bgl II and Afl II,
The resulting digest was subjected to 1.5% agarose gel electrophoresis to obtain a DNA fragment of about 190 bp.
【0020】次に、74位のValがLeuに置き換わった
変異型rnh遺伝子をもつプラスミドpJAL74L(特開
平06−169767)を制限酵素Bgl II及びAfl II
で消化し、約5.2kbの断片を0.7%アガロース電気泳
動により精製した後、上記約190bpの変異rnh遺伝子
断片とライゲーションすることにより環化した。ライゲ
ーションは市販のライゲーションキット(Takara)を
用い、添付の説明書に正確に従って行った。このように
して得られたプラスミドで大腸菌HB101株を形質転
換し、形質転換体より変異型リボヌクレアーゼHI発現
用プラスミドベクターpJAL52I74L、pJAL5
2L74L、pJAL52V74Lを得た。変異遺伝子
中、目的の部位以外に変異の導入されていないことは、
変異遺伝子の全DNA配列を決定することにより確認し
た。Next, a plasmid pJAL74L (Japanese Patent Laid-Open No. 06-169767) having a mutant rnh gene in which Val at position 74 was replaced by Leu was digested with restriction enzymes BglII and AflII.
The fragment of about 5.2 kb was purified by 0.7% agarose gel electrophoresis, and ligated with the above-mentioned mutant rnh gene fragment of about 190 bp for cyclization. Ligation was performed using a commercially available ligation kit (Takara) according to the attached instructions. Escherichia coli HB101 strain was transformed with the thus obtained plasmid, and the transformant was used to express the mutant ribonuclease HI expression plasmid vectors pJAL52I74L and pJAL5.
2L74L and pJAL52V74L were obtained. In the mutated gene, the fact that the mutation has not been introduced at sites other than the target site is
It was confirmed by determining the total DNA sequence of the mutant gene.
【0021】B.変異型リボヌクレアーゼHI(A52
I/V74L、A52L/V74L、A52V/V74
L)の大腸菌における生産と精製 実施例1に記載の操作に実質的に従い、天然型リボヌク
レアーゼHIの52番目のAlaがIle、Leu又はVal
に、74番目のValがLeuに置換された変異型リボヌク
レアーゼHI、A52I/V74L、A52L/V74
L、およびA52V/V74Lをそれぞれ調製した。B. Mutant ribonuclease HI (A52
I / V74L, A52L / V74L, A52V / V74
Production and purification of L) in E. coli Substantially following the procedure described in Example 1, Ala at position 52 of the native ribonuclease HI was Ile, Leu or Val.
To the mutated ribonuclease HI, in which Val at position 74 was replaced with Leu, A52I / V74L, A52L / V74
L and A52V / V74L were prepared respectively.
【0022】試験例1 変異型リボヌクレアーゼHIの安定性の増加 天然型リボヌクレアーゼHIと実施例1〜3により調製
した変異型リボヌクレアーゼHIの熱安定性について測
定し、比較した。測定はpH3.0での変性の割合を22
0nmにおけるCD値で熱変性曲線を測定することにより
行った。得られた結果を以下の表2に示す。 Test Example 1 Increased Stability of Mutant Ribonuclease HI The thermal stability of the natural ribonuclease HI and the mutant ribonuclease HI prepared in Examples 1 to 3 was measured and compared. The measurement was carried out using the rate of denaturation at pH 3.0 of 22.
This was done by measuring the heat denaturation curve with the CD value at 0 nm. The results obtained are shown in Table 2 below.
【表2】 酵 素 名 Tm(℃) △Tm(℃) WT RNaseHI 56.4 − A52I 62.6 6.2 A52L 60.7 4.3 A52V 61.9 5.5 V74L 60.1 3.7 A52I/V74L 60.3 3.9 A52L/V74L 61.3 4.9 A52V/V74L 64.4 8.0 変異型リボヌクレアーゼHIの熱変性曲線は天然型の熱
変性曲線よりも高温側へシフトしており、明らかに熱安
定性が増加していた。以上の結果から、天然型大腸菌リ
ボヌクレアーゼHIの分子内空隙を埋めるようなアミノ
酸変異を導入することで、熱に対する安定性が向上する
ことが確認された。又、52位と74位の単変異体中、
最も安定化したA52IとV74Lを組み合わせたA5
2I/V74Lは各変異による安定化と同等もしくは低
く、その効果を打ち消し合っていた。しかし、A52V
/V74Lの場合は相加的な効果を示し、2重置換体中
最も安定化していた。更に、分子内空隙の容量変化が同
じA52IとA52V/V74Lを比較すると、後者の
方が安定であることがわかる。このことから、安定化す
る分子内空隙の埋め方として、一方からのみよりも、容
量変化の小さいアミノ酸置換を組み合わせることが有効
といえる。[Table 2] Fermentase name Tm (° C) ΔTm (° C) WT RNaseHI 56.4-A52I 62.6 6.2 A52L 60.7 4.3 A52V 61.9 5.5 V74L 60.1 3.7 A52I / V74L 60.3 3.9 A52L / V74L 61.3 4.9 A52V / V74L 64.4 8.0 Mutant ribonuclease HI The curve was shifted to the higher temperature side than the natural type heat denaturation curve, and the thermal stability was obviously increased. From the above results, it was confirmed that the stability against heat was improved by introducing an amino acid mutation that fills the intramolecular cavity of the natural Escherichia coli ribonuclease HI. Also, in the single mutants at positions 52 and 74,
The most stabilized A52I and A5 that combines V74L
2I / V74L was equal to or lower than the stabilization by each mutation, and their effects were canceled out. However, A52V
In the case of / V74L, it showed an additive effect, and was the most stabilized among the double substitution products. Further, when comparing A52I and A52V / V74L in which the volume change of the intramolecular void is the same, it is found that the latter is more stable. From this, it can be said that as a method of filling the stabilizing intramolecular void, it is more effective to combine amino acid substitutions with smaller changes in capacity than from only one side.
【0023】参考例 酵素活性の測定 実施例1〜2により調製した変異型リボヌクレアーゼH
Iの酵素活性を以下の方法により測定し、比活性を測定
し、天然型酵素に対するパーセンテージを算定した。得
られた比較結果を以下の表3に示す。活性は、[3H]−
M13DNA/RNAを基質として用い、30℃、1分
間に1μmolの酸可溶性物質を遊離する酵素活性を1ユ
ニット(U)と定義した。タンパク量は変異型リボヌクレ
アーゼHIと天然型リボヌクレアーゼHIとが同じ吸光
係数を持つという仮定のもとに、 Reference Example Measurement of Enzyme Activity Mutant Ribonuclease H Prepared in Examples 1-2
The enzyme activity of I was measured by the following method, the specific activity was measured, and the percentage of the native enzyme was calculated. The comparison results obtained are shown in Table 3 below. The activity is [ 3 H]-
Using M13 DNA / RNA as a substrate, the enzyme activity of releasing 1 μmol of an acid-soluble substance in 1 minute at 30 ° C. was defined as 1 unit (U). The amount of protein is based on the assumption that the mutant ribonuclease HI and the natural ribonuclease HI have the same extinction coefficient.
【数1】 を用いて280nmにおける吸光度を測定することにより
求めた。ここで、[Equation 1] Was measured by measuring the absorbance at 280 nm. here,
【数2】 とは、蛋白質濃度が1mg/mlの水溶液の280nmにおけ
る吸光度を示す。[Equation 2] Means the absorbance at 280 nm of an aqueous solution having a protein concentration of 1 mg / ml.
【表3】 天然型と変異型リボヌクレアーゼHIの酵素活性の比較 酵 素 名 比活性(U/mg) 対天然型% WT RNaseHI 9.45 − A52I 3.61 38% A52L 0.28 3% A52V 5.67 60% V74L 9.45 100% A52I/V74L 0.36 3.8% A52L/V74L 0.23 2.4% A52V/V74L 1.51 16% [Table 3] Comparison of enzymatic activities of native and mutant ribonucleases HI Enzyme specific activity (U / mg) vs. natural type% WT RNase HI 9.45-A52I 3.61 38% A52L 0.28 3% A52V 5.67 60% V74L 9.45 100% A52I / V74L 0.36 3.8% A52L / V74L 0.23 2.4% A52V / V74L 1.51 16%
【図1】 プラスミドpJAL52Iの構築を示す模式
図である。FIG. 1 is a schematic diagram showing the construction of plasmid pJAL52I.
【図2】 部位特異的突然変異を導入するための合成オ
リゴヌクレオチドを示す模式図であり、図中、下線は制
限酵素部位を、●印は変異アミノ酸に対応する塩基(A
la52に対応する塩基)をそれぞれ示すものである。FIG. 2 is a schematic diagram showing a synthetic oligonucleotide for introducing a site-specific mutation, in which the underline indicates the restriction enzyme site, and the ● mark indicates the base (A) corresponding to the mutant amino acid.
bases corresponding to la 52 ).
【図3】 プラスミドpJAL52I74Lの構築を示
す模式図である。FIG. 3 is a schematic diagram showing the construction of plasmid pJAL52I74L.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 9/10 C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15/09 ZNA C12R 1:19) C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area // (C12N 9/10 C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15 / 09 ZNA C12R 1:19) C12R 1:19)
Claims (9)
2番目のアラニンがバリン、ロイシン、またはイソロイ
シンで置換されており、それによって該リボヌクレアー
ゼHIのαI−ヘリックス、αIII−ヘリックス、αIV−
ヘリックス、βD−鎖及びβE−鎖に囲まれた疎水性コ
アーに存在する分子内空隙が、該置換アミノ酸残基の側
鎖によって実質的に埋められ、それにより安定性が増大
されている変異型大腸菌リボヌクレアーゼHI。1. A native E. coli ribonuclease HI-5
The second alanine is replaced by valine, leucine, or isoleucine, whereby the αI-helix, αIII-helix, αIV-of the ribonuclease HI is replaced.
A variant in which an intramolecular cavity existing in a hydrophobic core surrounded by a helix, a βD-chain and a βE-chain is substantially filled with a side chain of the substituted amino acid residue, thereby enhancing stability. E. coli ribonuclease HI.
の74番目のバリンがロイシンで置換されている請求項
1に記載の変異型大腸菌リボヌクレアーゼHI。2. A natural E. coli ribonuclease HI
The mutant Escherichia coli ribonuclease HI according to claim 1, wherein the 74th valine is substituted with leucine.
れている請求項2に記載の変異型大腸菌リボヌクレアー
ゼHI。3. The mutant Escherichia coli ribonuclease HI according to claim 2, wherein the 52nd alanine is substituted with valine.
変異型大腸菌リボヌクレアーゼHIをコードしている変
異型大腸菌リボヌクレアーゼHI構造遺伝子。4. A mutant Escherichia coli ribonuclease HI structural gene encoding the mutant E. coli ribonuclease HI according to any one of claims 1 to 3.
レアーゼHI構造遺伝子を大腸菌の遺伝子発現系制御下
に含有している組換えプラスミド。5. A recombinant plasmid containing the mutant Escherichia coli ribonuclease HI structural gene according to claim 4 under the control of a gene expression system of Escherichia coli.
Lである請求項5に記載の組換えプラスミド。6. pJAL52I or pJAL52I74
The recombinant plasmid according to claim 5, which is L.
換えプラスミドで形質転換された大腸菌株。7. An E. coli strain transformed with the recombinant plasmid according to claim 5 or 6.
2Iまたは大腸菌K12/HB101/pJAL52I
74Lである請求項7に記載の大腸菌株。8. Escherichia coli K12 / HB101 / pJAL5
2I or E. coli K12 / HB101 / pJAL52I
The E. coli strain according to claim 7, which is 74 L.
腸菌株を培養し、得られた培養液から変異型大腸菌リボ
ヌクレアーゼHIを回収することを特徴とする請求項1
に記載の変異型大腸菌リボヌクレアーゼHIの製造方
法。9. The mutant Escherichia coli ribonuclease HI is recovered from the culture medium obtained by culturing the Escherichia coli strain according to claim 7 or 8.
The method for producing the mutant Escherichia coli ribonuclease HI according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7214457A JP2810002B2 (en) | 1994-12-08 | 1995-08-23 | Escherichia coli ribonuclease HI stabilized by filling intramolecular voids |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30472594 | 1994-12-08 | ||
JP6-304725 | 1994-12-08 | ||
JP7214457A JP2810002B2 (en) | 1994-12-08 | 1995-08-23 | Escherichia coli ribonuclease HI stabilized by filling intramolecular voids |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08205862A true JPH08205862A (en) | 1996-08-13 |
JP2810002B2 JP2810002B2 (en) | 1998-10-15 |
Family
ID=26520332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7214457A Expired - Lifetime JP2810002B2 (en) | 1994-12-08 | 1995-08-23 | Escherichia coli ribonuclease HI stabilized by filling intramolecular voids |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810002B2 (en) |
-
1995
- 1995-08-23 JP JP7214457A patent/JP2810002B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2810002B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000512849A (en) | Amidase | |
Tokunaga et al. | Highly efficient renaturation of β-lactamase isolated from moderately halophilic bacteria | |
JPH11503002A (en) | Production of Enzymatically Active Recombinant Carboxypeptidase B | |
IE902079L (en) | Thermally stable cytosine deaminase | |
JP2006068019A (en) | EXPRESSION PLASMIDS REGULATED BY osmB PROMOTER | |
Hum et al. | Expression of active domains of a human folate-dependent trifunctional enzyme in Escherichia coli | |
US20150284768A1 (en) | Eukaryotic transposase mutants and transposon end compositions for modifying nucleic acids and methods for production and use in the generation of sequencing libraries | |
Stahl et al. | Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase | |
JP4486009B2 (en) | DNA ligase mutant | |
JPH0587234B2 (en) | ||
CN113774039B (en) | Recombinant DNA polymerase and application thereof | |
Williams et al. | Expression of catalytically active hamster dihydroorotase domain in Escherichia coli: purification and characterization | |
JPH08196281A (en) | Dna coding water-formation type nadh oxidase | |
JPH08205862A (en) | Escherichia coli ribonuclease hi stabilized by filling intramolecular void | |
CN113005111A (en) | Novel glycerol mono-diacyl ester lipase | |
JP2790970B2 (en) | Stabilization of Escherichia coli ribonuclease HI by quintuple substitution | |
JP3463951B2 (en) | Thermostable pyroglutamyl peptidase and its gene | |
Bartolucci et al. | [7] Protein Disulfide oxidoreductase from Pyrococcus furiosus: Biochemical properties | |
Wojtowicz et al. | Expression of yeast deubiquitination enzyme UBP1 analogues in E. coli | |
JP3498808B2 (en) | DNA polymerase gene | |
JP2790583B2 (en) | Mutant E. coli ribonuclease HI | |
JP2747141B2 (en) | Mutant Escherichia coli ribonuclease H with improved stability | |
JP2593481B2 (en) | DNA having genetic information of sarcosine oxidase and use thereof | |
JPH0928380A (en) | Control factor related to expression of nitrilase gane and the gane | |
JP2747128B2 (en) | Mutant Escherichia coli ribonuclease H with improved stability |