[go: up one dir, main page]

JPH08203970A - X-ray utilization semiconductor evaluation device - Google Patents

X-ray utilization semiconductor evaluation device

Info

Publication number
JPH08203970A
JPH08203970A JP1124095A JP1124095A JPH08203970A JP H08203970 A JPH08203970 A JP H08203970A JP 1124095 A JP1124095 A JP 1124095A JP 1124095 A JP1124095 A JP 1124095A JP H08203970 A JPH08203970 A JP H08203970A
Authority
JP
Japan
Prior art keywords
ray
semiconductor
irradiation
rays
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124095A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
直樹 山本
Seiichi Iwata
誠一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1124095A priority Critical patent/JPH08203970A/en
Publication of JPH08203970A publication Critical patent/JPH08203970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE: To estimate energy level, formation-extinction process of charges, etc., by defining a defect portion by using the change of electric characteristics of a semiconductor device which is generated when a local part of the semiconductor device is irradiated with an X-ray beam. CONSTITUTION: A glass capillary 3 forms a fine X-ray beam 2 from X-rays generated from an X-ray generator 1. A specimen stand 6 is inplane-movable, and can rotate about an irradiation point as the center, so as to change the X-ray irradiation angle 5 to a specimen 4. An imaging plate 7 obtains the image of X-rays 36 which have penetrated the specimen 4. A semiconductor detector 9 is composed of L;doped Si for detecting X-rays or fluorescent X-rays 8 which have been diffracted by the specimen. A measuring apparatus 10 estimates electric characteristics of a semiconductor device like an LSI. A data processsing equipment 11 makes data obtained by various kinds of detectors correspond with data of electric characteristics. A computer display 12 displays data processing results, as two-dimensional distribution. Thereby imperfection factors can be easily made clear.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の欠陥部分を
求めるのに好適なX線利用半導体評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray utilizing semiconductor evaluation apparatus suitable for finding a defective portion of a semiconductor device.

【0002】[0002]

【従来の技術】LSI(Large Scale Integrated Circui
t)では、Si基板結晶や絶縁膜における欠陥などの特異
個所がその信頼性や歩留を左右するため、製造過程およ
び仕上り段階で、それらの解析と発生原因の追及を行
い、それらを低減するための対策に努力が払われてい
る。従来、Si単結晶基板内の欠陥観察にはX線トポグ
ラフィ技術が用いられることが多く、この技術はSiウ
エハの良,不良を評価するのに用いられるのが一般的で
あった。この方法は、結晶欠陥を評価するのにSiウエ
ハを割ったり,削ったりすることなく、非破壊でその存
在個所を特定できるという特徴がある。
2. Description of the Related Art LSI (Large Scale Integrated Circui)
In t), peculiar points such as defects in the Si substrate crystal or insulating film influence the reliability and yield, so in the manufacturing process and the finishing stage, analyze them and investigate the cause of occurrence, and reduce them. Efforts are being made to prevent this. Conventionally, an X-ray topography technique is often used for observing a defect in a Si single crystal substrate, and this technique is generally used for evaluating the quality of a Si wafer. This method is characterized in that it is possible to nondestructively specify the existence location of the Si wafer without breaking or shaving the Si wafer to evaluate the crystal defects.

【0003】しかし、LSIパターンがウエハ上に造ら
れている場合、ほとんどのパターン端部でトポグラフィ
像上になんらかの欠陥が観察されることが多いため、L
SIの特定個所の素子の電気的特性欠陥の原因解析に適
用することは難しい。このため、パターンの形成されて
いないダミーウエハにLSI製造工程と同様の熱処理を
加え、熱処理温度や時間の違いによりウエハ内に発生す
る欠陥分布や密度を観察することにより、LSIで発生
した欠陥原因を推定する方法が用いられている。
However, when an LSI pattern is formed on a wafer, some defect is often observed on the topography image at almost the edge of the pattern.
It is difficult to apply it to the cause analysis of the electrical characteristic defect of the element at a specific portion of SI. For this reason, the heat treatment similar to that in the LSI manufacturing process is applied to a dummy wafer on which no pattern is formed, and the defect distribution and density generated in the wafer due to the difference in heat treatment temperature and time are observed to determine the cause of the defect generated in the LSI. A method of estimating is used.

【0004】[0004]

【発明が解決しようとする課題】上記のX線トポグラフ
ィ法では、ダミーウエハ内の欠陥分布を観察することが
できる。ところが、欠陥は膜形成や熱処理あるいは素子
構造やパターンの合わせずれなど、複数の工程が関連し
て発生することが多く、パターンの無いダミーウエハの
検査でLSIで発生した電気的欠陥の原因を解明するの
は難しい。また、X線トポグラフィ技術では、各欠陥個
所の結晶構造、歪量あるいは欠陥の核となっている不純
物元素の同定など、欠陥発生の原因を解明するうえで重
要なこれらの項目を評価することは困難である。
With the above X-ray topography method, it is possible to observe the defect distribution in the dummy wafer. However, defects often occur in association with a plurality of processes such as film formation, heat treatment, misalignment of element structure and pattern, and the cause of the electrical defect generated in the LSI is clarified by inspection of a dummy wafer having no pattern. Is difficult. Moreover, in the X-ray topography technique, it is not possible to evaluate these important items for elucidating the cause of the defect occurrence, such as the crystal structure of each defect portion, the strain amount, or the identification of the impurity element that is the nucleus of the defect. Have difficulty.

【0005】さらに、この技術はLSIの電気的欠陥の
有無と場所については特定不能である。上に述べたよう
に、前記方法をLSIに適用した場合、パターン端部に
欠陥が観察されるが、欠陥が観察されたからといって欠
陥位置にLSIの電気的欠陥が有るとはかぎらない。
Furthermore, this technique cannot specify the presence or absence and location of electrical defects in the LSI. As described above, when the above method is applied to an LSI, a defect is observed at the end of the pattern. However, just because the defect is observed does not necessarily mean that there is an electrical defect of the LSI at the defect position.

【0006】なお、従来のX線トポグラフィ装置では、
位置分解能が数ミクロンから数十ミクロンと悪いため、
LSI内の素子部で発生するような数ミクロン以下の微
小欠陥を解析することは難しい。また、ゲート酸化膜な
どのLSIを構成する絶縁膜や多結晶層における、欠陥
の解析には適用できないという欠点がある。
Incidentally, in the conventional X-ray topography apparatus,
Since the position resolution is poor, from a few microns to a few tens of microns,
It is difficult to analyze a minute defect of a few microns or less that occurs in the element part in the LSI. In addition, there is a drawback that it cannot be applied to the analysis of defects in an insulating film or a polycrystalline layer that constitutes an LSI such as a gate oxide film.

【0007】本発明が解決しようとする課題は、被検物
を形状的あるいは機械的に破壊することなく材料あるい
は構造的な局所欠陥個所を特定でき、かつこれらの欠陥
と半導体装置の電気的な特性不良とを対応付けられる半
導体装置の評価装置を提供することにある。すなわち、
本発明の目的は、欠陥発生原因を解析するために必要な
欠陥部の結晶構造,歪量,元素種,半導体中の不純物準
位や酸化膜/半導体界面の界面準位などのエネルギ準位
や電荷の生成−消滅過程などの評価ができる装置を提供
することにある。
The problem to be solved by the present invention is to identify local defects in material or structure without destroying the test object geometrically or mechanically, and to find these defects and the electrical properties of the semiconductor device. An object of the present invention is to provide a semiconductor device evaluation apparatus that can be associated with characteristic defects. That is,
The purpose of the present invention is to analyze the crystal structure of the defect portion, strain amount, elemental species, energy level such as impurity level in semiconductor and interface level of oxide film / semiconductor interface, etc. An object of the present invention is to provide a device capable of evaluating the generation-disappearance process of charges.

【0008】[0008]

【課題を解決するための手段】半導体装置の何れかの個
所から、X線照射により発生した信号を取り出す手段を
設けることにより欠陥の評価を行う。具体的には、微細
X線ビームを形成し、半導体装置の局所部に前記X線ビ
ームを照射したとき生じる半導体装置の電気的特性の変
化が正常部と欠陥部分で異なることを利用して欠陥個所
を特定する。さらにこれらの電気的特性とともに、X線
照射したときSi基板や電極・配線などの金属層,絶縁
膜などで回折したX線ならびに蛍光X線や光電子を検出
する。
A defect is evaluated by providing a means for extracting a signal generated by X-ray irradiation from any part of a semiconductor device. Specifically, a defect is formed by utilizing the fact that a fine X-ray beam is formed and a change in electrical characteristics of a semiconductor device caused when a local portion of the semiconductor device is irradiated with the X-ray beam is different between a normal portion and a defective portion. Identify the point. Further, along with these electrical characteristics, X-rays diffracted by the Si substrate, metal layers such as electrodes and wirings, insulating films, and the like, and fluorescent X-rays and photoelectrons are detected when X-ray irradiation is performed.

【0009】[0009]

【作用】X線を照射すると、半導体装置内で正孔と電子
が生成され、電位や電流が変化する。正孔と電子の発生
消滅速度は電気的に正常な位置と欠陥位置で異なる。し
たがって、微細X線ビームの照射位置を変えながら電位
や電流を測定することにより電気的欠陥位置を特定でき
る。そして特定された位置で検出された回折X線,蛍光
X線あるいは光電子などを解析することにより、前記電
気的欠陥個所の結晶構造,歪,元素あるいは化合物の結
合状態を知ることができる。
When irradiated with X-rays, holes and electrons are generated in the semiconductor device, and the potential and current change. The generation and extinction speeds of holes and electrons differ between electrically normal positions and defect positions. Therefore, the electric defect position can be specified by measuring the potential and the current while changing the irradiation position of the fine X-ray beam. By analyzing the diffracted X-rays, fluorescent X-rays, photoelectrons, etc. detected at the specified positions, the crystal structure, strain, bonding state of the element or compound at the electrical defect can be known.

【0010】上に述べたX線照射による電気的特性の変
化についてさらに詳しく述べる。絶縁膜や半導体にX線
を照射すると電離して、電子と正孔が発生する。これら
の電荷は発生後消滅するが、欠陥があると正常な部分よ
りその消滅速度が速くなったり遅くなったりする。ある
場合はこれらの電荷が長時間残存することさえある。こ
れらの電荷は半導体装置の電極と絶縁膜あるいは半導体
などの界面近傍のエネルギバンド構造に影響を与え、絶
縁膜内に存在する電荷,半導体素子の界面準位,フラッ
トバンド電圧,トランジスタの閾値電圧,増幅率,容
量,キャリア移動度,接合のリーク電流,配線間のリー
ク電流などに変化をもたらす。また半導体材料内で発生
した電荷は、結晶欠陥が存在するとやはり発生した電荷
の消滅速度が早くなる。したがって、X線を照射したの
ちに照射を停止した直後の半導体特性の時間的変化を比
較観察することにより正常部と欠陥部とを識別すること
ができる。
The change in the electrical characteristics due to the above-mentioned X-ray irradiation will be described in more detail. When an insulating film or a semiconductor is irradiated with X-rays, it is ionized to generate electrons and holes. These charges disappear after being generated, but if there is a defect, the disappearance speed becomes faster or slower than that in a normal portion. In some cases these charges may even persist for long periods of time. These charges affect the energy band structure near the interface between the electrode of the semiconductor device and the insulating film or the semiconductor, and the charges existing in the insulating film, the interface state of the semiconductor element, the flat band voltage, the threshold voltage of the transistor, It causes changes in amplification factor, capacity, carrier mobility, junction leakage current, wiring leakage current, etc. Further, the electric charge generated in the semiconductor material has a higher annihilation speed of the generated electric charge when a crystal defect exists. Therefore, the normal portion and the defective portion can be distinguished by comparing and observing the temporal change of the semiconductor characteristics immediately after the irradiation is stopped after the X-ray irradiation.

【0011】この識別できる位置分解能は照射するX線
ビーム径が小さいほど良い。なお、X線照射により発生
する電荷数は欠陥の有無によっても異なるため、照射し
ながら半導体の電気特性を測定しても欠陥部分を識別す
ることもできる。
The position resolution that can be identified is better as the diameter of the X-ray beam irradiated is smaller. Since the number of charges generated by X-ray irradiation varies depending on the presence / absence of a defect, the defective portion can be identified even by measuring the electrical characteristics of the semiconductor while irradiating.

【0012】このX線照射により、電荷の発生とともに
回折X線や半導体装置を構成する材料特性の特徴を示す
X線や電子線が放射される。したがって、X線の照射角
や放射角あるいはこれらのエネルギを評価することによ
り、電気特性の不良発生個所の特定とともにその個所の
結晶構造,元素あるいは結合(電子)状態などを解析す
ることができる。なお、半導体装置に外部から電圧や電
流を供給しない状態で、X線を照射したとき発生した電
荷量や電荷の再結合過程を半導体装置に設けられた電極
や半導体基板に流れる電流を検出することによっても欠
陥個所を特定することができる。
By this X-ray irradiation, diffracted X-rays and X-rays and electron beams which show the characteristics of the material properties of the semiconductor device are emitted together with the generation of electric charges. Therefore, by evaluating the irradiation angle and the radiation angle of X-rays or their energies, it is possible to identify the location where the electrical characteristics are defective and analyze the crystal structure, element or bond (electronic) state of that location. It is to be noted that the amount of charges generated when X-rays are irradiated and the recombination process of the charges are detected in the state in which the voltage or current is not supplied to the semiconductor device from the outside, and the current flowing through the electrode or the semiconductor substrate provided in the semiconductor device is detected. The defect location can also be specified by.

【0013】これらの測定はX線を照射しながらも行え
るが、間歇的にX線を照射してその休止期間に電気特性
の測定を行い、これらの測定を繰り返して得られたデー
タを積算することにより、正常部と欠陥部における特性
の微小な差を顕在化させて測定精度を向上させることが
できる。
Although these measurements can be performed while irradiating X-rays, X-rays are intermittently radiated to measure the electric characteristics during the rest period, and the data obtained by repeating these measurements are integrated. As a result, a minute difference in characteristics between the normal portion and the defective portion can be revealed and the measurement accuracy can be improved.

【0014】また、被検物上のX線照射位置を移動させ
ながら上に述べた各種の測定を行い、各移動位置で得ら
れたデータを照射位置と対応するように二次元的に再配
置することにより、その分布の特異個所から欠陥部分を
検出することができる。
The above-mentioned various measurements are performed while moving the X-ray irradiation position on the object to be examined, and the data obtained at each moving position is two-dimensionally rearranged so as to correspond to the irradiation position. By doing so, the defective portion can be detected from a peculiar portion of the distribution.

【0015】本発明で用いる照射X線ビームの径は半導
体装置より十分小さいため、MOSトランジスタのゲー
ト電極の端の微小部あるいは素子パターンのコーナ部な
どのように、高精度で局所欠陥場所を特定でき、かつ、
素子の不良原因が結晶構造、半導体装置の製造過程で混
入した汚染や異物、あるいは化合状態の異常など、材料
的な原因を解明することができる。そしてX線照射によ
り半導体や絶縁膜内に生じた電荷の生成や消滅過程を評
価するため、材料的な欠陥の電気的特性への影響を対応
づけながら評価,解析できる。さらに、従来の誘起電流
法で用いられていた可視光ビームや電子ビームと異な
り、X線ビームは薄膜の多層構造体を容易に突き抜ける
ことができるため、LSIの基板内など、試料の深層部
の欠陥を評価できる。
Since the diameter of the irradiation X-ray beam used in the present invention is sufficiently smaller than that of the semiconductor device, a local defect location can be specified with high accuracy, such as a minute portion at the end of the gate electrode of a MOS transistor or a corner portion of an element pattern. Yes, and
It is possible to elucidate the material cause such as the crystal structure, the contamination or foreign matter mixed in the manufacturing process of the semiconductor device, or the abnormality of the compound state, as the cause of the defective element. Since the generation and disappearance processes of charges generated in the semiconductor and the insulating film by X-ray irradiation are evaluated, it is possible to perform evaluation and analysis while associating the influence of material defects on the electrical characteristics. Further, unlike the visible light beam and electron beam used in the conventional induced current method, the X-ray beam can easily penetrate through the thin film multilayer structure, so that the deep layer portion of the sample such as in the LSI substrate can be easily penetrated. Can evaluate defects.

【0016】また、探針にX線を用いているため、従来
の評価技術のような被検物を形状的あるいは機械的に破
壊させないため、分析条件を見つけるための予備測定や
繰返し測定ができる。
Further, since the X-ray is used for the probe, the object to be inspected as in the conventional evaluation technique is not destroyed geometrically or mechanically, and therefore preliminary measurement and repeated measurement for finding analysis conditions can be performed. .

【0017】[0017]

【実施例】【Example】

(実施例1)本発明の実施例を図1を用いて説明する。
評価装置はX線発生機1,微細X線ビーム2を形成する
ためのガラスキャピラリ3、面内で移動可能でかつ照射
点を中心として試料4へのX線照射角5を変えられるよ
うに回転できる試料台6,試料を透過したX線36の像
を得るためのイメージングプレート7,試料で回折した
X線や蛍光X線など8を検出するためのLiドープSi
からなる半導体X線検出器9,LSIなどの半導体装置
の電気的特性を評価するための測定器10,各種検出器
で得られたデータと電気特性のデータを対応付けるため
のデータ処理装置11、そしてそれらの結果の二次元分
布を表示できるコンピュータと表示装置12からなる。
ここで、ガラスキャピラリにより形成されたX線のビー
ム径は試料上で0.1μm であった。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG.
The evaluation device is an X-ray generator 1, a glass capillary 3 for forming a fine X-ray beam 2, movable in a plane, and rotated so that an X-ray irradiation angle 5 to a sample 4 can be changed around an irradiation point. Possible sample stage 6, Imaging plate 7 for obtaining an image of X-rays 36 transmitted through the sample, Li-doped Si for detecting X-rays and fluorescent X-rays diffracted by the sample
A semiconductor X-ray detector 9, a measuring device 10 for evaluating electrical characteristics of a semiconductor device such as an LSI, a data processing device 11 for associating data obtained by various detectors with electrical characteristic data, and It is composed of a computer and a display device 12 capable of displaying a two-dimensional distribution of the results.
Here, the beam diameter of X-rays formed by the glass capillary was 0.1 μm on the sample.

【0018】本実施例では図2に示す断面構造を持つL
SIを評価試料とした。このLSIは、MOSトランジ
スタ部14,メモリ容量部15,多層配線部16で構成
されており、この中で0.5μm 幅でタングステンシリ
サイドと多結晶Siを重ねた構造のゲート電極17を持
ち、13nmのゲート酸化膜18のMOSトランジスタ
の評価を行った。
In this embodiment, L having the sectional structure shown in FIG.
SI was used as an evaluation sample. This LSI is composed of a MOS transistor section 14, a memory capacitor section 15, and a multi-layer wiring section 16, in which a gate electrode 17 having a structure in which tungsten silicide and polycrystalline Si are superposed with a width of 0.5 μm is formed, and has a thickness of 13 nm. The MOS transistor having the gate oxide film 18 was evaluated.

【0019】ストレス電圧をトランジスタに印加すると
ホットキャリアがゲート酸化膜に注入されて閾値電圧V
th,相互コンダクタンスgmおよび界面準位Ditが
変動するが、この劣化(変動)速度が速い、すなわち不
良製造ロットのトランジスタについてその原因解明に本
実施例の装置を応用した。ホットキャリア注入はSi基
板13の側からゲート酸化膜に電子または正孔を注入す
ることであり、その結果界面準位が増大する。ゲート酸
化膜にX線を照射すると電子と正孔が発生し、ホットキ
ャリア注入と同様な効果を持つ。
When a stress voltage is applied to the transistor, hot carriers are injected into the gate oxide film and the threshold voltage V
Although the th, the transconductance gm, and the interface state Dit fluctuate, the deterioration (fluctuation) speed is high, that is, the device of this embodiment was applied to elucidate the cause of a transistor in a defective manufacturing lot. Hot carrier injection is to inject electrons or holes into the gate oxide film from the Si substrate 13 side, and as a result, the interface state is increased. When the gate oxide film is irradiated with X-rays, electrons and holes are generated, which has the same effect as hot carrier injection.

【0020】同じ製造ロットの中から閾値電圧と相互コ
ンダクタンスがほぼ同じ特性を持つトランジスタを選び
だした。そしてそれぞれのMOSトランジスタにつき、
その平面内で図3に示した(1)ないし(8)、および
(a)ないし(m)で示した位置の中のいずれかの1点
を選び、X線ビームをそれぞれ10分間照射した。この
照射位置決めには、Si基板の裏面側に設置したイメー
ジングプレートに写しだされたトランジスタのX線透過
像により行った。また、このときエネルギ分散型X線回
折法を用いてSi基板の(400)面からの回折X線も
同時に測定して格子面間隔を求め、LSIチップ周辺の
スクライブラインでSi基板が露出した部分で得られた
(400)格子面間隔からの変化率をトランジスタ内の
各X線照射位置での基板内格子歪εとした。なおX線照
射角を30度に設定したとき、(400)面からの回折
X線のエネルギはほぼ9.1keV であった。
From the same manufacturing lot, transistors having threshold voltage and transconductance characteristics which are almost the same were selected. And for each MOS transistor,
In the plane, any one of the positions (1) to (8) and (a) to (m) shown in FIG. 3 was selected, and each X-ray beam was irradiated for 10 minutes. This irradiation positioning was performed by the X-ray transmission image of the transistor projected on the imaging plate installed on the back surface side of the Si substrate. Further, at this time, the diffraction X-ray from the (400) plane of the Si substrate is simultaneously measured using the energy dispersive X-ray diffraction method to obtain the lattice spacing, and the Si substrate is exposed at the scribe line around the LSI chip. The rate of change from the (400) lattice plane spacing obtained in step 1 was defined as the in-substrate lattice strain ε at each X-ray irradiation position in the transistor. When the X-ray irradiation angle was set to 30 degrees, the energy of the diffracted X-ray from the (400) plane was about 9.1 keV.

【0021】図4にX線照射前後のMOSトランジスタ
の相互コンダクタンス変化率Δgm/gmと界面準位の
変化率ΔDit/Ditの照射位置依存性を示す。図に
は正常な特性を示すLSI製造ロットにおけるトランジ
スタのX線照射位置依存性19とホットキャリアによる
トランジスタ特性の劣化速度の速いロットの照射位置依
存性20を示した。
FIG. 4 shows the irradiation position dependence of the transconductance change rate Δgm / gm and the interface state change rate ΔDit / Dit of the MOS transistor before and after X-ray irradiation. The figure shows the X-ray irradiation position dependence 19 of a transistor in an LSI manufacturing lot showing normal characteristics and the irradiation position dependence 20 of a lot in which the deterioration rate of the transistor characteristics due to hot carriers is high.

【0022】相互コンダクタンスおよび界面準位のX線
照射による変化率は、ゲート電極17および素子間分離
絶縁膜領域21などの端部でいずれも大きくなっている
が、その変化率は不良ロットのほうが数倍大きい。これ
らの依存性からホットキャリアが注入されて劣化するの
は主にこれらの端部のゲート酸化膜とSi基板の界面で
あり、不良ロットではこれらの部分が特に悪いことがわ
かった。
The rate of change in transconductance and interface state due to X-ray irradiation is large at the end portions such as the gate electrode 17 and the element isolation insulating film region 21, but the rate of change is higher in the defective lot. Several times larger. It was found from these dependencies that hot carriers were injected and deteriorated mainly at the interface between the gate oxide film at these ends and the Si substrate, and these parts were particularly bad in a defective lot.

【0023】そして端部で特性劣化が著しいことより、
これらの部分のゲート酸化膜に外部からの何等かの力が
加わっていることが予測された。しかしゲート酸化膜内
での局所部の力を測定するのは難しい。そこで、本発明
の装置を用いてSi基板内の歪分布より端部のゲート酸
化膜に加わる力の評価を行った。
Since the characteristic deterioration is remarkable at the end,
It was predicted that some external force was applied to the gate oxide film in these portions. However, it is difficult to measure the local force in the gate oxide film. Therefore, using the device of the present invention, the force applied to the gate oxide film at the end portion was evaluated from the strain distribution in the Si substrate.

【0024】図5にSi基板面内の格子歪分布を示し
た。この分布は相互コンダクタンスや界面準位などの電
気特性の照射位置依存性と相対的によく一致している。
したがって、ゲート電極や素子間分離絶縁膜端部での応
力集中がゲート酸化膜やそのSi基板界面に歪を生じさ
せ、ホットキャリア注入による界面準位の増大を容易に
していることがわかった。なお、界面準位の増大は、良
く知られているように相互コンダクタンスや閾値電圧の
劣化を引き起こす。
FIG. 5 shows the lattice strain distribution in the plane of the Si substrate. This distribution agrees relatively well with the irradiation position dependence of electrical properties such as mutual conductance and interface state.
Therefore, it was found that the stress concentration at the edges of the gate electrode and the inter-element isolation insulating film causes strain at the interface of the gate oxide film and its Si substrate and facilitates the increase of the interface state by hot carrier injection. Incidentally, the increase of the interface state causes the deterioration of mutual conductance and threshold voltage, as is well known.

【0025】また図5より、不良ロットでは良品ロット
よりゲート電極や素子間分離絶縁膜端部での歪量が大き
く、すなわち端部でのゲート酸化膜に加わる力が大きい
ことがわかる。そこで良品ロットと不良ロットについ
て、先のX線照射時に同時に検出されたタングステンの
蛍光X線の輝度よりゲート電極を構成するタングステン
シリサイドの膜厚を求めた。その結果、不良ロットは良
品ロットより膜厚が20%厚く、ゲート端部に加わる力
が大きいことがわかった。さらに不良ロットのほうが素
子間分離絶縁膜端部での歪の分布領域が狭いことより、
端部形状が急峻で大きな力が局所部に集中していること
がわかった。これらがロット不良を生じさせた原因であ
る。このように本発明により、素子を割ったり削ったり
すること無く、かつ従来の電気特性だけでは解明できな
かった局所部の不良原因を材料と電気的特性の両面から
解明することができた。
Further, it can be seen from FIG. 5 that the defective lot has a larger strain amount at the end portion of the gate electrode or the element isolation insulating film, that is, the force applied to the gate oxide film at the end portion is larger than that in the non-defective lot. Therefore, for the non-defective lot and the defective lot, the film thickness of the tungsten silicide forming the gate electrode was obtained from the luminance of the fluorescent X-ray of tungsten that was detected at the same time as the previous X-ray irradiation. As a result, it was found that the film thickness of the defective lot was 20% thicker than that of the non-defective lot, and the force applied to the gate edge was large. Furthermore, since the defective lot has a narrower strain distribution area at the end of the element isolation insulating film,
It was found that the end shape was steep and a large force was concentrated on the local part. These are the causes of lot defects. As described above, according to the present invention, it is possible to elucidate the cause of the defect in the local portion, which could not be clarified only by the conventional electric characteristics, from both the material and the electric characteristics without breaking or cutting the element.

【0026】(実施例2)本発明の実施例を図6を用い
て説明する。本実施例では実施例1で示した装置を基本
としており、それにガラスキャピラリとX線発生機の中
間にX線フィルタ22を挿入し、キャピラリにより形成
されるX線ビームを単色化した。試料周辺を真空室23
に入れるとともに、X線を照射したとき光電効果により
試料から放射される電子24のエネルギを検出するため
のエネルギアナライザ25を取り付けた。
(Embodiment 2) An embodiment of the present invention will be described with reference to FIG. In this embodiment, the apparatus shown in the first embodiment is basically used, and an X-ray filter 22 is inserted between the glass capillary and the X-ray generator to monochromate the X-ray beam formed by the capillary. Vacuum chamber 23 around the sample
And an energy analyzer 25 for detecting the energy of the electrons 24 emitted from the sample due to the photoelectric effect when X-rays are irradiated.

【0027】ここでは本実施例の装置を図3に示したL
SIの多層配線部16における層間絶縁膜26の評価に
応用した。ここで評価した層間絶縁膜はスパッタ法で形
成したSiO2,化学蒸着(CVD)法で形成したりん
とボロンを含有したSiO2、そしてスピンオンガラス
と呼ばれるSiO2 膜である。層間絶縁膜の評価にはX
線フィルタを用いて5keVのエネルギを持つ0.1μ
m 径のビームを適用した。このビームを図2に示す断
面構造を持ち、Si基板との接触部を持たない第一層目
と第二層目のAl配線の交差部での層間絶縁膜28に照
射し、照射前後のAl配線間の電流−電圧特性の変化を
観察した。
The apparatus of this embodiment is shown in FIG.
It was applied to the evaluation of the interlayer insulating film 26 in the SI multi-layer wiring section 16. Here evaluated interlayer insulating film SiO 2, a chemical vapor deposition SiO 2 containing phosphorus To boron was formed by chemical vapor deposition (CVD) formed by a sputtering method, and an SiO 2 film called a spin-on glass. X for evaluation of interlayer insulation film
0.1μ with energy of 5 keV using line filter
A beam of m diameter was applied. This beam is applied to the interlayer insulating film 28 at the intersection of the first layer and second layer Al wirings having the cross-sectional structure shown in FIG. The change in the current-voltage characteristic between the wirings was observed.

【0028】図7に示すように、配線間に加える電圧を
徐々に増加させると、電圧が低い領域では微量の変位電
流43が流れ、さらに増加すると電圧の増加に対する電
流の増加率が顕著になる、いわゆる、トンネル電流44
領域が現われ、さらに増加を続けると絶縁膜が破壊して
急激に電流45が増大する。この測定では、トンネル電
流が少し流れる状態で印加電圧を固定しておき、X線ビ
ームを10分間照射した。ほとんどの場合、X線照射に
より絶縁膜を流れるリーク電流は減少した。トンネル電
流はAl配線と絶縁膜界面に加わる電界強度により決ま
る。したがって、印加電圧を一定にしているにもかかわ
らず、電流が減少する現象はX線照射により界面近傍の
電界強度が緩和されたことを示している。これはX線照
射により絶縁膜内に発生した電子が界面に存在していた
正の電荷部分、すなわち電子トラップに捕獲されたため
と考えられる。この減少量はスピンオンガラスが最も大
きく、続いてりんとボロンを含有したSiO2そしてス
パッタ法で形成したSiO2の順であった。特に水分の
含有量の多い膜ではその減少量が多かった。
As shown in FIG. 7, when the voltage applied between the wirings is gradually increased, a small amount of displacement current 43 flows in the low voltage region, and when the voltage is further increased, the rate of increase of the current with respect to the increase of the voltage becomes remarkable. , So-called tunnel current 44
A region appears, and if it continues to increase, the insulating film is destroyed and the current 45 rapidly increases. In this measurement, the applied voltage was fixed with the tunnel current slightly flowing, and the X-ray beam was irradiated for 10 minutes. In most cases, the X-ray irradiation reduced the leak current flowing through the insulating film. The tunnel current is determined by the electric field strength applied to the interface between the Al wiring and the insulating film. Therefore, the phenomenon that the current decreases despite the constant applied voltage indicates that the electric field strength near the interface was relaxed by the X-ray irradiation. It is considered that this is because the electrons generated in the insulating film by X-ray irradiation were captured by the positive charge portion existing at the interface, that is, the electron trap. This reduction is spin-on-glass is the largest, followed by a phosphorus To order SiO 2 formed by SiO 2 and sputtering containing boron. In particular, the amount of decrease was large in a film having a high water content.

【0029】(実施例3)本実施例を図8を用いて説明
する。本実施例では実施例の1および2において、試料
に紫外線30を照射するための光源31を設けた。実施
例1や2ではX線照射による放射線損傷による界面準位
や電荷トラップなどの変動を調べた。X線照射により素
子に損傷が入るため、照射位置依存性を求める場合、同
じような初期特性を持つ素子を照射位置の数だけ選び、
各素子には1点の照射のみを行うようにする必要があっ
た。しかし、同一ロットから取り出した素子でも特性の
ばらつきがあり、また多数点の照射位置依存性を調べる
場合、多くの素子を準備しなければならないという不便
性があった。
(Embodiment 3) This embodiment will be described with reference to FIG. In this embodiment, the light source 31 for irradiating the sample with the ultraviolet rays 30 is provided in the first and second embodiments. In Examples 1 and 2, changes in interface states and charge traps due to radiation damage due to X-ray irradiation were investigated. Since the element is damaged by X-ray irradiation, when determining the irradiation position dependency, select elements with similar initial characteristics as many as the irradiation positions,
It was necessary to irradiate each element with only one point. However, even the elements taken out from the same lot have variations in characteristics, and there is an inconvenience that many elements have to be prepared when examining the irradiation position dependency of a large number of points.

【0030】本実施例ではこの欠点を無くし、1個の素
子から照射位置依存性を得られるようにした。すなわ
ち、1点にX線を照射した後、実施例1や2で述べた各
種の特性を測定し、それが完了すると紫外線を照射し
た。この照射によりトランジスタの電気特性はX線照射
前の状態に戻すことができた。この後、X線照射位置を
所望位置まで移動して再び同様の測定を行った。これら
を繰り返すことにより1個の素子から照射位置依存性が
求められるため、データのばらつきが少なく、また多数
の試料を準備する必要が無くなった。照射位置を試料面
内で二次元的に移動しながら上記の繰返しを行うことに
より特性の二次元分布を求めることができた。この場合
は、先の実施例のように試料間のばらつきによる要因が
無いため、その分布より欠陥部の抽出を容易に行うこと
ができた。また、本実施例を次に述べる極薄酸化膜の評
価に用いた。
In the present embodiment, this defect is eliminated, and the irradiation position dependence can be obtained from one element. That is, after irradiating one point with X-rays, various characteristics described in Examples 1 and 2 were measured, and when the characteristics were completed, ultraviolet rays were irradiated. By this irradiation, the electric characteristics of the transistor could be returned to the state before the X-ray irradiation. After that, the X-ray irradiation position was moved to a desired position and the same measurement was performed again. By repeating these steps, the irradiation position dependency is required from one element, so there is little variation in data, and it is no longer necessary to prepare a large number of samples. By repeating the above while moving the irradiation position two-dimensionally within the sample plane, the two-dimensional distribution of the characteristics could be obtained. In this case, since there is no factor due to the variation between the samples as in the previous embodiment, the defect portion could be easily extracted from the distribution. Further, this example was used for evaluation of an ultrathin oxide film described below.

【0031】ゲート酸化膜が5nm以下のように薄くな
ってくるとトンネル電流が流れるため、従来、酸化膜の
膜質評価に用いられてきた容量−電圧(CV;Capacita
nce−Voltage)法の適用が難しくなる。そこで本実施例
の装置を適用した。用いたX線ビーム系は実施例2と同
じである。
When the gate oxide film becomes thinner than 5 nm, a tunnel current flows. Therefore, the capacitance-voltage (CV; Capacita) which has been conventionally used for evaluating the film quality of the oxide film.
It becomes difficult to apply the nce-Voltage method. Therefore, the device of this embodiment is applied. The X-ray beam system used is the same as in Example 2.

【0032】水分を含んだ酸素雰囲気と含まない酸素雰
囲気でSi基板表面に3nmのSi酸化膜を形成した。
これらの酸化膜にX線を照射したとき放射されるO1s光
電子の運動エネルギのX線照射時間依存性を調べた。こ
のX線照射時間依存性、すなわちX線照射により生成し
た電荷の帯電特性から酸化膜内に存在するトラップの種
類を判定することができ、この方法はすでに日本金属学
会誌,第56巻,第7号,863−864頁,1992
年にて報告されている。
A 3 nm Si oxide film was formed on the surface of the Si substrate in an oxygen atmosphere containing water and an oxygen atmosphere not containing water.
The dependence of the kinetic energy of O1s photoelectrons emitted when these oxide films were irradiated with X-rays on the X-ray irradiation time was examined. The type of traps existing in the oxide film can be determined from this X-ray irradiation time dependency, that is, the charging characteristics of the charges generated by X-ray irradiation. This method has already been used. 7, 863-864, 1992.
Reported in years.

【0033】この方法を用いて評価した結果、水分を含
んだ酸素雰囲気で形成した酸化膜には電子を捕獲するト
ラップが多く、水分を含まない雰囲気の場合は正孔トラ
ップが多数を占めることがわかった。
As a result of evaluation using this method, many oxide traps are trapped in the oxide film formed in an oxygen atmosphere containing water, and many hole traps occupy in an atmosphere containing no water. all right.

【0034】この測定と紫外線照射を交互に0.1μm
ピッチで繰返し、酸化膜面内の二次元分布を求めたとこ
ろ、いずれの酸化膜にも所々で帯電しにくい部分がある
ことがわかった。この測定ではO1sとともに酸化してい
ないSiからのSi2p光電子と酸化したSiからのSi
2p光電子の比を同時に測定した。その結果、帯電しない
部分ではこの比が大きく、Siの酸化が不十分であるこ
とがわかった。
Alternate between this measurement and UV irradiation to 0.1 μm
When the two-dimensional distribution in the oxide film surface was obtained by repeating the measurement with a pitch, it was found that some oxide films had portions where charging was difficult. In this measurement, Si2p photoelectrons from Si not oxidized with O1s and Si from oxidized Si
The ratio of 2p photoelectrons was measured simultaneously. As a result, it was found that this ratio was large in the non-charged portion, and the oxidation of Si was insufficient.

【0035】そこでX線照射角を0.15 度の低角度に
設定し、この近傍の蛍光X線分析を行った。その結果、
Siの酸化が不十分な領域では、他の領域よりFeとZ
rの蛍光X線輝度が高く、これらの部分(Si基板内の
可能性あり)にはこれらの微量の不純物が存在している
ことがわかった。なお、この蛍光X線分析では照射X線
としてX線発生機のターゲットからのW−Lα特性X線
を用いた。
Therefore, the X-ray irradiation angle was set to a low angle of 0.15 degrees, and fluorescent X-ray analysis was performed in the vicinity of this angle. as a result,
In regions where Si oxidation is insufficient, Fe and Z are more than in other regions.
It was found that the fluorescent X-ray luminance of r was high, and these traces (possibly in the Si substrate) contained these trace amounts of impurities. In this fluorescent X-ray analysis, W-Lα characteristic X-rays from the target of the X-ray generator were used as irradiation X-rays.

【0036】本実施例の他の応用として、書き込みと読
みだしが可能なフラッシュメモリのゲート酸化膜の評価
に適用した。0.5μm 幅のゲート電極(浮遊ゲート電
極も含む)の上から2ないし10keVのエネルギを持
つX線ビームを照射した。浮遊ゲート電極下の酸化膜は
7nmであった。図3の(1)ないし(8)と同様にゲ
ート電極を横切るようにX線を照射した後のゲート電極
の電位変化を調べた。電極端部近傍になるほどX線照射
前の電位に戻る速度は、ゲート電極幅方向の中心部に照
射したときより約40%も速く、フラッシュメモリにお
ける書き込み電荷の減少は主に端部で起こっていること
がわかった。
As another application of this embodiment, the present invention is applied to evaluation of a gate oxide film of a flash memory that can be written and read. The gate electrode (including the floating gate electrode) having a width of 0.5 μm was irradiated with an X-ray beam having an energy of 2 to 10 keV. The oxide film under the floating gate electrode had a thickness of 7 nm. Similar to (1) to (8) of FIG. 3, the potential change of the gate electrode after the X-ray irradiation so as to cross the gate electrode was examined. The speed of returning to the potential before X-ray irradiation closer to the edge of the electrode is about 40% faster than when it is applied to the central portion in the width direction of the gate electrode, and the decrease in write charge in the flash memory occurs mainly at the edge. I found out that

【0037】本実施例により、従来の電気的評価法では
困難であった極薄膜で局所部の電気的,材料的な評価を
試料を削ったり,割ったりすることなく評価することが
可能になった。
According to the present embodiment, it becomes possible to evaluate the electrical and material evaluation of a local portion with an ultrathin film, which is difficult with the conventional electrical evaluation method, without scraping or breaking the sample. It was

【0038】なお上の測定では、酸化膜の評価に主にX
線光電子分光法(X-rayPhotoelectron Spectroscopy)を
用いたが、X線吸収端微細構造分析法(ExtendedX-ray A
bsorption fine Structure)法など他の分析法も適用で
きる。
In addition, in the above measurement, X was mainly used for evaluation of the oxide film.
X-ray Photoelectron Spectroscopy was used, but X-ray absorption edge fine structure analysis (Extended X-ray A
Other analysis methods such as the absorption fine structure method can also be applied.

【0039】(実施例4)本実施例を図9を用いて説明
する。本実施例では上記の各実施例の装置に試料を水素
雰囲気中で熱処理するための加熱室32を設けた。X線
による放射線損傷は実施例3で示した紫外線照射でほぼ
無くすることができるが、試料によっては素子特性が回
復しない場合があった。紫外線照射でも回復しない場合
は、加熱室の上面の蓋33を閉じ、ガス導入口34から
水素を入れ、ガス出口35から排気しながら300度か
ら500度の温度で加熱した。この後、水素を抜き(図
9の装置ではこの後、真空排気を行う)、蓋を開放して
上記の各実施例と同様の測定を行った。この熱処理によ
りトランジスタなどの特性を初期に戻すことができた。
(Embodiment 4) This embodiment will be described with reference to FIG. In this embodiment, the apparatus of each of the above embodiments is provided with a heating chamber 32 for heat-treating a sample in a hydrogen atmosphere. Radiation damage due to X-rays can be almost eliminated by the ultraviolet irradiation shown in Example 3, but the element characteristics may not be recovered depending on the sample. When it did not recover even by irradiation with ultraviolet rays, the lid 33 on the upper surface of the heating chamber was closed, hydrogen was introduced from the gas inlet 34, and the gas was exhausted from the gas outlet 35 while heating at a temperature of 300 to 500 degrees. After this, hydrogen was removed (vacuum evacuation was performed in the apparatus of FIG. 9 after this), the lid was opened, and the same measurement as in each of the above-described examples was performed. By this heat treatment, the characteristics of the transistor and the like could be returned to the initial values.

【0040】次に実施例2と同様の方法で第二層目の配
線間の絶縁膜29の評価を行った。ここでは、1.5k
eVエネルギを持つX線ビームを用いた。配線間の絶縁
膜には、スパッタ法で形成した後、表面を化学機械研磨
法で平坦化したSiO2 膜とプラズマ有機CVD法で形
成して平坦化したSiO2 膜について評価した。この場
合は、この上に他の層を被覆することなく、これらの絶
縁膜が露出した状態で測定した。X線照射前後の配線間
の電流−電圧特性の評価法は実施例2と同じである。
Next, the insulating film 29 between the wirings of the second layer was evaluated in the same manner as in Example 2. Here, 1.5k
An X-ray beam with eV energy was used. The insulating film between the wirings was evaluated by a SiO 2 film whose surface was flattened by a chemical mechanical polishing method after being formed by a sputtering method and a SiO 2 film which was flattened by a plasma organic CVD method. In this case, the measurement was performed in a state where these insulating films were exposed without coating other layers on this. The method of evaluating the current-voltage characteristics between the wirings before and after the X-ray irradiation is the same as that in the second embodiment.

【0041】化学機械研磨したSiO2 膜の場合は、X
線照射位置により照射前後で一定電圧印加しているにも
かかわらずリーク電流が増加する場合と減少する場合が
あり、すなわち電子トラップと正孔トラップが混在して
いることがわかった。一方、プラズマ有機CVD法で形
成したSiO2 膜の場合は、X線照射により電流が減少
し、電子トラップが存在していることがわかった。
In the case of a chemical mechanically polished SiO 2 film, X
It was found that the leak current may increase or decrease depending on the position of the line irradiation, even though a constant voltage is applied before and after the irradiation, that is, the electron trap and the hole trap are mixed. On the other hand, in the case of the SiO 2 film formed by the plasma organic CVD method, it was found that the current was reduced by the X-ray irradiation and the electron trap was present.

【0042】これらの測定では、X線照射時に絶縁膜か
ら放射されるO1s光電子とSi2p光電子の強度比を求
め、この比を熱酸化膜の場合に得られる強度比と比較す
ることにより、SiOx 膜の組成を評価した。プラズマ
有機CVD法で形成した膜ではxが2.2ないし2.3と
Si酸化膜の化学量論的組成のx=2.0 より酸素が多
いことがわかった。一方、化学機械研磨した酸化膜の場
合は、照射位置によりxが1.8から2.2とばらつきが
あり、Siが多い場所と少ない場所があることがわかっ
た。これらは、電流−電圧特性により示した電子あるい
は正孔トラップの散在と良い対応があった。なお、本実
施例の装置で450℃で60分の酸素雰囲気と水素雰囲
気の熱処理を行うと、いずれの場合もトッラプが減少
し、かつxが化学量論的組成に近づくことがわかった。
In these measurements, the intensity ratio of O1s photoelectrons and Si2p photoelectrons emitted from the insulating film at the time of X-ray irradiation is obtained, and this ratio is compared with the intensity ratio obtained in the case of the thermal oxide film to obtain the SiOx film. The composition was evaluated. It was found that x was 2.2 to 2.3 in the film formed by the plasma organic CVD method, and oxygen was larger than the stoichiometric composition x = 2.0 of the Si oxide film. On the other hand, in the case of the chemical mechanically polished oxide film, x was varied from 1.8 to 2.2 depending on the irradiation position, and it was found that there were places where Si was large and places where Si was small. These corresponded well with the scattered electron or hole traps shown by the current-voltage characteristics. It was found that when heat treatment was performed in the apparatus of this example at 450 ° C. for 60 minutes in an oxygen atmosphere and a hydrogen atmosphere, traps were reduced and x was close to the stoichiometric composition in both cases.

【0043】(実施例5)装置構成は実施例1と同じで
ある。ただし、この場合は半導体装置の裏面から流れる
電流を取り出すことができる試料台とその電流の測定系
を設けた。X線を照射したときSi基板等の半導体の中
で発生する電荷による電流を測定し、照射位置と基板裏
面側から取り出された電流値とを対応させた試料面内分
布を図1に示したデータ処理装置でもとめられるように
した。
(Embodiment 5) The apparatus configuration is the same as that in Embodiment 1. However, in this case, a sample stage that can take out the current flowing from the back surface of the semiconductor device and a measurement system for the current are provided. The in-plane distribution of the sample in which the electric current generated by the electric charges generated in the semiconductor such as the Si substrate when the X-ray was irradiated was measured, and the irradiation position and the current value extracted from the back side of the substrate were made to correspond to each other is shown in FIG. It can be stopped with a data processor.

【0044】ダイナミックランダムアクセスメモリで、
蓄積電荷量の減衰が速い素子の不良解析に本実施例の装
置を適用した。図2はこのメモリの断面構造を示してお
り、評価した試料のメモリ容量部の大きさは1μm×2
μmであり、照射X線のエネルギは5keVで、ビーム
径は0.1μm であった。試料上面の垂直方向からメモ
リ容量部近傍にX線を照射し、照射位置を移動させたと
きの電流値の二次元面内分布を求めた。この測定ではX
線照射時に流れる電流とともに、照射直後の電流の減衰
特性も同時に求めた。
In the dynamic random access memory,
The device of the present embodiment was applied to the failure analysis of an element in which the accumulated charge amount rapidly decays. FIG. 2 shows the cross-sectional structure of this memory, and the size of the memory capacity portion of the sample evaluated is 1 μm × 2.
The irradiation X-ray energy was 5 keV, and the beam diameter was 0.1 μm. The two-dimensional in-plane distribution of the current value when the irradiation position was moved was obtained by irradiating the vicinity of the memory capacity portion with X-rays from the direction perpendicular to the upper surface of the sample. X in this measurement
Attenuation characteristics of the current immediately after the irradiation were obtained at the same time as the current flowing during the line irradiation.

【0045】メモリ容量部での蓄積電荷の減衰が速い不
良素子では、X線照射により基板裏面側に流れる電流が
少なく、かつX線照射後の電流減衰速度が速いことがわ
かった。特にメモリ容量用の電極がSi基板と接触して
いる部分ではその減衰速度が顕著に短かった。これらの
測定結果より、この部分にX線照射により発生した電子
と正孔の再結合を促進させるなんらかの原因が存在する
ことがわかった。
It has been found that in a defective element in which the accumulated charge in the memory capacitor portion is rapidly attenuated, the amount of current flowing to the back surface side of the substrate due to X-ray irradiation is small, and the current decay rate after X-ray irradiation is fast. In particular, the attenuation speed was remarkably short in the portion where the memory capacity electrode was in contact with the Si substrate. From these measurement results, it was found that there is some cause for promoting recombination of electrons and holes generated by X-ray irradiation in this portion.

【0046】そこで先に述べたと同様な低角度からX線
を照射して蛍光X線分析を行ったところ、この部分で極
微量のFeやCuが検出された。さらにこのメモリ部近
傍のSi基板内歪の分布をやはり先の実施例で述べたと
同様のX線回折測定法で求めたところ、メモリ容量用電
極がSi基板と接触している部分の歪が最も大きいこと
がわかった。これらの結果より、メモリの製造工程でな
んらかの不純物が基板内に入り、メモリ部で最も複雑で
応力集中が大きい電極接触部にこれらの不純物が熱処理
を経る過程で偏析したものと考えられる。
When fluorescent X-ray analysis was performed by irradiating X-rays from the same low angle as described above, a trace amount of Fe or Cu was detected in this portion. Further, when the distribution of strain in the Si substrate in the vicinity of the memory portion was obtained by the X-ray diffraction measurement method similar to that described in the previous embodiment, the strain in the portion where the memory capacitor electrode is in contact with the Si substrate is the highest. I found it big. From these results, it is considered that some impurities enter the substrate during the manufacturing process of the memory, and these impurities are segregated in the process of the heat treatment in the electrode contact portion where the stress concentration is the most complicated in the memory portion.

【0047】なお、本実施例と似た方法として、基板に
電子線をあて、このとき生じた基板電流の二次元分布よ
り基板内欠陥を調べる方法がすでにある。しかし、この
方法ではLSIのメモリ部のように基板上に多くの層、
特に電極配線層があると適用できなかった。また同じ装
置で不純物や結晶構造ならびに歪などを評価することが
できず、欠陥部が明らかになっても原因を解明すること
は困難であった。
As a method similar to that of this embodiment, there is already a method in which an electron beam is applied to the substrate and the defects in the substrate are examined from the two-dimensional distribution of the substrate current generated at this time. However, in this method, many layers on the substrate, such as the memory part of the LSI,
In particular, it could not be applied if there was an electrode wiring layer. In addition, it was not possible to evaluate impurities, crystal structure, strain, etc. with the same device, and it was difficult to elucidate the cause even if the defect part was clarified.

【0048】以上の実施例では酸化膜およびSi基板に
X線を照射したとき生じる電荷を利用して各種の電気的
および材料的特性の評価を行ったが、本発明によれば、
配線などの金属層に微細X線ビームを照射して、X線回
折および蛍光X線分析によりその微小部での結晶構造や
元素分布を評価できる。
In the above examples, various electrical and material properties were evaluated by utilizing the electric charges generated when the oxide film and the Si substrate were irradiated with X-rays. According to the present invention,
By irradiating a metal layer such as wiring with a fine X-ray beam, it is possible to evaluate the crystal structure and element distribution in the minute portion by X-ray diffraction and fluorescent X-ray analysis.

【0049】上に示した実施例では微細X線ビームの形
成にガラスキャピラリを用いたが、フレネルレンズや各
種ミラーを用いることもできる。またX線発生源にシン
クロトロン放射光設備を適用すれば広いエネルギ範囲に
わたって輝度の高い微細X線ビームが形成できるため、
測定が短時間で行えるようになる。
Although the glass capillary is used for forming the fine X-ray beam in the above-described embodiment, a Fresnel lens or various mirrors may be used. Further, if a synchrotron radiation facility is applied to the X-ray source, a fine X-ray beam with high brightness can be formed over a wide energy range.
The measurement can be performed in a short time.

【0050】[0050]

【発明の効果】本発明によれば、多層構造で微細な素子
の集合体であるLSIなどの微小部での電気特性欠陥の
発生個所を特定でき、かつ前記欠陥発生の原因となった
材料特性を対応付けながら評価できる。また、これらの
評価をLSIを割ったり,削ったりすることなく非破壊
で行える。このため、不良原因の解明が容易になり、か
つ高精度で行える。その結果、LSIなどの不良に対す
る製造プロセスの対策が行えるため、高信頼度のLSI
が得られるとともに製造歩留の向上が図れる。
According to the present invention, it is possible to specify the location of occurrence of an electrical characteristic defect in a minute portion such as an LSI, which is an aggregate of fine elements having a multi-layered structure, and to determine the material characteristics that cause the defect. Can be evaluated while associating with. Further, these evaluations can be performed nondestructively without breaking or cutting the LSI. For this reason, the cause of the defect can be easily clarified and the accuracy can be improved. As a result, it is possible to take countermeasures in the manufacturing process for defects such as LSI, so that the highly reliable LSI
And the manufacturing yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構造を示す実施例1の説明図。FIG. 1 is an explanatory diagram of a first embodiment showing the basic structure of the present invention.

【図2】本発明の各実施例で測定試料として用いたLS
Iの断面図。
FIG. 2 is an LS used as a measurement sample in each example of the present invention.
Sectional drawing of I.

【図3】本発明の実施例1で評価したMOSトランジス
タの平面構造と微細X線ビームの照射位置の関係を示す
説明図。
FIG. 3 is an explanatory diagram showing the relationship between the planar structure of a MOS transistor evaluated in Example 1 of the present invention and the irradiation position of a fine X-ray beam.

【図4】本発明の実施例1の測定結果で、MOSトラン
ジスタ上のX線照射位置とX線照射による相互コンダク
タンスの変化率(Δgm/gm),界面準位の変化率
(ΔDit/Dit)および歪(ε)の関係を示す特性
図。
FIG. 4 is a measurement result of Example 1 of the present invention, showing an X-ray irradiation position on a MOS transistor, a change rate of mutual conductance due to X-ray irradiation (Δgm / gm), and a change rate of interface state (ΔDit / Dit). FIG. 6 is a characteristic diagram showing the relationship between the strain and the strain (ε).

【図5】本発明の実施例1の測定結果で、MOSトラン
ジスタ上のX線照射位置とSi基板内の歪の関係を示す
特性図。
FIG. 5 is a characteristic diagram showing the relationship between the X-ray irradiation position on the MOS transistor and the strain in the Si substrate, which is the measurement result of the first embodiment of the present invention.

【図6】本発明の実施例2の装置の説明図。FIG. 6 is an explanatory diagram of an apparatus according to a second embodiment of the present invention.

【図7】本発明の実施例2および実施例4で得られた層
間および配線間絶縁膜の電流−電圧特性図。
FIG. 7 is a current-voltage characteristic diagram of interlayer and inter-wiring insulating films obtained in Examples 2 and 4 of the present invention.

【図8】本発明の実施例3の装置の説明図。FIG. 8 is an explanatory diagram of an apparatus according to a third embodiment of the present invention.

【図9】本発明の実施例4の装置の説明図。FIG. 9 is an explanatory diagram of an apparatus according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線発生機、2…微細X線ビーム、3…ガラスキャ
ピラリ、4…試料、5…X線照射角、6…試料台、7…
イメージングプレート、8…回折X線や蛍光X線など、
9…半導体X線検出器、10…電気特性の測定器、11
…データ処理装置、12…コンピュータと表示装置、2
5…電子検出器、36…試料を透過したX線。
1 ... X-ray generator, 2 ... Fine X-ray beam, 3 ... Glass capillary, 4 ... Sample, 5 ... X-ray irradiation angle, 6 ... Sample stand, 7 ...
Imaging plate, 8 ... Diffractive X-rays, fluorescent X-rays, etc.
9 ... Semiconductor X-ray detector, 10 ... Electrical characteristic measuring device, 11
... data processing device, 12 ... computer and display device, 2
5 ... Electron detector, 36 ... X-ray transmitted through sample.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】半導体装置の所望個所に微細径のX線ビー
ムを照射する機能を有し、照射により生じた素子の電気
特性変化を検出する機能を有することを特徴とするX線
利用半導体評価装置。
1. A semiconductor evaluation using X-rays, which has a function of irradiating a desired portion of a semiconductor device with an X-ray beam having a minute diameter and a function of detecting a change in electrical characteristics of an element caused by the irradiation. apparatus.
【請求項2】請求項1において、照射X線の輝度やエネ
ルギ,照射時間,ビーム入射角,X線被照射部から回折
もしくは放射されるX線や電子のエネルギ,個数あるい
は照射角や放射角からなる特性項目のうち、少なくとも
いずれか一つの特性項目を検出する機能を有するX線利
用半導体評価装置。
2. The brightness and energy of irradiation X-rays, irradiation time, beam incident angle, energy of X-rays and electrons diffracted or radiated from the X-ray irradiation portion, number, irradiation angle or emission angle. X-ray utilizing semiconductor evaluation device having a function of detecting at least one of the characteristic items consisting of.
【請求項3】請求項1において、検出する電気特性が電
極と絶縁膜の界面近傍の電荷,絶縁膜内に存在する電
荷,半導体素子の界面準位,フラットバンド電圧,トラ
ンジスタの閾値電圧,増幅率,容量,キャリア移動度,
接合のリーク電流,配線間のリーク電流,半導体材料内
で発生した電荷であり、これらの特性の内、少なくとも
一つを検出できるX線利用半導体評価装置。
3. The electric characteristics to be detected according to claim 1, wherein the electric charge in the vicinity of the interface between the electrode and the insulating film, the electric charge existing in the insulating film, the interface state of the semiconductor element, the flat band voltage, the threshold voltage of the transistor, and the amplification. Rate, capacity, carrier mobility,
An X-ray-based semiconductor evaluation device capable of detecting at least one of these characteristics, which is a leak current of a junction, a leak current between wirings, and a charge generated in a semiconductor material.
【請求項4】請求項2において得られた検出内容または
請求項3において得られた半導体特性の対応関係を求め
る機能を有したX線利用半導体評価装置。
4. An X-ray utilizing semiconductor evaluation apparatus having a function of obtaining the correspondence between the detected contents obtained in claim 2 or the semiconductor characteristics obtained in claim 3.
【請求項5】請求項1,2,3または4において、前記
半導体特性の計測をX線を照射しながら行えるX線利用
半導体評価装置。
5. The X-ray utilizing semiconductor evaluation apparatus according to claim 1, 2, 3 or 4, wherein the semiconductor characteristics can be measured while irradiating with X-rays.
【請求項6】微細X線ビームを被測定物に間歇的に照射
する手段と,前記X線ビームの休止期間に前記被測定体
の各半導体特性を測定する手段を有することを特徴とす
るX線利用半導体評価装置。
6. An X, which comprises means for intermittently irradiating a DUT with a fine X-ray beam and means for measuring each semiconductor characteristic of the DUT during a rest period of the X-ray beam. Wire-based semiconductor evaluation system.
【請求項7】請求項6において、X線照射を繰返し、そ
の照射期間に測定されたデータを積算しながら蓄積し、
所望時間測定の後に請求項2記載のいずれかの特性項目
と電気特性の関係を得る機能を有したX線利用半導体評
価装置。
7. The method according to claim 6, wherein X-ray irradiation is repeated, data accumulated during the irradiation period is accumulated and accumulated,
An X-ray utilizing semiconductor evaluation device having a function of obtaining a relationship between any one of the characteristic items and the electric characteristic according to claim 2 after measuring a desired time.
【請求項8】電極配線や半導体に外部から電圧を加えな
い状態でX線を照射し、照射により絶縁膜あるいは半導
体基板内に発生した正孔や電子により生じる電流もしく
は電極配線や半導体基板内の電位変動を検出する機能を
有することを特徴とするX線利用半導体評価装置。
8. An electrode wiring or a semiconductor is irradiated with X-rays without applying a voltage from the outside, and a current generated by holes or electrons generated in the insulating film or the semiconductor substrate by the irradiation or the electrode wiring or the semiconductor substrate An X-ray utilizing semiconductor evaluation device having a function of detecting potential fluctuations.
【請求項9】半導体装置上の微細X線照射位置を移動さ
せながら、各移動点で上記の各項のX線や電子あるいは
半導体の電気特性を測定し、かつそれらの各点で得られ
た特性を半導体装置上の照射位置に対応するように配置
して、各特性の二次元的な分布を得られるようにしたこ
とを特徴とするX線利用半導体評価装置。
9. The X-ray of each of the above-mentioned items and the electrical characteristics of the electron or semiconductor were measured at each moving point while moving the fine X-ray irradiation position on the semiconductor device, and obtained at each of these points. An X-ray-based semiconductor evaluation device characterized in that characteristics are arranged so as to correspond to irradiation positions on a semiconductor device so that a two-dimensional distribution of each property can be obtained.
【請求項10】請求項9において半導体特性の二次元分
布における特異点を抽出し、半導体装置の欠陥部分を検
出できるようにしたX線利用半導体評価装置。
10. An X-ray utilizing semiconductor evaluation apparatus according to claim 9, wherein a singular point in a two-dimensional distribution of semiconductor characteristics is extracted to detect a defective portion of a semiconductor device.
【請求項11】請求項1,2,3,4,5,6,7,
8,9または10において、前記測定を終えた後、X線
が照射された半導体装置に紫外線もしくは水素含有雰囲
気の熱処理を加えることにより、X線照射損傷を取り除
き正常な特性を持つ半導体装置に回復できる機能を有し
たX線利用半導体評価装置。
11. Claims 1, 2, 3, 4, 5, 6, 7,
In 8, 9, or 10, after the measurement is completed, the semiconductor device irradiated with X-rays is subjected to heat treatment in an atmosphere containing ultraviolet rays or hydrogen to remove X-ray irradiation damage and restore a semiconductor device having normal characteristics. An X-ray-based semiconductor evaluation device having a function capable of performing.
JP1124095A 1995-01-27 1995-01-27 X-ray utilization semiconductor evaluation device Pending JPH08203970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124095A JPH08203970A (en) 1995-01-27 1995-01-27 X-ray utilization semiconductor evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124095A JPH08203970A (en) 1995-01-27 1995-01-27 X-ray utilization semiconductor evaluation device

Publications (1)

Publication Number Publication Date
JPH08203970A true JPH08203970A (en) 1996-08-09

Family

ID=11772421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124095A Pending JPH08203970A (en) 1995-01-27 1995-01-27 X-ray utilization semiconductor evaluation device

Country Status (1)

Country Link
JP (1) JPH08203970A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057195A (en) * 2001-08-09 2003-02-26 X-Ray Precision Inc Method and apparatus for analyzing three-dimensional structure
JP2005020032A (en) * 2004-10-15 2005-01-20 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
JP2008111800A (en) * 2006-10-31 2008-05-15 National Institute For Materials Science Electron spectrometer with voltage applied
JP2009097937A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Sample analyzer, sample analysis method, and sample analysis program
JP2010243457A (en) * 2009-04-10 2010-10-28 Fujitsu Ltd X-ray holography measurement method
WO2015029144A1 (en) * 2013-08-27 2015-03-05 株式会社日立製作所 X-ray imaging device and x-ray imaging method
JP2015090311A (en) * 2013-11-06 2015-05-11 浜松ホトニクス株式会社 X-ray measuring device
JP2020139815A (en) * 2019-02-27 2020-09-03 キオクシア株式会社 Semiconductor defect inspection equipment and semiconductor defect inspection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057195A (en) * 2001-08-09 2003-02-26 X-Ray Precision Inc Method and apparatus for analyzing three-dimensional structure
JP4665222B2 (en) * 2001-08-09 2011-04-06 株式会社エックスレイプレシジョン 3D structure analysis method and 3D structure analysis apparatus
JP2005020032A (en) * 2004-10-15 2005-01-20 Matsushita Electric Ind Co Ltd Method and device for manufacturing semiconductor device
JP2008111800A (en) * 2006-10-31 2008-05-15 National Institute For Materials Science Electron spectrometer with voltage applied
JP2009097937A (en) * 2007-10-16 2009-05-07 Fujitsu Ltd Sample analyzer, sample analysis method, and sample analysis program
JP2010243457A (en) * 2009-04-10 2010-10-28 Fujitsu Ltd X-ray holography measurement method
WO2015029144A1 (en) * 2013-08-27 2015-03-05 株式会社日立製作所 X-ray imaging device and x-ray imaging method
JP2015090311A (en) * 2013-11-06 2015-05-11 浜松ホトニクス株式会社 X-ray measuring device
JP2020139815A (en) * 2019-02-27 2020-09-03 キオクシア株式会社 Semiconductor defect inspection equipment and semiconductor defect inspection method

Similar Documents

Publication Publication Date Title
US6607927B2 (en) Method and apparatus for monitoring in-line copper contamination
US11287253B2 (en) Device and method applicable for measuring ultrathin thickness of film on substrate
US6982567B2 (en) Combination optical and electrical metrology apparatus
US5298860A (en) Method of analyzing metal impurities in surface oxide film of semiconductor substrate
US4644264A (en) Photon assisted tunneling testing of passivated integrated circuits
US20240167814A1 (en) Method and system for monitoring deposition process
JPH09162253A (en) Semiconductor evaluation equipment
JPH08203970A (en) X-ray utilization semiconductor evaluation device
US4786864A (en) Photon assisted tunneling testing of passivated integrated circuits
JP2004028787A (en) Total reflection X-ray fluorescence analysis method, total reflection X-ray fluorescence pre-processing device, and total reflection X-ray fluorescence analysis device
JP3278513B2 (en) Method for analyzing impurities in semiconductor substrate
US12158437B2 (en) XPS metrology for process control in selective deposition
JP2008034475A (en) Method for manufacturing semiconductor device
US7424092B2 (en) Fluorescent X-ray spectroscopic apparatus
JP2000055841A (en) X-ray analysis method
Diebold Materials and failure analysis methods and systems used in the development and manufacture of silicon integrated circuits
Shaffner Semiconductor characterization and analytical technology
Murali et al. A novel technique for in-line monitoring of micro-contamination and process induced damage
US6855569B1 (en) Current leakage measurement
Shirasaki et al. Evaluation of thin-film material properties using laser-assisted SEM
JPH03132052A (en) Mis boundary evaluation method and device
Raulo et al. Pt-CdTe detectors spectroscopic performances and RBS and XRF interface composition analysis
Kim et al. Direct observation of x-ray radiation-induced damage to SiO2/Si interface using multiwavelength room temperature photoluminescence
JP3019637B2 (en) Position-selective spectroscopy
Cismaru Charging and vacuum-ultraviolet radiation effects on plasma processing induced damage of semiconductor devices