JPH08201200A - Method for forming thin-film strain gauge - Google Patents
Method for forming thin-film strain gaugeInfo
- Publication number
- JPH08201200A JPH08201200A JP2609195A JP2609195A JPH08201200A JP H08201200 A JPH08201200 A JP H08201200A JP 2609195 A JP2609195 A JP 2609195A JP 2609195 A JP2609195 A JP 2609195A JP H08201200 A JPH08201200 A JP H08201200A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- strain gauge
- substrate
- film resistor
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000013078 crystal Substances 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 13
- 239000011651 chromium Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 101150067292 SUS6 gene Proteins 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、歪により電気抵抗値が
変化する薄膜歪ゲージの形成方法に関する。薄膜歪ゲー
ジは、例えば、圧力センサ等の感圧素子として利用され
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film strain gauge whose electric resistance value changes due to strain. The thin film strain gauge is used, for example, as a pressure sensitive element such as a pressure sensor.
【0002】[0002]
【従来の技術】歪ゲージ用薄膜抵抗体としては、現在、
金属または合金の歪抵抗変化を利用したものと、半導体
のピエゾ抵抗効果を利用したものが主に用いられてい
る。前者は、抵抗温度係数が小さいため、温度による出
力の変動が小さく、かつ歪抵抗特性の直線性に優れてい
る。しかしながら、歪に対する抵抗変化の割合、すなわ
ちゲージ率が低いという欠点があり、出力のS/N比が
小さく高感度の増幅器を必要とする。一方、後者はゲー
ジ率は高いが、抵抗温度係数が大きく、歪抵抗特性の直
線性が悪いという欠点があった。このため、直線性を補
正する増幅器や温度補償回路を必要とし、制御系が複雑
になる不具合があった。2. Description of the Related Art As a thin film resistor for strain gauge,
The one that utilizes the strain resistance change of metal or alloy and the one that utilizes the piezoresistive effect of semiconductor are mainly used. Since the former has a small temperature coefficient of resistance, the variation in output due to temperature is small, and the linearity of the strain resistance characteristic is excellent. However, there is a drawback that the ratio of resistance change to strain, that is, the gauge factor is low, and an amplifier having a small output S / N ratio and high sensitivity is required. On the other hand, although the latter has a high gauge factor, it has a drawback that the resistance temperature coefficient is large and the linearity of the strain resistance characteristic is poor. For this reason, an amplifier and a temperature compensating circuit for correcting the linearity are required, and the control system becomes complicated.
【0003】このような問題に対し、両者の利点を兼ね
備えた薄膜抵抗体の開発が進められいる。そして、例え
ば特開平2−152201号公報には、構成元素として
クロム、酸素、および金属元素の1種を含有する薄膜抵
抗体(例えばCr−O−Al)が、高感度で、優れた歪
抵抗特性および抵抗温度特性を示し、機械的強度も高い
ことが開示されている。With respect to such a problem, the development of a thin film resistor having both advantages is under development. Then, for example, in Japanese Patent Application Laid-Open No. 2-152201, a thin film resistor (for example, Cr-O-Al) containing one of chromium, oxygen, and a metal element as constituent elements has high sensitivity and excellent strain resistance. It is disclosed that it exhibits characteristics and resistance temperature characteristics, and has high mechanical strength.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
Cr−O−Al系薄膜抵抗体よりなる歪ゲージを用いて
ブリッジ回路を試作したところ、ブリッジ内の歪ゲージ
の抵抗温度係数にばらつきが見られた。そのため、ブリ
ッジ出力のオフセット電圧が温度により大きく変動し、
温度補正が必要となるという問題があった。However, when a bridge circuit was prototyped using the strain gauge composed of the above Cr-O-Al type thin film resistor, variations were observed in the temperature coefficient of resistance of the strain gauge in the bridge. It was Therefore, the offset voltage of the bridge output changes greatly with temperature,
There was a problem that temperature correction was necessary.
【0005】そこで、本発明はブリッジ回路を構成する
各歪ゲージの抵抗温度係数のばらつきを低減し、温度補
正等の必要をなくすことを目的とするものである。Therefore, an object of the present invention is to reduce the variation in the temperature coefficient of resistance of each strain gauge constituting a bridge circuit and eliminate the need for temperature correction or the like.
【0006】[0006]
【課題を解決するための手段】本発明者等は、上記課題
を解決するために研究を重ねた結果、図1(a)(b)
に示すように、基板1上に薄膜抵抗体3を成膜して複数
の歪ゲージ31〜34を形成するにあたり、上記薄膜抵
抗体3の成膜を、上記基板1を回転させた状態で行な
い、かつ上記基板1の回転方向と上記歪ゲージ31〜3
4の長手方向とのなす角度が、各歪ゲージ31〜34で
一致するように該歪ゲージ31〜34を配置することに
よって、抵抗温度係数のばらつきを低減できることを見
出した(請求項1)。あるいは上記薄膜抵抗体3を構成
する結晶の配向方向と上記歪ゲージ31〜34の長手方
向とのなす角度が、各歪ゲージ31〜34で一致するよ
うに該歪ゲージ31〜34を配置することもできる(請
求項2)。ここで、上記薄膜抵抗体3の成膜は、図2の
ように上記基板1を回転体7に保持させた状態で行な
い、上記基板1表面に、上記回転体7の回転方向と垂直
な方向(図1(b)点線)に結晶が配向する上記薄膜抵
抗体3を形成する(請求項3)。Means for Solving the Problems As a result of repeated research to solve the above problems, the inventors of the present invention have shown in FIGS. 1 (a) and 1 (b).
In forming the thin film resistor 3 on the substrate 1 to form a plurality of strain gauges 31 to 34, the thin film resistor 3 is deposited while the substrate 1 is rotated, as shown in FIG. And the rotation direction of the substrate 1 and the strain gauges 31 to 3
It has been found that by arranging the strain gauges 31 to 34 such that the angle formed by the longitudinal direction of 4 on the strain gauges 31 to 34 is the same, variation in the temperature coefficient of resistance can be reduced (claim 1). Alternatively, the strain gauges 31 to 34 are arranged so that the angle formed by the orientation direction of the crystals forming the thin film resistor 3 and the longitudinal direction of the strain gauges 31 to 34 is the same in each strain gauge 31 to 34. It is also possible (claim 2). Here, the film formation of the thin film resistor 3 is performed with the substrate 1 held by the rotating body 7 as shown in FIG. 2, and the film is formed on the surface of the substrate 1 in a direction perpendicular to the rotating direction of the rotating body 7. The thin film resistor 3 in which crystals are oriented is formed in (dotted line in FIG. 1B) (claim 3).
【0007】上記薄膜抵抗体3は、アルミニウム、チタ
ン、タンタル、ジルコニウムおよびインジウムから選ば
れる少なくとも一種の金属と、クロム、および酸素を構
成元素とする(請求項4)。また、上記薄膜抵抗体3
は、例えばスパッタリング法により基板1上に成膜する
ことができる(請求項5)。The thin film resistor 3 contains at least one metal selected from aluminum, titanium, tantalum, zirconium and indium, chromium and oxygen as constituent elements (claim 4). In addition, the thin film resistor 3
Can be formed on the substrate 1 by, for example, a sputtering method (claim 5).
【0008】[0008]
【作用】薄膜抵抗体3の成膜は、通常、基板1を回転体
7に保持して行ない、成膜が均一になされるようにして
いる。この時、図3のように薄膜抵抗体3を構成する結
晶粒35は回転体7の回転方向に対し、垂直な方向に配
向する。従って、歪ゲージを結晶の配向方向に沿って形
成した場合と、これと垂直な方向に沿って形成した場合
とでは、結晶粒界36を横切る割合が異なる。そして、
この結晶粒35内と結晶粒界36とでは抵抗温度係数が
異なるため、結晶粒界36の影響を受ける割合の違いに
よって、各歪ゲージの抵抗温度係数が変化し、ばらつき
が生じていたものと思われる。また、成膜条件によって
は、結晶粒子が明瞭に観察されない場合もあるが、薄膜
抵抗体3の方向によって同様の抵抗温度係数の差が認め
られたので同じ現象が起きていると推定される。The thin film resistor 3 is usually formed by holding the substrate 1 on the rotating body 7 so that the film can be formed uniformly. At this time, as shown in FIG. 3, the crystal grains 35 forming the thin film resistor 3 are oriented in a direction perpendicular to the rotating direction of the rotating body 7. Therefore, the crossing ratio of the crystal grain boundaries 36 is different between the case where the strain gauge is formed along the crystal orientation direction and the case where the strain gauge is formed along the direction perpendicular thereto. And
Since the resistance temperature coefficient is different between the inside of the crystal grain 35 and the crystal grain boundary 36, the resistance temperature coefficient of each strain gauge changes due to the difference in the ratio affected by the crystal grain boundary 36, which causes variation. Seem. Also, depending on the film forming conditions, crystal particles may not be clearly observed, but since the same difference in the temperature coefficient of resistance was observed depending on the direction of the thin film resistor 3, it is presumed that the same phenomenon occurs.
【0009】これに対し、本発明では、上記基板1の回
転方向と上記歪ゲージ31〜34の長手方向とのなす角
度が各歪ゲージ31〜34で一致するように、言い換え
れば、上記薄膜抵抗体3の結晶の配向方向と上記歪ゲー
ジ31〜34の長手方向とのなす角度が各歪ゲージ31
〜34で一致するように歪ゲージ31〜34が配置され
ている。例えば前記図1(b)のゲージパターンでは、
図の左右方向を長手方向とする歪ゲージ31、33、上
下方向を長手方向とする歪ゲージ32、34のいずれも
結晶の配向方向(図の点線)とのなす角度は45°であ
り、各歪ゲージ31〜34を流れる電流が結晶粒界36
を通る割合は常に一定となる。よって、抵抗温度係数に
対する結晶粒界36の寄与分が各歪ゲージ31〜34で
ほぼ一定となり、抵抗温度係数のばらつきを大幅に低減
することが可能となる。On the other hand, in the present invention, the angles formed by the rotation direction of the substrate 1 and the longitudinal directions of the strain gauges 31 to 34 are the same in the strain gauges 31 to 34, in other words, the thin film resistance. The angle formed between the crystal orientation of the body 3 and the longitudinal direction of the strain gauges 31 to 34 is the strain gauge 31.
The strain gauges 31 to 34 are arranged so as to coincide with each other. For example, in the gauge pattern of FIG. 1 (b),
Each of the strain gauges 31 and 33 having the horizontal direction as the longitudinal direction and the strain gauges 32 and 34 having the vertical direction as the longitudinal direction forms an angle of 45 ° with the crystal orientation direction (dotted line in the figure). The current flowing through the strain gauges 31 to 34 is the grain boundary 36.
The rate of passing through is always constant. Therefore, the contribution of the crystal grain boundary 36 to the temperature coefficient of resistance becomes substantially constant in each of the strain gauges 31 to 34, and it becomes possible to significantly reduce the variation in the temperature coefficient of resistance.
【0010】[0010]
【実施例】以下、本発明の一実施例を添付図面を参照し
て説明する。図1(a)(b)は、本発明方法によって
歪ゲージを形成した基板の側面図および平面図である。
図1(a)において、ステンレス鋼(JIS SUS6
31)よりなる基板1表面には、全面にSiO2 等より
なる絶縁膜2が形成され、その上面に歪ゲージとなる薄
膜抵抗体3が形成してある。上記薄膜抵抗体3は、基板
1上に成膜された後、エッチングにより図1(b)に示
す4つの歪ゲージ31〜34に加工される。これら歪ゲ
ージ31〜34は上記基板1の四辺に沿って同じゲージ
パターンに形成され、その上面の4か所に形成される電
極4により互いに接続されてブリッジ回路を構成してい
る。上記電極4はリード線5により(図1(a))、外
部回路に接続される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. 1A and 1B are a side view and a plan view of a substrate having a strain gauge formed by the method of the present invention.
In Fig. 1 (a), stainless steel (JIS SUS6
An insulating film 2 made of SiO 2 or the like is formed on the entire surface of the substrate 1 made of 31), and a thin film resistor 3 serving as a strain gauge is formed on the upper surface thereof. After the thin film resistor 3 is formed on the substrate 1, it is processed into four strain gauges 31 to 34 shown in FIG. 1B by etching. These strain gauges 31 to 34 are formed in the same gauge pattern along the four sides of the substrate 1 and are connected to each other by electrodes 4 formed at four places on the upper surface thereof to form a bridge circuit. The electrode 4 is connected to an external circuit by a lead wire 5 (FIG. 1 (a)).
【0011】次に、上記基板1上に歪ゲージ31〜34
を形成する方法について説明する。まず、ステンレス製
の薄板よりなる上記基板1の表面を有機溶剤によって十
分に洗浄脱脂した後、該表面にSiO2 よるなる絶縁膜
2をスパッタリング法にて形成した。次いで、その上面
に歪ゲージとなる薄膜抵抗体3を、図2のスパッタリン
グ装置を用いて成膜した。図中、チャンバー6内には基
板ホルダー7が配設してあり、その外周部下面に上記基
板1を保持せしめた。この時、絶縁膜2を形成した表面
が下に向くようにした。上記基板1の下方にCrターゲ
ット81、Al2 O3 ターゲット82をそれぞれ配設
し、これらCrターゲット81、Al2 O3 ターゲット
82をそれぞれ高周波電源に接続した。なお、上記基板
ホルダー7は図略の回転機構により回転可能となしてあ
り、薄膜抵抗体3が均一に成膜されるようにしてある。
また、上記基板ホルダー7は電気ヒータ71によって加
熱されるようになしてある。Next, strain gauges 31-34 are formed on the substrate 1.
A method of forming the will be described. First, the surface of the substrate 1 made of a thin plate made of stainless steel was thoroughly washed and degreased with an organic solvent, and then the insulating film 2 made of SiO 2 was formed on the surface by a sputtering method. Next, the thin film resistor 3 that serves as a strain gauge was formed on the upper surface of the film by using the sputtering apparatus shown in FIG. In the figure, a substrate holder 7 is arranged in a chamber 6, and the substrate 1 is held on the lower surface of the outer peripheral portion thereof. At this time, the surface on which the insulating film 2 was formed was made to face downward. A Cr target 81, Al 2 O 3 target 82 to the lower the substrate 1 are disposed, respectively, which Cr target 81, the Al 2 O 3 target 82 were each connected to a high frequency power source. The substrate holder 7 is rotatable by a rotating mechanism (not shown) so that the thin film resistor 3 can be uniformly deposited.
Further, the substrate holder 7 is heated by an electric heater 71.
【0012】表面に絶縁膜2を設けた上記基板1を、上
記装置の基板ホルダー7に取付け、チャンバー6内を真
空排気した。ここにArとO2 の混合ガスを全圧で5×
10-3Torr導入した。なお、この時、O2 の含有量
が0.5〜1.0体積%となるようにした。次に、Cr
ターゲット81にRF540W、Al2 O3 ターゲット
82にRF220Wの高周波電力を印加して、基板ホル
ダー7を回転させつつ10分間スパッタリングを行なっ
た。The substrate 1 having the insulating film 2 on the surface was attached to the substrate holder 7 of the apparatus, and the chamber 6 was evacuated. A mixed gas of Ar and O 2 is added here at a total pressure of 5 ×
10 −3 Torr was introduced. At this time, the O 2 content was adjusted to 0.5 to 1.0% by volume. Next, Cr
High-frequency power of RF540W was applied to the target 81 and RF220W to the Al 2 O 3 target 82, and sputtering was performed for 10 minutes while rotating the substrate holder 7.
【0013】このようにして得られた薄膜抵抗体3の組
成をXPS分析により、また厚さを触針式膜厚計によっ
て調べた結果、Cr−19原子%酸素−2原子%Alの
組成で、膜厚は0.2μm であった。また、薄膜抵抗体
3の表面をSEMにより観察した。図3に薄膜抵抗体3
の表面SEM像の模式図を示すように、薄膜抵抗体3を
構成する結晶粒35が、基板1の回転方向に対し、垂直
に配向していることがわかった。The composition of the thin film resistor 3 thus obtained was examined by XPS analysis, and the thickness thereof was examined by a stylus type film thickness meter. As a result, it was found that the composition was Cr-19 atomic% oxygen-2 atomic% Al. The film thickness was 0.2 μm. The surface of the thin film resistor 3 was observed by SEM. The thin film resistor 3 is shown in FIG.
As shown in the schematic view of the surface SEM image of, the crystal grains 35 constituting the thin film resistor 3 were found to be oriented perpendicular to the rotation direction of the substrate 1.
【0014】次に、得られた薄膜抵抗体3をウェットエ
ッチングすることにより、上記図1(b)に示すゲージ
パターンの4つの歪ゲージ31〜34を形成した。この
時、各歪ゲージ31〜34の長手方向(歪ゲージ31、
33は図の左右方向、歪ゲージ32、34は図の上下方
向)と、薄膜抵抗体3を構成する結晶粒35の配向方
向、すなわち基板ホルダー7の回転方向と垂直な方向
(図中、点線)とのなす角度が各歪ゲージ31〜34で
一定となるようにする。ここではいずれも45°となる
ようにした。なお、図1(b)において、上記歪ゲージ
31は、線幅を図の左右方向31aで細く上下方向31
bで太くなるように変えてあり、線幅の細い部分31a
のみの抵抗が歪により変化して歪を検出するように構成
されている。また、この抵抗値に直接かかわる線幅の細
い部分31aの方向(左右方向)を歪ゲージの長手方向
とする。これは他の歪ゲージ32〜34も同様である。Next, the obtained thin film resistor 3 was wet-etched to form four strain gauges 31 to 34 having the gauge pattern shown in FIG. 1 (b). At this time, the longitudinal direction of each strain gauge 31 to 34 (strain gauge 31,
Reference numeral 33 indicates the horizontal direction of the figure, strain gauges 32 and 34 indicate the vertical direction of the figure, and the orientation direction of the crystal grains 35 forming the thin film resistor 3, that is, the direction perpendicular to the rotation direction of the substrate holder 7 (dotted line in the figure) ) With the strain gauges 31 to 34 are constant. Here, both were set to 45 °. In addition, in FIG. 1B, the strain gauge 31 has a line width that narrows in the left-right direction 31a in the drawing and in the vertical direction 31a.
It has been changed so that it becomes thicker at b, and the thin line width portion 31a
The resistance of the chisel is changed by the strain, and the strain is detected. In addition, the direction (left-right direction) of the narrow line width portion 31a directly related to the resistance value is defined as the longitudinal direction of the strain gauge. This also applies to the other strain gauges 32 to 34.
【0015】次いで、上記歪ゲージ31〜34を互いに
接続するように、上記歪ゲージ31〜34上の4か所に
電極4を形成した。電極4はNiとAuを連続的にスパ
ッタリングし、NiとAuの2層構造となるようにし
た。その後、大気中で300℃、1時間の熱処理を施し
た後、上記電極4にリード線5を半田付けした。Next, electrodes 4 were formed at four locations on the strain gauges 31 to 34 so as to connect the strain gauges 31 to 34 to each other. The electrode 4 was formed by continuously sputtering Ni and Au so as to have a two-layer structure of Ni and Au. After that, heat treatment was performed in the atmosphere at 300 ° C. for 1 hour, and then the lead wire 5 was soldered to the electrode 4.
【0016】このようにして形成した歪ゲージの、抵抗
温度特性(抵抗温度係数)を評価した。各歪ゲージ31
〜34の抵抗温度係数を、25℃から125℃まで温度
を変化させて測定したところ、そのばらつきΔTCRは
±3ppm/℃とごく小さいことがわかった。The resistance temperature characteristic (temperature coefficient of resistance) of the strain gauge thus formed was evaluated. Each strain gauge 31
When the temperature coefficient of resistance of ˜34 was measured by changing the temperature from 25 ° C. to 125 ° C., it was found that the variation ΔTCR was as small as ± 3 ppm / ° C.
【0017】次いで、各歪ゲージの長手方向と結晶粒の
配向方向とのなす角度がいずれも90°である歪ゲージ
(図4(c))についても同様にして抵抗温度係数のば
らつきを調べた。また、比較のため、図4(a)のよう
に、上記図1と同様のゲージパターンを有し、各歪ゲー
ジの長手方向と結晶粒の配向方向(図の点線)とのなす
角度が0°または90°である歪ゲージを形成し、同様
にして歪ゲージの抵抗温度係数のばらつきを調べ、これ
らの結果を図5にグラフ化して示した。ここで、図4
(b)は上記図1の実施例の歪ゲージパターンである。Next, the variation in the temperature coefficient of resistance was similarly examined for strain gauges (FIG. 4C) in which the angle formed by the longitudinal direction of each strain gauge and the orientation direction of the crystal grains was 90 °. . For comparison, as shown in FIG. 4A, the gauge pattern is the same as that shown in FIG. 1, and the angle formed by the longitudinal direction of each strain gauge and the crystal grain orientation direction (dotted line in the figure) is 0. A strain gauge having a rotation angle of 90 ° or 90 ° was formed, and the variation in the temperature coefficient of resistance of the strain gauge was examined in the same manner, and the results are shown in a graph in FIG. Here, FIG.
(B) is a strain gauge pattern of the embodiment of FIG.
【0018】その結果、図4(a)のパターンでは、抵
抗温度係数のばらつきΔTCRが±20ppm/℃とば
らつきが大きいのに対し、図4(b)のパターンである
上記実施例の歪ゲージはΔTCRが±3ppm/℃、図
4(c)のパターンではΔTCRが±1ppm/℃と大
幅に低減している。この結果を図3に示した結晶の配向
をもとに考察すると、図4(a)のパターンでは、回転
方向と同方向に形成された歪ゲージはゲージ内を電流が
流れる際に結晶粒界を通る割合が多いため、結晶粒界の
影響を大きく受け、逆に、回転方向と垂直な方向に形成
された歪ゲージはその内部を電流が流れる際に結晶粒界
を通る割合が少なく、結晶粒界の影響をあまり受けない
ものと考えられる。そして、結晶粒35内と結晶粒界3
6では抵抗温度係数が異なっているため、回転方向と平
行な歪ゲージと垂直な歪ゲージとで抵抗温度係数に差が
生じ、ばらつきの原因となっているものと考えられる。As a result, in the pattern of FIG. 4 (a), the variation ΔTCR of the temperature coefficient of resistance has a large variation of ± 20 ppm / ° C., while the strain gauge of the above-described embodiment having the pattern of FIG. 4 (b) has a large variation. ΔTCR is ± 3 ppm / ° C., and in the pattern of FIG. 4C, ΔTCR is significantly reduced to ± 1 ppm / ° C. Considering this result based on the crystal orientation shown in FIG. 3, in the pattern of FIG. 4A, the strain gauge formed in the same direction as the rotation direction has a grain boundary when a current flows in the gauge. Since the strain gauge formed in the direction perpendicular to the rotation direction is less affected by the crystal grain boundary, the strain gauge formed in the direction perpendicular to the rotation direction has a smaller proportion passing through the crystal grain boundary when the current flows inside the strain gauge. It is considered that it is not affected by grain boundaries. Then, inside the crystal grain 35 and the crystal grain boundary 3
Since the temperature coefficient of resistance is different in No. 6, it is considered that there is a difference in the temperature coefficient of resistance between the strain gauge parallel to the rotation direction and the strain gauge perpendicular to the rotation direction, which causes the variation.
【0019】本発明において、歪ゲージの長手方向と基
板の回転方向(結晶粒の配向方向)とのなす角度は、上
記実施例のものに限らず、各歪ゲージで一定であればよ
い。なお、薄膜抵抗体3を構成する金属元素としては、
Al以外に、アルミニウム、チタン、タンタル、ジルコ
ニウムまたはインジウム等を用いてもよい。基板1はス
テンレス製のものに限らず、例えば電気絶縁性のガラス
基板であってもよい。また、薄膜抵抗体3中のクロムの
含有量は、通常、60〜99原子%、酸素は2〜30原
子%、金属元素は0〜10原子%の範囲とするのがよ
く、Cr−O−金属の3元素がほぼ均一に分布している
ことが特性上望ましい。さらに、薄膜抵抗体3の成膜方
法としては、イオンプレーティング法、プラズマCVD
法、物理的蒸着法(PVD)、化学的蒸着法(CVD)
を用いてもよく、上記実施例と同様の効果が得られる。In the present invention, the angle formed by the longitudinal direction of the strain gauge and the rotation direction of the substrate (the orientation direction of the crystal grains) is not limited to that in the above embodiment, and may be constant for each strain gauge. In addition, as a metal element forming the thin film resistor 3,
Besides Al, aluminum, titanium, tantalum, zirconium, indium, or the like may be used. The substrate 1 is not limited to the one made of stainless steel, but may be an electrically insulating glass substrate, for example. The chromium content in the thin film resistor 3 is usually 60 to 99 atomic%, oxygen is 2 to 30 atomic%, and the metal element is preferably 0 to 10 atomic%. It is desirable in terms of characteristics that the three elements of the metal are distributed almost uniformly. Further, as a film forming method of the thin film resistor 3, an ion plating method, plasma CVD
Method, physical vapor deposition (PVD), chemical vapor deposition (CVD)
May be used, and the same effect as that of the above embodiment can be obtained.
【0020】[0020]
【発明の効果】以上のように、本発明によれば、抵抗温
度係数のばらつきの小さな歪ゲージを形成することがで
きる。従って温度補正等の必要がないブリッジを形成で
きるので、装置が簡略化でき、低コストにできる。As described above, according to the present invention, it is possible to form a strain gauge having a small variation in the temperature coefficient of resistance. Therefore, a bridge can be formed that does not require temperature correction, so that the device can be simplified and the cost can be reduced.
【図1】図1(a)(b)は、本発明方法により歪ゲー
ジを形成した基板の全体断面図、および平面図である。1 (a) and 1 (b) are an overall cross-sectional view and a plan view of a substrate on which a strain gauge is formed by the method of the present invention.
【図2】薄膜抵抗体の形成に使用されるスパッタリング
装置の概略図である。FIG. 2 is a schematic view of a sputtering apparatus used for forming a thin film resistor.
【図3】薄膜抵抗体の表面SEM像の模式図である。FIG. 3 is a schematic diagram of a surface SEM image of a thin film resistor.
【図4】図4(a)(b)(c)は、本発明の効果を調
べるために形成したゲージパターンの例であり、図4
(a)は比較用ゲージパターン、図4(b)(c)は本
発明によるゲージパターンである。4 (a), (b) and (c) are examples of gauge patterns formed to investigate the effect of the present invention.
4A is a gauge pattern for comparison, and FIGS. 4B and 4C are gauge patterns according to the present invention.
【図5】上記図4の各パターンにおける抵抗温度係数の
ばらつきを示す特性図である。5 is a characteristic diagram showing variations in the temperature coefficient of resistance in each pattern of FIG.
1 基板 2 絶縁体 3 薄膜抵抗体 31〜34 歪ゲージ 4 電極 5 リード線 7 基板ホルダー(回転体) 1 substrate 2 insulator 3 thin film resistor 31 to 34 strain gauge 4 electrode 5 lead wire 7 substrate holder (rotating body)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 光宣 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsunobu Uchida 14 Iwatani, Shimohabakucho, Nishio City, Aichi Prefecture Japan Auto Parts Research Institute, Inc.
Claims (5)
歪ゲージを形成する方法において、上記薄膜抵抗体の成
膜を、上記基板を回転させた状態で行ない、かつ上記基
板の回転方向と上記歪ゲージの長手方向とのなす角度
が、各歪ゲージで一致するように該歪ゲージを配置する
ことを特徴とする薄膜歪ゲージの形成方法。1. A method of forming a thin film resistor on a substrate to form a plurality of strain gauges, wherein the thin film resistor is formed while the substrate is rotated, and A method for forming a thin film strain gauge, comprising arranging the strain gauges such that an angle formed by a rotation direction and a longitudinal direction of the strain gauges is the same in each strain gauge.
向と上記歪ゲージの長手方向とのなす角度が、各歪ゲー
ジで一致するように該歪ゲージが配置されている請求項
1記載の薄膜歪ゲージの形成方法。2. The strain gauge is arranged so that an angle formed by an orientation direction of crystals forming the thin film resistor and a longitudinal direction of the strain gauge is the same in each strain gauge. Method for forming thin film strain gauge.
転体に保持させた状態で行ない、上記基板表面に、上記
回転体の回転方向と垂直な方向に結晶が配向する上記薄
膜抵抗体を形成する請求項1または2記載の薄膜歪ゲー
ジの形成方法。3. The thin film resistor, wherein the film formation of the thin film resistor is carried out with the substrate held by a rotating body, and crystals are oriented on the surface of the substrate in a direction perpendicular to the rotation direction of the rotating body. The method for forming a thin film strain gauge according to claim 1, wherein the body is formed.
ン、タンタル、ジルコニウムおよびインジウムから選ば
れる少なくとも一種の金属と、クロム、および酸素を構
成元素とする請求項1ないし3記載の薄膜歪ゲージの形
成方法。4. The method for forming a thin film strain gauge according to claim 1, wherein the thin film resistor comprises at least one metal selected from aluminum, titanium, tantalum, zirconium and indium, chromium and oxygen as constituent elements. .
り上記基板上に成膜する請求項1ないし4記載の薄膜歪
ゲージの形成方法。5. The method for forming a thin film strain gauge according to claim 1, wherein the thin film resistor is formed on the substrate by a sputtering method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2609195A JPH08201200A (en) | 1995-01-20 | 1995-01-20 | Method for forming thin-film strain gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2609195A JPH08201200A (en) | 1995-01-20 | 1995-01-20 | Method for forming thin-film strain gauge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08201200A true JPH08201200A (en) | 1996-08-09 |
Family
ID=12183941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2609195A Withdrawn JPH08201200A (en) | 1995-01-20 | 1995-01-20 | Method for forming thin-film strain gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08201200A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038540A (en) * | 2004-07-23 | 2006-02-09 | Nagano Keiki Co Ltd | Strain detector and its manufacturing method |
JP2006038538A (en) * | 2004-07-23 | 2006-02-09 | Nagano Keiki Co Ltd | Pressure sensor |
JP2018091705A (en) * | 2016-12-02 | 2018-06-14 | 公益財団法人電磁材料研究所 | Strain resistance film and strain sensor for high temperature, and manufacturing method of them |
-
1995
- 1995-01-20 JP JP2609195A patent/JPH08201200A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038540A (en) * | 2004-07-23 | 2006-02-09 | Nagano Keiki Co Ltd | Strain detector and its manufacturing method |
JP2006038538A (en) * | 2004-07-23 | 2006-02-09 | Nagano Keiki Co Ltd | Pressure sensor |
JP2018091705A (en) * | 2016-12-02 | 2018-06-14 | 公益財団法人電磁材料研究所 | Strain resistance film and strain sensor for high temperature, and manufacturing method of them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4805296A (en) | Method of manufacturing platinum resistance thermometer | |
JPS60181602A (en) | Thin-film strain gage device and manufacture thereof | |
US4276535A (en) | Thermistor | |
JP3457826B2 (en) | Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor | |
JPH06158272A (en) | Resistance film and production thereof | |
JPH08201200A (en) | Method for forming thin-film strain gauge | |
US5001454A (en) | Thin film resistor for strain gauge | |
JPS6410109B2 (en) | ||
TW201042790A (en) | Pyroelectric material radiation sensor method of making a radiation sensor use of lithium tantalate and lithium niobate | |
JP2001291607A (en) | Method of manufacturing platinum thin-film resistor | |
JP2024019570A (en) | strain gauge | |
JPH05281177A (en) | Gas sensor | |
JPH0666162B2 (en) | Thin film resistor for strain gauge | |
JPH01202601A (en) | Metal thin film resistance strain gauge | |
JPH05209909A (en) | Measuring method for layer resistance or process value of thin conducting layer | |
JPH0552790A (en) | Gas sensor | |
JP2001110602A (en) | Thin film resistor forming method and sensor | |
JPS62245602A (en) | Temperature detector | |
JPH06294765A (en) | Manufacture of humidity sensor | |
JP3288241B2 (en) | Resistive material and resistive material thin film | |
JP2562610B2 (en) | Thin film resistor for strain gauge | |
JPH04192305A (en) | Manufacture of thin film resistor for strain gauge | |
JPS6329981A (en) | Semiconductor pressure transducer | |
JPH0276201A (en) | Thin film resistor for strain gauge | |
JP2003157723A (en) | Substrate with transparent conductive film and touch panel using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020402 |