JPH08200137A - Injection controller of cylinder injection-type internal combustion engine - Google Patents
Injection controller of cylinder injection-type internal combustion engineInfo
- Publication number
- JPH08200137A JPH08200137A JP7009782A JP978295A JPH08200137A JP H08200137 A JPH08200137 A JP H08200137A JP 7009782 A JP7009782 A JP 7009782A JP 978295 A JP978295 A JP 978295A JP H08200137 A JPH08200137 A JP H08200137A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- fuel
- fuel injection
- engine
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims abstract description 277
- 239000007924 injection Substances 0.000 title claims abstract description 277
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 38
- 239000000446 fuel Substances 0.000 claims abstract description 248
- 230000006835 compression Effects 0.000 claims abstract description 59
- 238000007906 compression Methods 0.000 claims abstract description 59
- 238000004364 calculation method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 abstract description 28
- 239000007921 spray Substances 0.000 abstract description 10
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 20
- 238000010926 purge Methods 0.000 description 18
- 238000001816 cooling Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002828 fuel tank Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 101100400452 Caenorhabditis elegans map-2 gene Proteins 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 101150064138 MAP1 gene Proteins 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000008241 heterogeneous mixture Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
- High-Pressure Fuel Injection Pump Control (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は筒内噴射式内燃機関の噴
射制御装置に関し、特に、噴射終了時期を基準にして圧
縮行程における燃料を噴射する筒内噴射式内燃機関の噴
射制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection control device for a cylinder injection type internal combustion engine, and more particularly to an injection control device for a cylinder injection type internal combustion engine which injects fuel in a compression stroke based on an injection end timing.
【0002】[0002]
【従来の技術】特開平5−113146号公報には、機
関気筒内に燃料を直接噴射できる燃料噴射弁を備え、機
関運転状態に応じて求められた要求燃料噴射量の全量を
圧縮行程において機関気筒内の点火プラグ近傍に噴射し
て点火プラグ周りに着火に良好な混合気を作るようにし
た機関において、圧縮行程における燃料噴射量と点火時
期に基づいて圧縮行程における燃料噴射時期を決定する
筒内噴射式内燃機関が開示されている。また、吸気行程
において機関気筒内に大半の燃料を噴射して予混合気を
作ると共に圧縮行程において機関気筒内に少量の燃料を
噴射して点火プラグ近傍に火種分の混合気を作るように
した機関において、圧縮行程における燃料噴射量と点火
時期と吸気行程における燃料噴射量とに基づいて圧縮行
程における噴射時期を決定する筒内噴射式内燃機関が開
示されている。2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 5-113146 is provided with a fuel injection valve capable of directly injecting fuel into an engine cylinder, and the entire required fuel injection amount obtained according to the engine operating state is used in a compression stroke. A cylinder that determines the fuel injection timing in the compression stroke based on the fuel injection amount and ignition timing in the compression stroke in an engine in which injection is performed in the vicinity of the spark plug in the cylinder to create a favorable air-fuel mixture around the ignition plug. An internal injection internal combustion engine is disclosed. In addition, in the intake stroke, most of the fuel is injected into the engine cylinder to create a premixed air mixture, and in the compression stroke, a small amount of fuel is injected into the engine cylinder to create a fuel-air mixture near the spark plug. An in-cylinder injection internal combustion engine is disclosed that determines the injection timing in the compression stroke based on the fuel injection quantity in the compression stroke, the ignition timing, and the fuel injection quantity in the intake stroke.
【0003】図16は筒内噴射式内燃機関における従来
技術の問題点の説明図であり、(A)はスワール流、
(B)は圧縮行程噴射後の燃料分布、(C)は噴射時期
と失火率の関係を示す図である。図16の(A)は気筒
を上部から見た図であり、燃料噴射弁5から点火プラグ
65に向けて噴射された燃料Aがスワール流により拡散
される所を示す。図16の(B)は圧縮行程において噴
射された燃料Aの気筒内の燃料分布を示す。縦軸は空燃
比を示し横軸はシリンダ円周方向の位置を示す。図示す
るシリンダ円周位置a領域とb領域にある空燃比の混合
気が点火プラグ65近傍に来た時に着火が可能となる。
図16の(C)は横軸に点火時期をc点としたときの噴
射時期、縦軸にその噴射時期に燃料が噴射されたときの
失火率を示す。図16の(C)に示す図16の(B)に
対応するa領域とb領域に在る混合気が点火時期に点火
プラグ65近傍へ来た時には着火され、a領域とb領域
以外の領域に在る混合気が点火時期に点火プラグ65近
傍へ来た時には着火されない。FIG. 16 is an explanatory view of the problems of the prior art in a cylinder injection type internal combustion engine. (A) is a swirl flow,
(B) is a diagram showing the fuel distribution after the compression stroke injection, and (C) is a diagram showing the relationship between the injection timing and the misfire rate. FIG. 16A is a view of the cylinder as seen from above, and shows the location where the fuel A injected from the fuel injection valve 5 toward the ignition plug 65 is diffused by the swirl flow. FIG. 16B shows the fuel distribution in the cylinder of the fuel A injected in the compression stroke. The vertical axis represents the air-fuel ratio, and the horizontal axis represents the position in the cylinder circumferential direction. When the air-fuel mixture having the air-fuel ratio in the illustrated cylinder circumferential position a region and region b comes to the vicinity of the spark plug 65, ignition becomes possible.
16C, the horizontal axis shows the injection timing when the ignition timing is the point c, and the vertical axis shows the misfire rate when the fuel is injected at the injection timing. 16C, the air-fuel mixture corresponding to FIG. 16B corresponding to FIG. 16B is ignited when it reaches the vicinity of the spark plug 65 at the ignition timing, and the region other than the regions a and b is ignited. When the air-fuel mixture existing in (3) comes near the spark plug 65 at the ignition timing, it is not ignited.
【0004】[0004]
【発明が解決しようとする課題】前述の特開平5−11
3145に記載の筒内噴射式内燃機関の噴射制御装置
は、点火時期に着火に良好な混合気が点火プラグ近傍に
作られるように圧縮行程における燃料噴射量と噴射時期
を制御しているが、キャニスタパージ等の影響により点
火プラグ近傍の混合気の空燃比が目標空燃比からずれそ
の空燃比の変動が大きくなると、燃料噴射後の噴霧の拡
散時間が変化し点火時期に着火に良好な混合気が点火プ
ラグ近傍に生成されなくなり失火するという問題が生じ
る。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The injection control device for a cylinder injection type internal combustion engine described in 3145 controls the fuel injection amount and the injection timing in the compression stroke so that the air-fuel mixture good for ignition is formed near the spark plug at the ignition timing. If the air-fuel ratio of the air-fuel mixture near the spark plug deviates from the target air-fuel ratio due to the effect of canister purge, etc., and the fluctuation of the air-fuel ratio becomes large, the diffusion time of the spray after fuel injection will change and the air-fuel mixture that is suitable for ignition at ignition timing Will not be generated in the vicinity of the spark plug, resulting in a misfire.
【0005】それゆえ本発明は前記問題を解決し、すな
わち圧縮行程に噴射した燃料がキャニスタパージ等の影
響を受けず点火時期に着火に良好な可燃混合気を点火プ
ラグ近傍に生成するように噴射後の噴霧の拡散時間を適
切にする筒内噴射式内燃機関の噴射制御装置を提供する
ことを目的とする。Therefore, the present invention solves the above problem, that is, the fuel injected in the compression stroke is injected so as to generate a combustible air-fuel mixture which is good for ignition at the ignition timing in the vicinity of the ignition plug without being affected by the canister purge or the like. An object of the present invention is to provide an injection control device for an in-cylinder injection type internal combustion engine which makes the diffusion time of the spray afterwards appropriate.
【0006】[0006]
【課題を解決するための手段】前記目的を達成する本発
明による筒内噴射式内燃機関の噴射制御装置は、機関の
気筒内に燃料を直接噴射する燃料噴射弁を備え、圧縮行
程中に燃料噴射弁から噴射する燃料噴射量を算出する噴
射量算出手段と、機関の1燃焼サイクルに要求される基
本燃料噴射量に基づき噴射終了時期AINJ2を算出す
る噴射終了時期算出手段と、噴射終了時期を基準にして
燃料噴射弁から圧縮行程における燃料噴射量を噴射する
ように制御する噴射制御手段とを備えたことを特徴とす
る。An injection control device for a cylinder injection type internal combustion engine according to the present invention, which achieves the above object, comprises a fuel injection valve for directly injecting fuel into a cylinder of the engine, and a fuel injection valve is provided during a compression stroke. The injection amount calculation means for calculating the fuel injection amount injected from the injection valve, the injection end timing calculation means for calculating the injection end timing AINJ2 based on the basic fuel injection amount required for one combustion cycle of the engine, and the injection end timing Injection control means for controlling so as to inject the fuel injection amount in the compression stroke from the fuel injection valve as a reference.
【0007】[0007]
【作用】本発明の筒内噴射式内燃機関の噴射制御装置
は、機関の1燃焼サイクルに要求される基本燃料噴射量
に基づいて求めた噴射終了時期を基準にして圧縮行程に
おいて噴射する燃料噴射量に対応した噴射開始時期を算
出し、噴射開始時期から噴射終了時期までの間、燃料噴
射弁を開弁して圧縮行程における燃料噴射量を噴射する
ようにしたので、噴射後から点火時期までに噴霧が拡散
し、点火時期に着火に良好な可燃混合気が点火プラグ近
傍に生成される。The injection control system for a cylinder injection type internal combustion engine according to the present invention is a fuel injection system which injects fuel in a compression stroke based on an injection end timing obtained based on a basic fuel injection amount required for one combustion cycle of the engine. The injection start timing corresponding to the amount is calculated, and the fuel injection valve is opened to inject the fuel injection amount in the compression stroke from the injection start timing to the injection end timing. The spray diffuses into the fuel cell, and a combustible air-fuel mixture suitable for ignition is generated near the spark plug at the ignition timing.
【0008】[0008]
【実施例】図1は本発明の実施例に採用した4気筒ガソ
リン機関の構成図である。本図において1は機関本体、
2はサージタンク、3はエアクリーナ、4はサージタン
ク2とエアクリーナ3とを連結する吸気管、5は各気筒
内に燃料噴射する電歪式の高圧燃料噴射弁、6は高圧用
リザーバタンク、7は高圧導管8を介して高圧燃料をリ
ザーバタンク6に圧送するための吐出圧制御可能な高圧
燃料ポンプ、9は燃料タンク、10は導管11を介して
燃料タンク9から高圧燃料ポンプ7に燃料を供給する低
圧燃料ポンプ、65は点火プラグをそれぞれ示す。低圧
燃料ポンプ10の吐出側は各燃料噴射弁5のピエゾ圧電
素子を冷却するための圧電素子冷却用導入管12に接続
される。圧電素子冷却用返戻管13は燃料タンク9に連
結され、圧電素子冷却用返戻管13を介して圧電素子冷
却用導入管12を流れる燃料を燃料タンク9に回収す
る。各枝管14は各高圧燃料噴射弁5を高圧用リザーバ
タンク6に接続する。1 is a block diagram of a four-cylinder gasoline engine adopted in an embodiment of the present invention. In the figure, 1 is the engine body,
2 is a surge tank, 3 is an air cleaner, 4 is an intake pipe connecting the surge tank 2 and the air cleaner 3, 5 is an electrostrictive high pressure fuel injection valve for injecting fuel into each cylinder, 6 is a high pressure reservoir tank, 7 Is a high-pressure fuel pump capable of controlling the discharge pressure for pumping high-pressure fuel to the reservoir tank 6 via the high-pressure conduit 8, 9 is a fuel tank, and 10 is fuel from the fuel tank 9 to the high-pressure fuel pump 7 via the conduit 11. The low-pressure fuel pump to be supplied and 65 are spark plugs, respectively. The discharge side of the low-pressure fuel pump 10 is connected to a piezoelectric element cooling introduction pipe 12 for cooling the piezoelectric element of each fuel injection valve 5. The piezoelectric element cooling return pipe 13 is connected to the fuel tank 9, and the fuel flowing through the piezoelectric element cooling introduction pipe 12 via the piezoelectric element cooling return pipe 13 is collected in the fuel tank 9. Each branch pipe 14 connects each high-pressure fuel injection valve 5 to the high-pressure reservoir tank 6.
【0009】電子制御ユニット20はデジタルコンピュ
ータからなり、双方向性バス21によって相互に接続さ
れたROM(リードオンリメモリ)22、RAM(ラン
ダムアクセスメモリ)、マイクロプロセッサによるCP
U(セントラルプロセシングユニット)24、入力ポー
ト25および出力ポート26を備える。高圧用リザーバ
タンク6に取り付けられた圧力センサ27は高圧用リザ
ーバタンク6内の圧力を検出し、その検出信号はA/D
コンバータ28を介して入力ポート25に入力される。
機関回転数NEに比例した出力パルスを発生するクラン
ク角センサ29の出力パルスは入力ポート25に入力さ
れる。アクセルペダル(図示せず)の踏込量Lに比例し
た出力電圧を発生する負荷センサ30の出力電圧はA/
Dコンバータ31を介して入力ポート25に入力され
る。機関本体1に取り付けられた水温センサ32は機関
冷却水温を検出し、その検出信号はA/Dコンバータ3
3を介して入力ポート25に入力される。一方、各燃料
噴射弁5は各駆動回路34を介して出力ポート26に接
続される。また各点火プラグ65は各駆動回路35を介
して出力ポート26に接続される。また高圧燃料ポンプ
7は駆動回路36を介して出力ポート26に接続され
る。本発明による機関の燃料噴射制御ルーチンは電子制
御ユニット20により実行される。The electronic control unit 20 comprises a digital computer, a ROM (Read Only Memory) 22, a RAM (Random Access Memory), and a CP by a microprocessor, which are mutually connected by a bidirectional bus 21.
A U (Central Processing Unit) 24, an input port 25 and an output port 26 are provided. The pressure sensor 27 attached to the high pressure reservoir tank 6 detects the pressure in the high pressure reservoir tank 6, and the detection signal is A / D.
It is input to the input port 25 via the converter 28.
The output pulse of the crank angle sensor 29 that generates an output pulse proportional to the engine speed NE is input to the input port 25. The output voltage of the load sensor 30 that generates an output voltage proportional to the depression amount L of the accelerator pedal (not shown) is A /
It is input to the input port 25 via the D converter 31. A water temperature sensor 32 attached to the engine body 1 detects the engine cooling water temperature, and the detection signal is the A / D converter 3
3 is input to the input port 25. On the other hand, each fuel injection valve 5 is connected to the output port 26 via each drive circuit 34. Further, each spark plug 65 is connected to the output port 26 via each drive circuit 35. Further, the high-pressure fuel pump 7 is connected to the output port 26 via the drive circuit 36. The engine fuel injection control routine according to the present invention is executed by the electronic control unit 20.
【0010】図2は燃料噴射弁5の側断面図である。本
図において40はノズル50内に挿入されたニードル、
41は加圧ロッド、42は可動プランジャ、43はバネ
収容室44内に配置されかつニードル40を下方に向け
て押圧する圧縮バネ、45は加圧ピストン、46はピエ
ゾ圧電素子、47は可動プランジャ42の頂部とピスト
ン45間に形成されかつ燃料で満たされた加圧室、48
はニードル加圧室をそれぞれ示す。ニードル加圧室48
は燃料通路49および枝管14を介して高圧用リザーバ
タンク6(図1)に連結され、従って高圧用リザーバタ
ンク6内の高圧燃料が枝管14および燃料通路49を介
してニードル加圧室48内に供給される。ピエゾ圧電素
子46に電荷が充電されるとピエゾ圧電素子46が伸長
し、それによって加圧室47内の燃料圧が高められる。
その結果、可動プランジャ42が下方に押圧され、ノズ
ル口53はニードル40によって閉弁状態に保持され
る。一方、ピエゾ圧電素子46に充電された電荷が放電
されるとピエゾ圧電素子46が収縮し、加圧室47内の
燃料圧が低下する。その結果、可動プランジャ42が上
昇するためにニードル40が上昇しノズル口53から燃
料が噴射される。なお燃料噴射弁5は上述のピエゾ素子
タイプの代わりにソレノイドタイプを用いてもよい。FIG. 2 is a side sectional view of the fuel injection valve 5. In this figure, 40 is a needle inserted in the nozzle 50,
Reference numeral 41 is a pressure rod, 42 is a movable plunger, 43 is a compression spring which is arranged in the spring accommodating chamber 44 and presses the needle 40 downward, 45 is a pressure piston, 46 is a piezoelectric element, and 47 is a movable plunger. A pressure chamber formed between the top of 42 and the piston 45 and filled with fuel, 48
Indicate needle pressurizing chambers, respectively. Needle pressure chamber 48
Is connected to the high-pressure reservoir tank 6 (FIG. 1) via the fuel passage 49 and the branch pipe 14, so that the high-pressure fuel in the high-pressure reservoir tank 6 passes through the branch pipe 14 and the fuel passage 49 to the needle pressurizing chamber 48. Supplied within. When the piezoelectric element 46 is charged with electric charge, the piezoelectric element 46 expands, thereby increasing the fuel pressure in the pressurizing chamber 47.
As a result, the movable plunger 42 is pressed downward, and the nozzle opening 53 is kept closed by the needle 40. On the other hand, when the electric charge charged in the piezoelectric element 46 is discharged, the piezoelectric element 46 contracts and the fuel pressure in the pressurizing chamber 47 decreases. As a result, the movable plunger 42 rises, the needle 40 rises, and the fuel is injected from the nozzle port 53. The fuel injection valve 5 may be a solenoid type instead of the piezo element type described above.
【0011】図3は実施例の機関の縦断面図である。本
図は圧縮行程後期の燃料噴射中の機関を示す図である。
本図において60はシリンダブロック、61はシリンダ
ヘッド、62はピストン、63はピストン62の頂面に
形成された略円筒状凹部、64はピストン62の頂面と
シリンダヘッド61内壁面間に形成されたシリンダ室を
それぞれ示す。点火プラグ65はシリンダ室64に臨ん
でシリンダヘッド61の略中央部に取り付けられる。図
示しないがシリンダヘッド61内には吸気ポートおよび
排気ポートが形成され、これら吸気ポートおよび排気ポ
ートのシリンダ室64内への開口部にはそれぞれ吸気弁
66(図4の(a)参照)および排気弁が配置される。
燃料噴射弁5はスワール型の燃料噴射弁であり、広がり
角が大きく噴霧の分散が多い貫徹力の弱い噴霧状の燃料
を噴射する。燃料噴射弁5は斜め下方を指向してシリン
ダ室64の頂部に配置され、点火プラグ65近傍に向か
って燃料噴射するように配置される。また燃料噴射弁5
の燃料噴射方向および燃料噴射時期は噴射燃料がピスト
ン62の頂部に形成された凹部63に指向するように決
められている。FIG. 3 is a vertical sectional view of the engine of the embodiment. This figure is a diagram showing the engine during fuel injection in the latter half of the compression stroke.
In this figure, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, 63 is a substantially cylindrical recess formed on the top surface of the piston 62, and 64 is formed between the top surface of the piston 62 and the inner wall surface of the cylinder head 61. The respective cylinder chambers are shown. The spark plug 65 faces the cylinder chamber 64 and is attached to a substantially central portion of the cylinder head 61. Although not shown, an intake port and an exhaust port are formed in the cylinder head 61, and an intake valve 66 (see (a) of FIG. 4) and an exhaust gas are respectively provided at openings of the intake port and the exhaust port into the cylinder chamber 64. The valve is arranged.
The fuel injection valve 5 is a swirl type fuel injection valve, and injects a fuel in the form of a spray having a wide spread angle and a large dispersion of the spray, and a weak penetration force. The fuel injection valve 5 is arranged diagonally downward at the top of the cylinder chamber 64 and is arranged so as to inject fuel toward the vicinity of the spark plug 65. In addition, the fuel injection valve 5
The fuel injection direction and the fuel injection timing are determined such that the injected fuel is directed to the recess 63 formed at the top of the piston 62.
【0012】図4は図1に示す機関の作用の説明図であ
り、(a)は吸気行程初期、(b)は吸気行程後期から
圧縮行程初期、(c)は圧縮行程後期、および(d)は
燃焼行程における機関の気筒内の状態を示す図である。
本発明の実施例において、機関の低負荷運転時には、機
関の運転状態に応じて求めた要求燃料噴射量の全量を図
3に示す圧縮行程後期に噴射する。燃料噴射弁5から点
火プラグ65およびピストン62頂面の凹部63を指向
して燃料が噴射される。この噴射燃料は貫徹力が弱く、
またシリンダ室64内の圧力が高くかつ空気流動が弱い
ため、噴射燃料は点火プラグ65付近の領域Kに偏在す
る。この領域K内の燃料分布は不均一であり、リッチな
混合気層から空気層まで変化するため、領域K内には最
も燃焼し易い理論空燃比付近の可燃混合気が存在する。
したがって点火プラグ65付近の可燃混合気層が容易に
着火され、この着火火炎が不均一混合気層全体に伝播し
て燃焼が完了する。このように低負荷域においては、圧
縮行程後期に点火プラグ65付近に燃料を噴射すること
により点火プラグ65付近に可燃混合気層が作られ、良
好な着火や燃焼が得られる。FIG. 4 is an explanatory view of the operation of the engine shown in FIG. 1, where (a) is the early stage of the intake stroke, (b) is the latter stage of the intake stroke to the early stage of the compression stroke, (c) is the latter stage of the compression stroke, and (d). 8] is a diagram showing a state in a cylinder of an engine in a combustion stroke.
In the embodiment of the present invention, during low load operation of the engine, the entire required fuel injection amount determined according to the operating state of the engine is injected in the latter stage of the compression stroke shown in FIG. Fuel is injected from the fuel injection valve 5 toward the spark plug 65 and the recess 63 on the top surface of the piston 62. This injection fuel has a weak penetration,
Further, since the pressure in the cylinder chamber 64 is high and the air flow is weak, the injected fuel is unevenly distributed in the region K near the spark plug 65. The fuel distribution in this region K is non-uniform and changes from the rich air-fuel mixture layer to the air layer. Therefore, in the region K, a combustible air-fuel mixture near the stoichiometric air-fuel ratio is most likely to burn.
Therefore, the combustible mixture layer near the ignition plug 65 is easily ignited, and this ignition flame propagates to the entire heterogeneous mixture layer to complete combustion. In this way, in the low load region, by injecting fuel near the ignition plug 65 in the latter stage of the compression stroke, a combustible mixture layer is formed near the ignition plug 65, and good ignition and combustion can be obtained.
【0013】機関の中負荷運転時には、機関の運転状態
に応じて求めた要求燃料噴射量の全量を図4の(a)に
示す吸気行程初期と図4の(c)に示す圧縮行程後期と
に分割して噴射する。先ず図4の(a)に示すように燃
料噴射弁5から点火プラグ65およびピストン62の頂
面の凹部63を指向して吸気行程に燃料が噴射される。
この噴射燃料は広がり角が大きく貫徹力の弱い噴霧状の
燃料であり、噴射燃料の一部はシリンダ室64に浮遊し
他は凹部63に衝突する。これらの噴射燃料は吸気ポー
トからシリンダ室64内に流入する吸入空気流によって
生ずるシリンダ室64内の乱れRによってシリンダ室6
4内に拡散され、図4の(b)に示すように吸気行程か
ら圧縮行程に至る間に予混合気Pが作られる。この予混
合気Pの空燃比は着火火炎が伝播できる程度の空燃比で
ある。図4の(b)の状態では噴射燃料の中心軸線の延
長がシリンダ壁に指向しているため噴射燃料の貫徹力が
強い場合には噴霧の一部が直接シリンダ壁に付着する虞
があるがこの期間を無噴射期間とすることにより燃料の
シリンダ壁面への付着防止効果を高めている。At the time of medium load operation of the engine, the total amount of the required fuel injection amount obtained according to the operating state of the engine is shown in the initial stage of the intake stroke shown in FIG. 4 (a) and in the latter stage of the compression stroke shown in FIG. 4 (c). It is divided into and injected. First, as shown in (a) of FIG. 4, fuel is injected from the fuel injection valve 5 toward the spark plug 65 and the recess 63 on the top surface of the piston 62 in the intake stroke.
This injected fuel is a spray-like fuel having a large divergence angle and a weak penetration force, and a part of the injected fuel floats in the cylinder chamber 64 and the other impinges on the recess 63. These injected fuels are disturbed in the cylinder chamber 64 by the intake air flow flowing into the cylinder chamber 64 from the intake port, so that the cylinder chamber 6 is disturbed.
4 is diffused in the fuel cell 4, and the premixed air P is formed during the intake stroke to the compression stroke as shown in FIG. 4 (b). The air-fuel ratio of the premixed air P is such that the ignition flame can propagate. In the state of FIG. 4B, since the extension of the central axis of the injected fuel is directed toward the cylinder wall, there is a possibility that part of the spray may directly adhere to the cylinder wall when the penetrating force of the injected fuel is strong. By making this period a non-injection period, the effect of preventing fuel from adhering to the cylinder wall surface is enhanced.
【0014】図4の(c)に示すように燃料噴射弁5か
ら点火プラグ65近傍およびピストン62頂面の凹部6
3を指向して圧縮行程後期に燃料が噴射される。この噴
射燃料は元々点火プラグ65に指向している上貫徹力が
弱く、またシリンダ室64内の圧力が大きいため噴射燃
料は点火プラグ65付近の領域Kに偏在する。この領域
K内の燃料分布も不均一であり、リッチな混合気層から
空気層まで変化するため、この領域K内には最も燃焼し
易い理論空燃比付近の可燃混合気層が存在する。したが
って図4の(d)の燃焼行程において、点火プラグ65
付近の可燃混合気層が着火されると不均一混合気領域K
を中心に燃焼が進行する。この燃焼過程で体積膨張した
燃焼ガスBの周辺から順次、予混合気Pに火炎が伝播し
燃焼が完了する。このように中負荷域においては、吸気
行程初期に燃料を噴射することにより火炎伝播用の混合
気をシリンダ室64内全体に作ると共に、圧縮行程後期
に燃料を噴射することにより点火プラグ65近傍に比較
的濃い混合気を作ることができ、良好な着火と空気利用
率の高い燃焼が得られる。As shown in FIG. 4 (c), the fuel injection valve 5 to the vicinity of the spark plug 65 and the concave portion 6 on the top surface of the piston 62.
Fuel is injected in the latter half of the compression stroke in the direction of 3. The injected fuel originally has a weak upward penetration force directed to the spark plug 65, and the pressure in the cylinder chamber 64 is large, so that the injected fuel is unevenly distributed in the region K near the spark plug 65. Since the fuel distribution in this region K is also non-uniform and changes from the rich air-fuel mixture layer to the air layer, in this region K there is a combustible air-fuel mixture layer near the stoichiometric air-fuel ratio where combustion is most likely to occur. Therefore, in the combustion stroke of FIG.
When the flammable mixture layer in the vicinity is ignited, the heterogeneous mixture region K
Combustion proceeds mainly. In this combustion process, the flame is sequentially propagated to the premixed gas P from the periphery of the combustion gas B whose volume is expanded, and the combustion is completed. As described above, in the medium load region, the fuel is injected in the early stage of the intake stroke to create the air-fuel mixture for flame propagation in the entire cylinder chamber 64, and the fuel is injected in the latter stage of the compression stroke to the vicinity of the spark plug 65. A relatively rich mixture can be created, resulting in good ignition and combustion with high air utilization.
【0015】機関の高負荷運転時には、燃料噴射量が多
いため吸気行程噴射により作られるシリンダ室内の予混
合気の濃度が着火に十分な程濃いため着火のための圧縮
行程噴射をやめて機関の運転状態に応じて求めた要求燃
料噴射量の全量を吸気行程において噴射する。During high load operation of the engine, since the fuel injection amount is large, the concentration of the premixed air produced in the intake stroke injection is sufficiently high for ignition, so the compression stroke injection for ignition is stopped and the engine is operated. All of the required fuel injection amount determined according to the state is injected in the intake stroke.
【0016】図5は機関の負荷に応じた燃料噴射量と燃
料噴射時期を示す図である。本図において横軸のLはア
クセルペダル(図示せず)の踏込量を、上部縦軸は燃料
噴射量Qall を、下部縦軸は噴射時期をそれぞれ示す。
本図は説明の便宜上、燃料噴射量Qall が機関の回転数
と負荷から算出される基本燃料噴射量の場合を示すが、
図6以降で説明するように実際の燃料噴射量Qall Aは
基本燃料噴射量Qallに空燃比補正係数FAF等の補正
係数を乗算し他の補正係数を加算して得られ、吸気行程
噴射量Q1 と圧縮行程噴射量Q2 を加算した噴射量に等
しく、次式で表される。 Qall A=Qall ×(FAF+α)+β=Q1 +Q2 ここでαはFAF以外の補正係数、βはその他の補正項
を示す。なお、空燃比補正係数FAFとは機関の排気系
に設けられた空燃比センサの出力に応じて機関の空燃比
が目標空燃比になるようにフィードバック制御して燃料
噴射量を補正する係数である。FIG. 5 is a diagram showing the fuel injection amount and the fuel injection timing according to the load of the engine. In this figure, L on the horizontal axis indicates the depression amount of an accelerator pedal (not shown), the upper vertical axis indicates the fuel injection amount Q all , and the lower vertical axis indicates the injection timing.
For convenience of explanation, this figure shows the case where the fuel injection amount Q all is the basic fuel injection amount calculated from the engine speed and the load.
As will be described with reference to FIG. 6 and subsequent figures, the actual fuel injection amount Q all A is obtained by multiplying the basic fuel injection amount Q all by a correction coefficient such as the air-fuel ratio correction coefficient FAF and adding other correction coefficients. It is equal to the injection amount obtained by adding the amount Q 1 and the compression stroke injection amount Q 2, and is represented by the following equation. Q all A = Q all × (FAF + α) + β = Q 1 + Q 2 where α is a correction coefficient other than FAF, and β is another correction term. The air-fuel ratio correction coefficient FAF is a coefficient for performing feedback control so that the air-fuel ratio of the engine becomes the target air-fuel ratio according to the output of the air-fuel ratio sensor provided in the exhaust system of the engine and correcting the fuel injection amount. .
【0017】本図から判るようにアクセルペダルの踏込
量LがL1 よりも小さい機関低負荷運転時には圧縮行程
末期に噴射量Q2 だけ燃料噴射が行われる。一方、アク
セルペダルの踏込量LがL1 とL2 の間の機関中負荷運
転時には吸気行程中に噴射量Q1 だけ燃料噴射され、圧
縮行程末期に噴射量Q2 だけ燃料が噴射される。すなわ
ち機関中負荷運転時には吸気行程と圧縮行程末期の2回
に分けて燃料噴射が行われる。また、アクセルペダルの
踏込量LがL2 よりも大きい機関高負荷運転時には吸気
行程中に噴射量Q1 だけ燃料が噴射される。なお、本図
においてθS1およびθE1は吸気行程中に行われる燃
料の噴射量Q1 の噴射開始時期と噴射終了時期をそれぞ
れ示しており、θS2およびθE2は圧縮行程末期に行
われる燃料の噴射量Q2 の噴射開始時期と噴射終了時期
をそれぞれ示している。As can be seen from this figure, during engine low load operation in which the accelerator pedal depression amount L is smaller than L 1, fuel is injected by the injection amount Q 2 at the end of the compression stroke. On the other hand, during engine load operation in which the accelerator pedal depression amount L is between L 1 and L 2 , fuel is injected by the injection amount Q 1 during the intake stroke, and by the injection amount Q 2 at the end of the compression stroke. That is, during the engine medium load operation, the fuel injection is performed twice in the intake stroke and the end of the compression stroke. Further, during the engine high load operation in which the accelerator pedal depression amount L is larger than L 2, the fuel is injected by the injection amount Q 1 during the intake stroke. In this figure, θS1 and θE1 respectively indicate the injection start timing and the injection end timing of the fuel injection amount Q 1 performed during the intake stroke, and θS2 and θE2 are the fuel injection amount Q performed at the end of the compression stroke. 2 shows the injection start timing and the injection end timing, respectively.
【0018】図6は本発明による機関の燃料噴射制御ル
ーチンを示すフローチャートである。本図においてSに
続く数字はステップ番号を示す。本発明の圧縮行程にお
いて噴射する燃料噴射量を算出する噴射量算出手段は、
本ルーチンのステップS1〜S3により処理され、本発
明の燃料噴射量に基づき噴射終了時期を算出する噴射終
了時期算出手段は、本ルーチンのステップS4〜S6に
より処理され、本発明の燃料噴射量を噴射する時間だけ
噴射終了時期より進角側に噴射開始時期を定め、噴射開
始時期から噴射終了時期まで燃料噴射弁を開弁するよう
に燃料噴射弁の開弁時間を制御する開弁制御手段は、本
ルーチンのステップS7〜S10により処理される。本
ルーチンは機関の一定クランク角毎の割り込みによって
各噴射弁毎に実行される。4気筒機関の場合は180°
CA(クランク角)毎に実行される。FIG. 6 is a flow chart showing a fuel injection control routine of the engine according to the present invention. In the figure, the numbers following S indicate step numbers. The injection amount calculation means for calculating the fuel injection amount to be injected in the compression stroke of the present invention,
The injection end timing calculation means for calculating the injection end timing based on the fuel injection amount of the present invention, which is processed in steps S1 to S3 of the present routine, is processed in steps S4 to S6 of the present routine to determine the fuel injection amount of the present invention. The valve opening control means for controlling the valve opening time of the fuel injection valve so as to open the fuel injection valve from the injection start timing to the injection end timing by defining the injection start timing on the advance side from the injection end timing by the injection time. , Are processed in steps S7 to S10 of this routine. This routine is executed for each injection valve by interruption at every constant crank angle of the engine. 180 ° for a 4-cylinder engine
It is executed for each CA (crank angle).
【0019】先ずステップS1では機関の回転数NEと
アクセルペダルの踏込量Lが読み込まれる。ステップS
2では図7に示すマップ1から機関の回転数NEとアク
セルペダルの踏込量L(機関の負荷状態を表す)に基づ
いて機関の1燃焼サイクルに必要な基本となる(空燃比
補正係数FAF=1、α=0、β=0のときの)各気筒
の基本燃料噴射量Qall を算出する。図7に示されるよ
うに基本燃料噴射量Q all はアクセルペダルの踏込量L
が増大する程増大し、機関の回転数NEが高い程増大し
回転数NEが最高速の6000rpmで最大値となって
いることが判る。First, in step S1, the engine speed NE and
The amount L of depression of the accelerator pedal is read. Step S
2 shows the engine speed NE and engine speed from the map 1 shown in FIG.
Based on the amount L of depression of the cell pedal (representing the load condition of the engine)
Is the basic requirement for one combustion cycle of the engine (air-fuel ratio
Correction coefficient FAF = 1, α = 0, β = 0) Each cylinder
Basic fuel injection amount QallTo calculate. As shown in Figure 7.
Sea urchin basic fuel injection amount Q allIs the accelerator pedal depression amount L
Increases as the engine speed NE increases, and increases as the engine speed NE increases.
The rotation speed NE reaches the maximum value at the maximum speed of 6000 rpm.
It is understood that there is.
【0020】ステップS3では実際の燃料噴射量Qall
Aを基本燃料噴射量Qall に空燃比補正係数FAF等を
乗算して前述の下式から求める。 Qall A=Qall ×(FAF+α)+β 次いでステップS4では噴射方式CQNを判定する。こ
れは図5で説明したように機関の負荷状態を表すアクセ
ルペダルの踏込量Lから機関の負荷状態を低、中、高の
領域に分けて、低負荷領域ではCQN=0の圧縮行程の
み噴射する圧縮行程噴射方式、中負荷領域ではCQN=
1の圧縮行程と吸気行程に噴射する2回噴射方式、高負
荷領域ではCQN=2の吸気行程のみ噴射する吸気行程
噴射方式に設定する。In step S3, the actual fuel injection amount Q all
A is calculated from the following formula by multiplying the basic fuel injection amount Q all by the air-fuel ratio correction coefficient FAF and the like. Q all A = Q all × (FAF + α) + β Next, in step S4, the injection method CQN is determined. As described with reference to FIG. 5, the engine load state is divided into low, medium, and high regions based on the accelerator pedal depression amount L representing the engine load state, and only the compression stroke of CQN = 0 is injected in the low load region. Compression stroke injection method, CQN =
It is set to a two-time injection method in which injection is performed in the compression stroke of 1 and an intake stroke, and an intake stroke injection method in which only the intake stroke of CQN = 2 is injected in the high load region.
【0021】ステップS5では噴射方式がCQN=0ま
たは1の圧縮行程噴射方式または2回噴射方式か、ある
いはCQN=2の吸気行程噴射方式かを判別し、CQN
=0または1のときはステップS6へ進み、CQN=2
のときはステップS11へ進む。In step S5, it is determined whether the injection method is the compression stroke injection method with CQN = 0 or 1, the double injection method, or the intake stroke injection method with CQN = 2.
= 0 or 1, the process proceeds to step S6, and CQN = 2
If so, the process proceeds to step S11.
【0022】ステップS6では機関の回転数NEと基本
燃料噴射量Qall とから圧縮行程における噴射終了時期
AINJ2をCQN=0のときは図8に示すマップ2か
ら算出し、CQN=1のときはマップ2と同様な図示し
ないマップから算出する。なお、基本燃料噴射量Qall
に空燃比補正係数FAF等を乗算し他の補正項を加算し
て得られる実際の燃料噴射量Qall Aは吸気行程噴射量
Q1 と圧縮行程噴射量Q2 を加算した噴射量に等しい。In step S6, the injection end timing AINJ2 in the compression stroke is calculated from the engine speed NE and the basic fuel injection amount Q all from the map 2 shown in FIG. 8 when CQN = 0, and when CQN = 1. It is calculated from a map (not shown) similar to the map 2. The basic fuel injection amount Q all
The actual fuel injection amount Q all A obtained by multiplying the above by the air-fuel ratio correction coefficient FAF and adding other correction terms is equal to the injection amount obtained by adding the intake stroke injection quantity Q 1 and the compression stroke injection quantity Q 2 .
【0023】図10は圧縮行程における燃料噴射時期の
算出方法の説明図であり、(A)は燃料噴射時間がクラ
ンク角割込周期より短い場合、(B)は燃料噴射時間が
クランク角割込周期より長い場合の各説明図である。ス
テップS7では先ず実際の燃料噴射量Qall Aにおける
圧縮行程噴射量Q2 に対応する燃料噴射時間τ2 を図9
に示すマップ3から算出する。このマップ3は燃料蓄圧
室の燃料圧力と機関の回転数と負荷状態から求められた
燃料噴射量に基づき各燃料噴射弁毎に算出される。次い
で、求めた燃料噴射時間τ2 とステップS6で求めた噴
射終了時期AINJ2とから燃料噴射弁を開弁する燃料
噴射時間τ2 内に10°CAまたは30°CA毎に出力
されるクランク角センサの割込信号が何パルス発生した
をカウントするカウント値CINJ2(図10参照)を
算出し、かつステップS6で求めた噴射終了時期AIN
J2から次のクランク角センサの割込信号を受信するま
での時間RINJ2(図10参照)を算出する。FIG. 10 is an explanatory diagram of a method for calculating the fuel injection timing in the compression stroke. (A) shows the case where the fuel injection time is shorter than the crank angle interruption cycle, and (B) shows the fuel injection time from the crank angle interruption cycle. It is each explanatory view at the time of long. First, in step S7, the fuel injection time τ 2 corresponding to the compression stroke injection amount Q 2 in the actual fuel injection amount Q all A is shown in FIG.
It is calculated from the map 3 shown in FIG. This map 3 is calculated for each fuel injection valve based on the fuel pressure in the fuel pressure accumulator, the engine speed, and the fuel injection amount obtained from the load condition. Next, the crank angle sensor is output every 10 ° CA or 30 ° CA within the fuel injection time τ 2 for opening the fuel injection valve from the calculated fuel injection time τ 2 and the injection end timing AINJ2 calculated in step S6. The injection end timing AIN obtained by calculating the count value CINJ2 (see FIG. 10) for counting the number of pulses generated by the interrupt signal of
The time RINJ2 (see FIG. 10) from J2 until receiving the interrupt signal of the next crank angle sensor is calculated.
【0024】ステップS8では(τ2 +RINJ2)<
TNEが成立するか否かを判別し、YESのとき(図1
0の(A)の場合)はステップS9へ進み、NOのとき
(図10の(B)の場合)はステップS10へ進む。こ
のTNEは機関の回転に伴って時々刻々演算されるクラ
ンク角センサの出力周期をいう。したがって、(τ2+
RINJ2)<TNEが成立することはクランク角セン
サの1周期内にクランク角センサの出力パルスが1つも
存在しないことを意味し、(τ2 +RINJ2)<TN
Eが成立しないことはクランク角センサの1周期内にク
ランク角センサの出力パルスが1つ存在することを意味
する。At step S8, (τ 2 + RINJ2) <
It is determined whether or not TNE is established, and when YES (see FIG. 1).
If 0 (case (A)), the process proceeds to step S9. If NO (case (B) in FIG. 10), the process proceeds to step S10. This TNE refers to the output cycle of the crank angle sensor which is calculated moment by moment as the engine rotates. Therefore, (τ 2 +
The fact that RINJ2) <TNE is satisfied means that there is no output pulse of the crank angle sensor within one cycle of the crank angle sensor, and (τ 2 + RINJ2) <TN
The fact that E does not hold means that there is one output pulse of the crank angle sensor within one cycle of the crank angle sensor.
【0025】ステップS9では次式を演算して(図10
の(A)の場合)ステップS11へ進む。 TINJ2=TNE−(τ2 +RINJ2) ここでTINJ2は噴射終了時期AINJ2より進角側
で1つ手前にあるクランク角センサの割込信号から燃料
を噴射開始するまでの時間を示す。燃料噴射時間τ2 内
にクランク角割込信号がないのでCINJ2は0であ
り、圧縮行程における噴射開始時期AINJ02は噴射
終了時期AINJ2より1パルス分進角側のクランク角
割込信号よりTINJ2だけ遅角側となる。In step S9, the following equation is calculated (see FIG. 10).
(In the case of (A)), the process proceeds to step S11. TINJ2 = TNE-([tau] 2 + RINJ2) Here, TINJ2 represents the time from the interrupt signal of the crank angle sensor, which is one position ahead of the injection end timing AINJ2, to the start of fuel injection. Since there is no crank angle interruption signal within the fuel injection time τ 2 , CINJ2 is 0, and the injection start timing AINJ02 in the compression stroke is one pulse ahead of the injection end timing AINJ2, and TINJ2 is retarded from the crank angle interruption signal on the advance side. Becomes
【0026】ステップS10では下記の式を演算して
(図10の(B)の場合)ステップS11へ進む。 CINJ2=CINJ2−1 TINJ2=2TNE−(τ2 +RINJ2) ここでTINJ2は噴射終了時期AINJ2より進角側
で2つ手前にあるクランク角センサの割込信号から燃料
を噴射開始するまでの時間を示す。燃料噴射時間τ2 内
にクランク角割込信号が1つあるのでCINJ2は1で
あり、圧縮行程における噴射開始時期AINJ02は噴
射終了時期AINJ2より2パルス分進角側のクランク
角割込信号よりTINJ2だけ遅角側となる。なおCI
NJ2=CINJ2−1の演算は噴射開始時期AINJ
02の算出のために実行される。In step S10, the following equation is calculated (in the case of FIG. 10B) and the process proceeds to step S11. CINJ2 = CINJ2-1 TINJ2 = 2TNE- (τ 2 + RINJ2) Here, TINJ2 is the time from the interrupt signal of the crank angle sensor two positions ahead of the injection end timing AINJ2 to the start of fuel injection. . Since there is one crank angle interrupt signal within the fuel injection time τ 2 , CINJ2 is 1, and the injection start timing AINJ02 in the compression stroke is two pulses behind the injection end timing AINJ2 by TINJ2 from the crank angle interrupt signal on the advance side. It will be on the corner side. CI
The calculation of NJ2 = CINJ2-1 is the injection start timing AINJ.
Is executed to calculate 02.
【0027】図12は吸気行程における燃料噴射時期算
出方法の説明図であり、(A)は燃料噴射時間がクラン
ク角割込周期より短い場合、(B)は燃料噴射時間がク
ランク角割込周期より長い場合の各説明図である。図6
のフローチャートのステップS11では噴射方式がCQ
N=1または2の2回噴射方式または吸気行程噴射方式
か、あるいはCQN=0の圧縮行程噴射方式かを判別
し、CQN=1または2のときはステップS12へ進
み、CQN=0のときはこのルーチンを終了する。ステ
ップS12では吸気行程噴射の噴射開始時期AINJ1
を図11に示すマップ4から算出する。ステップS13
では先ず実際の燃料噴射量Qall Aにおける吸気行程噴
射量Q1 に対応する燃料噴射時間τ1 を図9に示すマッ
プ3から算出する。次いで、求めた燃料噴射時間τ1 と
ステップS12で求めた噴射開始時期AINJ1とから
燃料噴射弁を開弁する燃料噴射時間τ1 内に10°CA
または30°CA毎に出力されるクランク角センサの割
込信号が何パルス発生したかをカウントするカウント値
CINJ1(図12参照)を算出し、さらにステップS
12で求めた噴射終了時期AINJ1より燃料噴射時間
τ1 だけ進角側の最初のクランク角位置におけるクラン
ク角センサの割込信号を受信するまでの時間RINJ1
(図12参照)を算出する。次いでステップS14では
TINJ1=RINJ1としてこのルーチンを終了す
る。FIG. 12 is an explanatory diagram of a method for calculating the fuel injection timing in the intake stroke. (A) shows the fuel injection time shorter than the crank angle interruption period, and (B) shows the fuel injection time longer than the crank angle interruption period. It is each explanatory view in a case. Figure 6
In step S11 of the flowchart of FIG.
It is determined whether it is the two-time injection method of N = 1 or 2, the intake stroke injection method, or the compression stroke injection method of CQN = 0. When CQN = 1 or 2, the process proceeds to step S12, and when CQN = 0. This routine ends. In step S12, the injection start timing AINJ1 of the intake stroke injection
Is calculated from the map 4 shown in FIG. Step S13
First, the fuel injection time τ 1 corresponding to the intake stroke injection amount Q 1 in the actual fuel injection amount Q all A is calculated from the map 3 shown in FIG. Next, within the fuel injection time τ 1 for opening the fuel injection valve from the calculated fuel injection time τ 1 and the injection start timing AINJ1 calculated in step S12, 10 ° CA
Alternatively, a count value CINJ1 (see FIG. 12) that counts the number of pulses generated by the crank angle sensor interrupt signal that is output every 30 ° CA is calculated, and then step S
Time until receiving the interrupt signal of the crank angle sensor at the first crank angle position on the advance side from the fuel injection time τ 1 from the injection end timing AINJ1 obtained in 12 RINJ1
(See FIG. 12) is calculated. Next, at step S14, TINJ1 = RINJ1 is set and this routine is ended.
【0028】図13は噴射開始時期算出ルーチンのフロ
ーチャートである。このルーチンはクランク角割込周期
10°CAまたは30°CA毎に実行される。ステップ
S21ではCINJ(CINJ1またはCINJ2)が
クランク角割込信号の発生時期(タイミング)CRNK
と一致しているか否かを判別し、その判別結果がYES
のときはステップS22へ進み、NOのときはこのルー
チンを終了し次のクランク角割込信号を受けて再びステ
ップS21へ戻り繰り返しこの処理を実行する。ステッ
プ21の実行により機関の第1気筒の噴射開始時期に対
応するクランク角位置が算出される。ステップS22で
はクランク角割込時間ASRNEとステップS9とS1
0で算出したTINJ2またはステップS14で算出し
たTINJ1を加算して得られるコンペアレジスタCP
Rを次式から演算する。 CPR=ASRNE+TINJ 次いでステップS22で演算したコンペアレジスタCP
Rの値に基づき第1気筒の燃料噴射弁開弁ビットYIN
Jをオンに設定してこのルーチンを終了する。FIG. 13 is a flowchart of the injection start timing calculation routine. This routine is executed every 10 ° CA or 30 ° CA of crank angle interruption period. In step S21, CINJ (CINJ1 or CINJ2) is the crank angle interrupt signal generation timing (timing) CRNK.
It is determined whether or not it matches, and the determination result is YES.
If NO, the routine proceeds to step S22, and if NO, this routine is ended, the next crank angle interrupt signal is received, and the routine returns to step S21 to repeatedly execute this processing. By executing step 21, the crank angle position corresponding to the injection start timing of the first cylinder of the engine is calculated. In step S22, crank angle interruption time ASRNE and steps S9 and S1
Compare register CP obtained by adding TINJ2 calculated at 0 or TINJ1 calculated at step S14
R is calculated from the following equation. CPR = ASRNE + TINJ Then, the compare register CP calculated in step S22
Based on the value of R, the fuel injection valve opening bit YIN of the first cylinder
Set J on and exit this routine.
【0029】図14は噴射終了時期算出ルーチンのフロ
ーチャートである。このルーチンはクランク角割込周期
10°CAまたは30°CA毎に実行される。ステップ
S31では第1気筒の燃料噴射弁開弁ビットYINJが
オンかオフかを判別し、その判別結果がYESのときは
ステップS32へ進み、NOのときはこのルーチンを終
了し次のクランク角割込信号を受けて再びステップS3
1へ戻り繰り返しこの処理を実行する。ステップS32
ではCPR=CPR+τを演算したコンペアレジスタの
値に基づく噴射終了時期に第1気筒の燃料噴射弁を閉じ
てこのルーチンを終了する。FIG. 14 is a flow chart of the injection end timing calculation routine. This routine is executed every 10 ° CA or 30 ° CA of crank angle interruption period. In step S31, it is determined whether the fuel injection valve opening bit YINJ of the first cylinder is on or off. If the result of the determination is YES, the process proceeds to step S32. If NO, this routine is terminated and the next crank angle interruption is performed. Receiving the signal, step S3 again
It returns to 1 and repeats this processing. Step S32
Then, the fuel injection valve of the first cylinder is closed at the injection end timing based on the value of the compare register that calculates CPR = CPR + τ, and this routine is ended.
【0030】以上説明したように実施例の内燃機関は、
圧縮行程中に噴射する燃料噴射量を算出し、機関の1燃
焼サイクルに要求される基本燃料噴射量に基づいて求め
た噴射終了時期AINJ2を基準にして燃料噴射弁を開
弁して燃料噴射するように制御するので、噴射後の噴霧
が拡散して点火時期に着火に良好な可燃混合気が点火プ
ラグ近傍に作られる。As described above, the internal combustion engine of the embodiment is
The fuel injection amount to be injected during the compression stroke is calculated, and the fuel injection valve is opened and fuel injection is performed based on the injection end timing AINJ2 obtained based on the basic fuel injection amount required for one combustion cycle of the engine. As described above, the spray after injection is diffused and a combustible mixture that is good for ignition at the ignition timing is created near the spark plug.
【0031】以上、図13と図14を用いて機関の第1
気筒に対する燃料噴射弁の噴射開始時期と噴射終了時期
について説明したが、第2〜第4気筒に対する燃料噴射
弁の噴射開始時期と噴射終了時期も同様に求められるの
で説明を省略する。As described above, referring to FIGS. 13 and 14, the first engine
Although the injection start timing and the injection end timing of the fuel injection valve for the cylinders have been described, the injection start timing and the injection end timing of the fuel injection valve for the second to fourth cylinders are similarly obtained, and thus the description thereof will be omitted.
【0032】図15は本発明による筒内噴射式内燃機関
の圧縮行程噴射後の燃料分布を示す図であり、(A)は
キャニスタパージ無しのとき、(B)はキャニスタパー
ジ有りのときの燃料分布を示す図である。本図において
縦軸は空燃比を示し、横軸はシリンダ円周方向の位置を
示す。シリンダ内に噴射された燃料は図示する燃料分布
をもってスワール流により拡散される。キャニスタパー
ジが有るときと無いときとでは、実際の燃料噴射量Q
all Aは、キャニスタパージ有りのときの方がキャニス
タパージ無しのときよりパージガスに含まれる燃料分だ
け減量されるので少なく、図示するように図15の
(A)の方が図15の(B)の方より濃い燃料がシリン
ダ内に分布していることが判る。また図15の(B)に
示すようにキャニスタパージ有りのときはパージガスに
含まれる燃料分だけ燃料噴射量は減量される。実際の燃
料噴射量Qall Aは次式から算出されることからキャニ
スタパージによる燃料噴射量が減量されることが判る。 Qall A=Qall ×(FAF+FPG+α)+β ここで、Qall は機関の回転数と負荷に応じて算出され
る基本燃料噴射量、FAFは空燃比補正係数、FPGは
キャニスタパージガスのパージ率に応じて算出される減
量補正係数、αはその他の補正係数、βはその他の補正
項を示す。FIG. 15 is a diagram showing the fuel distribution after the compression stroke injection of the cylinder injection type internal combustion engine according to the present invention. (A) shows the fuel without canister purge, and (B) shows the fuel with canister purge. It is a figure which shows distribution. In this figure, the vertical axis represents the air-fuel ratio, and the horizontal axis represents the position in the cylinder circumferential direction. The fuel injected into the cylinder is diffused by the swirl flow with the illustrated fuel distribution. The actual fuel injection amount Q with and without the canister purge
The amount of all A is smaller in the case with canister purge than in the case without canister purge because it is reduced by the amount of fuel contained in the purge gas, and as shown in FIG. 15, (A) in FIG. 15 (B). It can be seen that fuel richer than that of the above is distributed in the cylinder. Further, as shown in FIG. 15B, when the canister purge is present, the fuel injection amount is reduced by the fuel amount contained in the purge gas. Since the actual fuel injection amount Q all A is calculated from the following equation, it can be seen that the fuel injection amount by the canister purge is reduced. Q all A = Q all × (FAF + FPG + α) + β where Q all is the basic fuel injection amount calculated according to the engine speed and load, FAF is the air-fuel ratio correction coefficient, and FPG is the purge rate of the canister purge gas. The weight reduction correction coefficient calculated by α, other correction coefficients, and β, other correction terms.
【0033】次に図15を参照しつつ本発明の特徴を説
明する。従来技術によれば、燃料の噴射開始時期を基準
にしているので図15の(A)におけるc点と図15の
(B)におけるc’点とが基準点となる。それゆえ着火
に良好な可燃範囲である図15の(A)における領域a
に在る可燃混合気と図15の(B)における領域a’に
在る可燃混合気がそれぞれ点火時期に点火プラグ近傍へ
到達する時間は異なる。何故ならば、スワール流によっ
て領域aに在る可燃混合気がc点まで移動する時間と、
領域a’に在る可燃混合気がc’点まで移動する時間と
は異なるからである。これに対して本発明は噴射終了時
期を基準としているので、キャニスタパージ無しのとき
は領域a、キャニスタパージ有りのときは領域a’に在
る可燃混合気が、点火時期に点火プラグ近傍へ到達する
ように設定でき、キャニスタパージの影響による失火を
防止することができる。なお図15の(A)における領
域bや図15の(B)における領域b’を点火に採用せ
ずに図15の(A)における領域aや図15の(B)に
おける領域a’を点火に採用する理由は、前者の空燃比
の方が後者と比べて急激に変化して領域が狭くなり、か
つ後者の方が噴射開始から点火までの時間を長くとるこ
とができ蒸発が促進されるからである。Next, the features of the present invention will be described with reference to FIG. According to the conventional technique, since the fuel injection start timing is used as a reference, the point c in FIG. 15A and the point c ′ in FIG. 15B are reference points. Therefore, the region a in FIG. 15A, which is a flammable range suitable for ignition, is shown.
15 and the combustible mixture in the region a ′ in FIG. 15B reach the spark plugs at different ignition timings. This is because the time required for the combustible mixture in the region a to move to the point c due to the swirl flow,
This is because it is different from the time required for the combustible air-fuel mixture in the area a ′ to move to the point c ′. On the other hand, since the present invention is based on the injection end timing, the combustible air-fuel mixture in the region a when the canister purge is not performed and in the region a ′ when the canister purge is performed reaches the vicinity of the spark plug at the ignition timing. It is possible to prevent misfire due to the influence of canister purge. It should be noted that the region b in FIG. 15A or the region b ′ in FIG. 15B is not used for ignition, but the region a in FIG. 15A or the region a ′ in FIG. 15B is ignited. The reason is that the former air-fuel ratio changes more rapidly than the latter and the region becomes narrower, and the latter allows longer time from injection start to ignition and promotes evaporation. Because.
【0034】以上説明した実施例の内燃機関は吸気管に
配置され吸気ポートに向けて燃料噴射するポート噴射弁
を備えていない機関であるが、本発明は図1で示す筒内
に直接噴射する燃料噴射弁の他にこのようなポート噴射
弁を吸気管に設けた筒内噴射式内燃機関にも適用でき
る。この内燃機関においては、気筒内に直接燃料を噴射
する筒内直接噴射弁はこれまで説明したように機関の負
荷に応じて吸気行程噴射と圧縮行程噴射を行い、圧縮行
程の燃料噴射時期が本発明により制御され、吸気ポート
に向けて燃料を噴射するポート噴射弁は通常の吸気行程
噴射を行う。The internal combustion engine of the embodiment described above is an engine which is arranged in the intake pipe and does not have a port injection valve for injecting fuel toward the intake port, but the present invention directly injects into the cylinder shown in FIG. In addition to the fuel injection valve, it can also be applied to a cylinder injection internal combustion engine in which such a port injection valve is provided in the intake pipe. In this internal combustion engine, the in-cylinder direct injection valve that directly injects fuel into the cylinder performs the intake stroke injection and the compression stroke injection according to the load of the engine as described above, and the fuel injection timing of the compression stroke is the main point. The port injection valve, which is controlled by the invention and injects fuel toward the intake port, performs normal intake stroke injection.
【0035】[0035]
【発明の効果】以上説明したように、本発明の筒内噴射
式内燃機関の噴射制御装置によれば、基本燃料噴射量に
基づいて求めた噴射終了時期を基準にして圧縮行程にお
ける燃料噴射を行うので、噴射後の噴霧の拡散時間が適
切になり点火時期に着火に良好な可燃混合気が点火プラ
グ近傍に生成される。As described above, according to the injection control device for a cylinder injection type internal combustion engine of the present invention, the fuel injection in the compression stroke is performed on the basis of the injection end timing obtained based on the basic fuel injection amount. Since this is done, the diffusion time of the spray after injection becomes appropriate, and a combustible mixture that is good for ignition is generated near the spark plug at the ignition timing.
【図1】本発明の実施例に採用した4気筒ガソリン機関
の構成図である。FIG. 1 is a configuration diagram of a 4-cylinder gasoline engine adopted in an embodiment of the present invention.
【図2】燃料噴射弁の側断面図である。FIG. 2 is a side sectional view of a fuel injection valve.
【図3】実施例の機関の縦断面図である。FIG. 3 is a vertical cross-sectional view of the engine of the embodiment.
【図4】図1に示す機関の作用の説明図であり、(a)
は吸気行程初期、(b)は吸気行程後期から圧縮行程初
期、(c)は圧縮行程後期、および(d)は燃焼行程に
おける機関の気筒内の状態を示す図である。FIG. 4 is an explanatory view of the operation of the engine shown in FIG. 1, (a)
FIG. 4 is a diagram showing a state in the cylinder of the engine during an intake stroke early stage, (b) late intake stroke stage to early compression stroke stage, (c) late compression stroke stage, and (d) combustion stage.
【図5】機関の負荷に応じた燃料噴射量と燃料噴射時期
を示す図である。FIG. 5 is a diagram showing a fuel injection amount and a fuel injection timing according to a load of the engine.
【図6】本発明による機関の燃料噴射制御ルーチンを示
すフローチャートである。FIG. 6 is a flowchart showing a fuel injection control routine of the engine according to the present invention.
【図7】機関の回転数とアクセル開度に基づいて基本燃
料噴射量を算出するマップ1を示す図である。FIG. 7 is a diagram showing a map 1 for calculating a basic fuel injection amount based on an engine speed and an accelerator opening.
【図8】機関の回転数と基本燃料噴射量とから圧縮行程
における噴射時期を算出するマップ2を示す図である。FIG. 8 is a diagram showing a map 2 for calculating the injection timing in the compression stroke from the engine speed and the basic fuel injection amount.
【図9】燃料噴射量に対する燃料噴射時間を算出するマ
ップ3を示す図である。FIG. 9 is a diagram showing a map 3 for calculating a fuel injection time with respect to a fuel injection amount.
【図10】圧縮行程における燃料噴射時期算出方法の説
明図であり、(A)は燃料噴射時間がクランク角割込周
期より短い場合、(B)は燃料噴射時間がクランク角割
込周期より長い場合の各説明図である。FIG. 10 is an explanatory diagram of a fuel injection timing calculation method in a compression stroke, where (A) shows a case where the fuel injection time is shorter than the crank angle interruption cycle, and (B) shows a case where the fuel injection time is longer than the crank angle interruption cycle. FIG.
【図11】機関の回転数と基本燃料噴射量とから吸気行
程における噴射時期を算出するマップ4を示す図であ
る。FIG. 11 is a diagram showing a map 4 for calculating the injection timing in the intake stroke from the engine speed and the basic fuel injection amount.
【図12】吸気行程における燃料噴射時期算出方法の説
明図であり、(A)は燃料噴射時間がクランク角割込周
期より短い場合、(B)は燃料噴射時間がクランク角割
込周期より長い場合の各説明図である。FIG. 12 is an explanatory diagram of a fuel injection timing calculation method in the intake stroke, where (A) shows the case where the fuel injection time is shorter than the crank angle interrupt cycle, and (B) shows the case where the fuel injection time is longer than the crank angle interrupt cycle. FIG.
【図13】噴射開始時期算出ルーチンのフローチャート
である。FIG. 13 is a flowchart of an injection start timing calculation routine.
【図14】噴射終了時期算出ルーチンのフローチャート
である。FIG. 14 is a flowchart of an injection end timing calculation routine.
【図15】本発明による筒内噴射式内燃機関の圧縮行程
噴射後の燃料分布を示す図であり、(A)はキャニスタ
パージ無しのとき、(B)はキャニスタパージ有りのと
きの燃料分布を示す図である。FIG. 15 is a diagram showing a fuel distribution after a compression stroke injection of a cylinder injection type internal combustion engine according to the present invention, where (A) shows a fuel distribution without a canister purge and (B) shows a fuel distribution with a canister purge. FIG.
【図16】筒内噴射式内燃機関における従来技術の問題
点の説明図であり、(A)はスワール流、(B)は圧縮
行程噴射後の燃料分布、(C)は噴射時期と失火率の関
係を示す図である。FIG. 16 is an explanatory diagram of a problem of the prior art in a direct injection internal combustion engine, (A) is a swirl flow, (B) is a fuel distribution after compression stroke injection, and (C) is an injection timing and a misfire rate. It is a figure which shows the relationship of.
5…燃料噴射弁 20…電子制御ユニット 29…クランク角センサ 32…水温センサ 61…シリンダヘッド 62…ピストン 63…凹状燃焼室 64…シリンダ室 5 ... Fuel injection valve 20 ... Electronic control unit 29 ... Crank angle sensor 32 ... Water temperature sensor 61 ... Cylinder head 62 ... Piston 63 ... Recessed combustion chamber 64 ... Cylinder chamber
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/02 335 41/04 301 C Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location F02D 41/02 335 41/04 301 C
Claims (1)
噴射弁を備える筒内噴射式内燃機関の噴射制御装置にお
いて、 圧縮行程中に前記燃料噴射弁から噴射する燃料噴射量を
算出する噴射量算出手段と、 前記機関の1燃焼サイクルに要求される基本燃料噴射量
に基づき噴射終了時期を算出する噴射終了時期算出手段
と、 前記噴射終了時期を基準にして前記燃料噴射弁から前記
圧縮行程における燃料噴射量を噴射するように制御する
噴射制御手段と、を備えたことを特徴とする筒内噴射式
内燃機関の噴射制御装置。1. An injection control device for a cylinder injection type internal combustion engine comprising a fuel injection valve for directly injecting fuel into a cylinder of an engine, wherein an injection for calculating a fuel injection amount to be injected from the fuel injection valve during a compression stroke. An amount calculation means, an injection end timing calculation means for calculating an injection end timing based on a basic fuel injection amount required for one combustion cycle of the engine, and a compression stroke from the fuel injection valve based on the injection end timing. And an injection control means for controlling so as to inject the fuel injection amount in the injection control device of the in-cylinder injection type internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00978295A JP3680335B2 (en) | 1995-01-25 | 1995-01-25 | Injection control device for in-cylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00978295A JP3680335B2 (en) | 1995-01-25 | 1995-01-25 | Injection control device for in-cylinder internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08200137A true JPH08200137A (en) | 1996-08-06 |
JP3680335B2 JP3680335B2 (en) | 2005-08-10 |
Family
ID=11729812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00978295A Expired - Lifetime JP3680335B2 (en) | 1995-01-25 | 1995-01-25 | Injection control device for in-cylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3680335B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001055567A1 (en) * | 2000-01-25 | 2001-08-02 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Direct injection type internal combustion engine |
-
1995
- 1995-01-25 JP JP00978295A patent/JP3680335B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001055567A1 (en) * | 2000-01-25 | 2001-08-02 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Direct injection type internal combustion engine |
US6799551B2 (en) | 2000-01-25 | 2004-10-05 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Direct injection type internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3680335B2 (en) | 2005-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2765305B2 (en) | Internal combustion engine | |
JP2917617B2 (en) | Internal combustion engine | |
JP2861233B2 (en) | Engine control device for in-cylinder direct injection spark ignition engine | |
US5170759A (en) | Fuel injection control device for an internal combustion engine | |
EP1164271B1 (en) | Feedback control of two-stage injection for an auto-ignition gasoline engine | |
US4955339A (en) | Internal combustion engine | |
JPH05113146A (en) | Internal combustion engine | |
JP3404059B2 (en) | Fuel injection method for in-cylinder direct injection engine | |
JP2002161779A (en) | In-cylinder injection spark ignition internal combustion engine | |
JPH02169834A (en) | Inner-cylinder direct jet type spark ignition engine | |
JP4085900B2 (en) | Fuel injection control device for in-cylinder direct injection spark ignition engine | |
CN100408830C (en) | Control device and control method for internal combustion engine | |
JPH0249939A (en) | Fuel injection control device of two-cycle direct-injection engine | |
CN101006270A (en) | Ignition timing control method and apparatus for internal combustion engine | |
EP1284350A2 (en) | Fuel injection control for internal combustion engine | |
EP0445817A2 (en) | A control device for an internal combustion engine | |
EP1164276B1 (en) | Internal combustion engine with external assist for stable auto-ignition | |
JPS60230544A (en) | Fuel injector for engine | |
JP2002310049A (en) | Combustion control device of internal combustion engine | |
JP3680335B2 (en) | Injection control device for in-cylinder internal combustion engine | |
US6571775B2 (en) | Fuel injection control for start-up of internal combustion engine | |
JPH10131786A (en) | Fuel injection device for direct injection type spark ignition engine | |
JP2850595B2 (en) | Internal combustion engine | |
JP3196674B2 (en) | In-cylinder injection spark ignition engine | |
US20050005901A1 (en) | Method for starting an internal combustion engine, in particular that of a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050209 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050509 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080527 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090527 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100527 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110527 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110527 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120527 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120527 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130527 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |