[go: up one dir, main page]

JPH08200116A - Cylinder fuel injection-type internal combustion engine - Google Patents

Cylinder fuel injection-type internal combustion engine

Info

Publication number
JPH08200116A
JPH08200116A JP7007447A JP744795A JPH08200116A JP H08200116 A JPH08200116 A JP H08200116A JP 7007447 A JP7007447 A JP 7007447A JP 744795 A JP744795 A JP 744795A JP H08200116 A JPH08200116 A JP H08200116A
Authority
JP
Japan
Prior art keywords
engine
intake
control means
injection
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7007447A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mizuno
宏幸 水野
Zenichirou Masushiro
善一郎 益城
Soichi Matsushita
宗一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7007447A priority Critical patent/JPH08200116A/en
Publication of JPH08200116A publication Critical patent/JPH08200116A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE: To prevent inferior combustion of an engine by performing control wherein air-fuel mixture in the homogeneous state is formed by a second control means, instead of control wherein air-fuel mixture in the laminated state in a cylinder of the engine is generated by a first control means, when abnormality of an intake air swirl control means is detected. CONSTITUTION: Fuel are directly injected into cylinders 1a of an engine by first combustion injection valves 11. The magnitude of the swirl to be generated in a combustion chamber by the intake air flow to flow into the combustion chambers in the cylinders is controlled by an intake air swirl control means 17 according to the operating state of the engine. The engine is controlled by the first control means so that the stratified air-fuel mixture may be formed into the cylinders according to the operating state of the engine. An abnormality detecting means 29 for detecting abnormalities of the intake air swirl control means 17 is provided on the engine. A second control means is provided for controlling the engine, so that the homogeneous air-fuel mixture may be formed into the cylinders according to the operating state of the engine, instead of the first control means, when the abnormalities of the intake air swirl flow control means 17 are detected by this abnormality detecting means 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関に関
し、特に、スワール流を発生させる吸気旋回流制御手段
の異常を検出する手段を備え、機関の気筒内に生成され
る混合気が、吸気旋回流制御手段の正常時には成層状態
になり、吸気旋回流制御手段が異常時には均質状態にな
るように制御される筒内噴射式内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder injection type internal combustion engine, and more particularly, to a means for detecting an abnormality of an intake swirling flow control means for generating a swirl flow, which produces a mixture in a cylinder of the engine. The present invention relates to a cylinder injection internal combustion engine in which the intake swirl flow control means is in a stratified state when the intake swirl flow control means is normal and is in a homogeneous state when the intake swirl flow control means is abnormal.

【0002】[0002]

【従来の技術】特開平5−79337号公報に開示され
た筒内噴射式内燃機関は、燃焼室内に直接噴射する燃料
噴射弁を備え、その燃料噴射弁の噴射時期を機関が低負
荷運転時には圧縮行程末期に、中負荷および高負荷運転
時には吸気行程に設定する筒内噴射式内燃機関におい
て、燃焼室に流入する吸入空気流により燃焼室内に発生
する旋回流の強さを機関の負荷に応じて制御する旋回流
制御装置を具備し、この旋回流制御装置により機関の負
荷が中負荷のときの旋回流の強さを低負荷および高負荷
のときの旋回流の強さより強くして燃焼火炎の伝播速度
を速くすることを特徴とする。
2. Description of the Related Art An in-cylinder injection type internal combustion engine disclosed in Japanese Patent Laid-Open No. 5-79337 has a fuel injection valve for directly injecting fuel into a combustion chamber, and the injection timing of the fuel injection valve is set when the engine is operated under a low load. At the end of the compression stroke, in medium- and high-load operation, in a cylinder injection internal combustion engine that is set to the intake stroke, the strength of the swirl flow generated in the combustion chamber by the intake air flow flowing into the combustion chamber is adjusted according to the engine load. It is equipped with a swirl flow control device that controls the combustion flame by making the strength of the swirl flow when the engine load is medium load stronger than that when the engine load is low and high. It is characterized by increasing the propagation speed of.

【0003】[0003]

【発明が解決しようとする課題】このような従来技術に
よる筒内噴射式内燃機関は、旋回流制御装置のアクチュ
エータである吸気制御弁に異常が発生したときに燃焼不
良となりドライバビリティが悪化するという問題があ
る。
In such a conventional cylinder injection type internal combustion engine, when an abnormality occurs in the intake control valve which is the actuator of the swirling flow control device, combustion failure occurs and drivability deteriorates. There's a problem.

【0004】それゆえ本発明は前記問題を解決し、すな
わち吸気制御弁に異常が発生したときに燃焼不良となら
ずドライバビリティも良好のまま運転できる筒内噴射式
内燃機関を提供することを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems, that is, to provide an in-cylinder injection type internal combustion engine that can be operated with good drivability without causing combustion failure when an abnormality occurs in the intake control valve. And

【0005】[0005]

【課題を解決するための手段】前記目的を達成する本発
明による筒内噴射式内燃機関は、機関の気筒内に燃料を
直接噴射する第一燃料噴射弁と、気筒内の燃焼室に流入
する吸入空気流により燃焼室内に発生する旋回流の強さ
を機関の運転状態に応じて制御する吸気旋回流制御手段
と、機関の運転状態に応じて気筒内に成層混合気を生成
するように機関を制御する第一制御手段と、を備える筒
内噴射式内燃機関において、吸気旋回流制御手段の異常
を検出する異常検出手段と、その異常検出手段により吸
気旋回流制御手段の異常が検出されたとき、第一制御手
段に代わって、機関の運転状態に応じて気筒内に均質混
合気を生成するように機関を制御する第二制御手段と、
を備えたことを特徴とする。
An in-cylinder injection type internal combustion engine according to the present invention which achieves the above-mentioned object, flows into a first fuel injection valve for directly injecting fuel into a cylinder of the engine and a combustion chamber in the cylinder. An intake swirl flow control means for controlling the strength of the swirl flow generated in the combustion chamber by the intake air flow according to the operating state of the engine, and an engine for generating a stratified mixture in the cylinder according to the operating state of the engine. In the in-cylinder injection internal combustion engine including the first control means for controlling the above, the abnormality detection means for detecting an abnormality in the intake swirl flow control means, and the abnormality detection means detects an abnormality in the intake swirl flow control means. At this time, instead of the first control means, a second control means for controlling the engine so as to generate a homogeneous mixture in the cylinder in accordance with the operating state of the engine,
It is characterized by having.

【0006】本発明の筒内噴射式内燃機関は、第二制御
手段により第一燃料噴射弁の噴射時期を機関の運転状態
によらず常に吸気行程とする。
In the cylinder injection type internal combustion engine of the present invention, the injection timing of the first fuel injection valve is always set to the intake stroke by the second control means regardless of the operating state of the engine.

【0007】本発明の筒内噴射式内燃機関は、機関の運
転状態に応じた噴射時期に機関の吸気ポートへ向けて燃
料噴射し均質混合気を生成する第二燃料噴射弁をさらに
備え、第二制御手段により第二燃料噴射弁の噴射時期を
機関の運転状態によらず吸気行程とする。
The cylinder injection type internal combustion engine of the present invention further comprises a second fuel injection valve for injecting fuel toward an intake port of the engine at an injection timing corresponding to an operating state of the engine to generate a homogeneous mixture, The second control means sets the injection timing of the second fuel injection valve to the intake stroke regardless of the operating state of the engine.

【0008】[0008]

【作用】本発明の筒内噴射式内燃機関は、異常検出手段
により吸気旋回流制御手段の異常が検出されたとき、第
一制御手段により機関の気筒内に成層状態の混合気を生
成するように制御する代わりに、第二制御手段により均
質状態の混合気を生成するように制御するので、吸気旋
回流制御手段の異常時でも機関が燃焼不良とならない。
In the cylinder injection type internal combustion engine of the present invention, when the abnormality detecting means detects the abnormality of the intake swirling flow control means, the first control means generates the air-fuel mixture in the cylinder of the engine. Instead of the control, the second control means controls so as to generate the air-fuel mixture in a homogeneous state, so that the engine does not become defective in combustion even when the intake swirling flow control means is abnormal.

【0009】[0009]

【実施例】図1は筒内噴射式内燃機関の全体構成図であ
る。本図に示すように機関本体1は4つの気筒1aを具
備し、これら各気筒1aの燃焼室構造が図2から図5に
示されている。図2から図5を参照すると、参照番号2
はシリンダブロック、3はシリンダブロック2内で往復
運動するピストン、4はシリンダブロック2上に固締さ
れたシリンダヘッド、5はピストン3とシリンダヘッド
4間に形成された燃焼室、6aは第1吸気弁、6bは第
2吸気弁、7aは第1吸気ポート、7bは第2吸気ポー
ト、8は一対の排気弁、9は一対の排気ポートをそれぞ
れ示す。図2に示されるように第1の吸気ポート7aは
ヘリカル型吸気ポートからなり、第2の吸気ポート7b
はほぼ真っ直ぐに延びるストレートポートからなる。さ
らに図2に示されるようにシリンダヘッド4の内壁面の
中央部には点火プラグ10が配置され、第1吸気弁6a
および第2吸気弁6b近傍のシリンダヘッド4内壁面周
辺部には燃料噴射弁11が配置される。図3および図4
に示されるようにピストン3の頂面上には燃料噴射弁1
1の下方から点火プラグ10の下方まで延びるほぼ円形
の輪郭形状を有する浅皿部12が形成され、浅皿部12
の中央部にはほぼ半球形状をなす深皿部13が形成され
る。また点火プラグ10下方の浅皿部12と深皿部13
との接続部にはほぼ球形状をなす凹部14が形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram of a cylinder injection type internal combustion engine. As shown in this figure, the engine body 1 is provided with four cylinders 1a, and the combustion chamber structure of each cylinder 1a is shown in FIGS. 2 to 5, reference numeral 2
Is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, 5 is a combustion chamber formed between the piston 3 and the cylinder head 4, and 6a is the first An intake valve, 6b is a second intake valve, 7a is a first intake port, 7b is a second intake port, 8 is a pair of exhaust valves, and 9 is a pair of exhaust ports. As shown in FIG. 2, the first intake port 7a is a helical intake port, and the second intake port 7b is
Consists of a straight port that extends almost straight. Further, as shown in FIG. 2, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and the first intake valve 6a
A fuel injection valve 11 is arranged near the inner wall surface of the cylinder head 4 near the second intake valve 6b. 3 and 4
The fuel injection valve 1 is installed on the top surface of the piston 3 as shown in FIG.
1, a shallow dish portion 12 having a substantially circular contour shape extending from below 1 to below the ignition plug 10 is formed.
A basin portion 13 having a substantially hemispherical shape is formed in the central portion of the. In addition, the shallow pan 12 and the deep pan 13 below the spark plug 10
A concave portion 14 having a substantially spherical shape is formed at the connecting portion with.

【0010】図1に示されるように各気筒1aの第1吸
気ポート7aおよび第2吸気ポート7bはそれぞれ各吸
気枝管15内に形成された第1吸気通路15aおよび第
2吸気通路15bを介してサージタンク16内に連結さ
れ、各第2吸気通路15b内にはそれぞれ吸気旋回流制
御弁(スワールコントロールバルブ)17が配置され
る。これらの吸気旋回流制御弁17は共通のシャフト1
8を介して例えばステップモータからなるアクチュエー
タ19に連結される。このステップモータは電子制御ユ
ニット30の出力信号に基づいて制御される。なおアク
チュエータ19は機関のインテークポートの負圧に応じ
て制御されるものを用いてもよい。シャフト18の回転
角度は吸気旋回流制御弁開度センサ29により検出さ
れ、これにより吸気旋回流制御弁17の開度が測定され
る。そして吸気旋回流制御弁開度センサ29の出力はA
/D変換器39を介して入力ポート35に接続される。
サージタンク16は吸気ダクト20を介してエアクリー
ナ21に連結され、吸気ダクト20内にはステップモー
タ22によって駆動されるスロットル弁23が配置され
る。このスロットル弁23は機関負荷が極低いときのみ
ある程度閉弁しており、機関負荷が少し高くなると全開
状態に保持される。一方、各気筒1aの排気ポート9は
排気マニホルド24に連結される。
As shown in FIG. 1, the first intake port 7a and the second intake port 7b of each cylinder 1a pass through a first intake passage 15a and a second intake passage 15b formed in each intake branch pipe 15, respectively. And a swirl control valve (swirl control valve) 17 is arranged in each second intake passage 15b. These intake swirl control valves 17 are common to the shaft 1
It is connected via 8 to an actuator 19 composed of, for example, a step motor. This step motor is controlled based on the output signal of the electronic control unit 30. The actuator 19 may be one that is controlled according to the negative pressure of the intake port of the engine. The rotation angle of the shaft 18 is detected by the intake swirl flow control valve opening sensor 29, and the opening of the intake swirl flow control valve 17 is measured thereby. The output of the intake swirling flow control valve opening sensor 29 is A
It is connected to the input port 35 via the / D converter 39.
The surge tank 16 is connected to an air cleaner 21 via an intake duct 20. Inside the intake duct 20, a throttle valve 23 driven by a step motor 22 is arranged. The throttle valve 23 is closed to some extent only when the engine load is extremely low, and is kept fully open when the engine load is slightly increased. On the other hand, the exhaust port 9 of each cylinder 1a is connected to the exhaust manifold 24.

【0011】電子制御ユニット30はデジタルコンピュ
ータからなり、双方向性バス31を介して相互に接続さ
れたRAM(ランダムアクセスメモリ)32、ROM
(リードオンリメモリ)33、マイクロプロセッサから
なるCPU(中央処理装置)34、入力ポート35およ
び出力ポート36を具備する。アクセルペダル25には
アクセルペダル25の踏み込み量に比例した出力電圧を
発生する負荷センサ26が接続され、負荷センサ26の
出力電圧はAD変換器37を介して入力ポート35に入
力される。上死点センサ27は例えば1番気筒1aが吸
気上死点に達したときに出力パルスを発生し、この出力
パルスが入力ポート35に入力される。クランク角セン
サ28は例えばクランクシャフトが30°回転する毎に
出力パルスを発生し、この出力パルスが入力ポート35
に入力される。CPU34では上死点センサ27の出力
パルスとクランク角センサ28の出力パルスから現在の
クランク角が計算され、クランク角センサ28の出力パ
ルスから機関回転数が計算される。一方、出力ポート3
6は対応する駆動回路38を介して各燃料噴射弁11お
よび各ステップモータ19、22に接続される。
The electronic control unit 30 comprises a digital computer, and a RAM (random access memory) 32 and a ROM connected to each other via a bidirectional bus 31.
A (read only memory) 33, a CPU (central processing unit) 34 including a microprocessor, an input port 35 and an output port 36 are provided. A load sensor 26 that generates an output voltage proportional to the depression amount of the accelerator pedal 25 is connected to the accelerator pedal 25, and the output voltage of the load sensor 26 is input to the input port 35 via the AD converter 37. The top dead center sensor 27 generates an output pulse, for example, when the first cylinder 1a reaches the intake top dead center, and this output pulse is input to the input port 35. The crank angle sensor 28 generates an output pulse each time the crankshaft rotates 30 °, for example, and this output pulse is input to the input port 35.
Is input to The CPU 34 calculates the current crank angle from the output pulse of the top dead center sensor 27 and the output pulse of the crank angle sensor 28, and calculates the engine speed from the output pulse of the crank angle sensor 28. On the other hand, output port 3
6 is connected to each fuel injection valve 11 and each step motor 19, 22 via the corresponding drive circuit 38.

【0012】本発明による実施例では図2および図3に
おいてF1 、F2 およびF3 で示されるように燃料噴射
弁11から三つの方向に向けて燃料が噴射される。図6
はこの燃料噴射弁11からの燃料噴射量と燃料噴射時期
とを示している。なお、図6においてLはアクセルペダ
ル25の踏み込み量を示している。図6から判るように
アクセルペダル25の踏み込み量LがL1 よりも小さい
機関低負荷運転時には圧縮行程末期に噴射量Q2 だけ燃
料噴射が行われる。一方、アクセルペダル25の踏み込
み量LがL1 とL2 の間の機関中負荷運転時には吸気行
程中に噴射量Q 1 だけ燃料噴射が行われ、圧縮行程末期
に噴射量Q2 だけ燃料が噴射される。すなわち機関中負
荷運転時には吸気行程と圧縮行程末期の2回に分けて燃
料噴射が行われる。また、アクセルペダル25の踏み込
み量LがL2 よりも大きい機関高負荷運転時には吸気行
程中に噴射量Q1 だけ燃料が噴射される。なお、図6に
おいてθS1およびθE1は吸気行程中に行われる燃料
噴射Q1 の噴射開始時期と噴射完了時期をそれぞれ示し
ており、θS2およびθE2は圧縮行程末期に行われる
燃料噴射Q2 の噴射開始時期と噴射完了時期をそれぞれ
示している。
The embodiment according to the present invention is shown in FIGS.
In F1, F2And F3Fuel injection as shown in
Fuel is injected from the valve 11 in three directions. Figure 6
Is the fuel injection amount and fuel injection timing from this fuel injection valve 11.
Is shown. In FIG. 6, L is an accelerator pedal
The amount of depression of the rule 25 is shown. As you can see from Figure 6
The amount L of depression of the accelerator pedal 25 is L1Less than
During low engine load operation, injection quantity Q at the end of compression stroke2Just burn
Charge injection is performed. On the other hand, depressing the accelerator pedal 25
The amount L is L1And L2During engine load operation during
Injection amount Q 1Fuel injection is performed only at the end of the compression stroke
Injection quantity Q2Only fuel is injected. That is, negative in the organization
During load operation, the fuel is divided into two parts, the intake stroke and the end of the compression stroke.
Charge injection is performed. Also, depressing the accelerator pedal 25
The amount L is L2Intake stroke during engine high load operation
Injection amount Q1Only fuel is injected. In addition, in FIG.
Where θS1 and θE1 are the fuel that is performed during the intake stroke
Injection Q1The injection start timing and injection completion timing of
And θS2 and θE2 are performed at the end of the compression stroke.
Fuel injection Q2The injection start timing and injection completion timing of
Shows.

【0013】ところで本発明による実施例では図2に示
されるように燃料噴射弁11からは噴射燃料F1 、F2
が第1吸気弁6aの下方を飛行し、噴射燃料F3 が第2
吸気弁6bの下方を飛行するように燃料が噴射され、機
関中負荷運転時における吸気行程噴射時における第1回
目の噴射時、すなわち吸気行程噴射時に、および機関高
負荷運転時における吸気行程噴射時に噴射燃料F1 、F
2 が第1吸気弁6aのかさ部背面に衝突し、噴射燃料F
3 が第2吸気弁6bのかさ部背面に衝突される。次にこ
のことについて図7および図8を参照して説明する。
By the way, in the embodiment according to the present invention, as shown in FIG. 2, the injected fuels F 1 , F 2 are injected from the fuel injection valve 11.
Flies below the first intake valve 6a, and the injected fuel F 3 becomes the second
The fuel is injected so as to fly below the intake valve 6b, and during the first injection during the intake stroke injection during the engine medium load operation, that is, during the intake stroke injection, and during the intake stroke injection during the engine high load operation. Injection fuel F 1 , F
2 collides with the back surface of the first intake valve 6a at the bulge portion, and the injected fuel F
3 collides with the back surface of the second air intake valve 6b. Next, this will be described with reference to FIGS. 7 and 8.

【0014】図7は第1吸気弁6aと第2吸気弁6bの
弁リフトXと、排気弁8の弁リフトYを示している。図
7から判るように第1吸気弁6aおよび第2吸気弁6b
の弁リフトXは吸気行程の中央部において最も大きくな
る。図8は第1吸気弁6Aと噴射燃料F1 との関係を示
している。図8に示されるように噴射燃料F1 は水平面
よりも僅か下向きに噴射される。図8には示していない
が噴射燃料F2 、F3も燃料噴射F1 と同様に水平面よ
りも僅か下向きに噴射される。図8から判るように図8
の(A)に示す如く第1吸気弁6aのリフト量が小さい
ときには噴射燃料F1 が第1吸気弁6aに衝突せず、図
8の(B)に示すように第1吸気弁6aのリフト量が大
きくなると噴射燃料F1 が第1吸気弁6aのかさ部背面
に衝突するように第1吸気弁6aと燃料噴射弁11との
相対位置および燃料噴射弁11からの燃料噴射方向が定
められている。図7のZは噴射燃料F1 が第1吸気弁6
aのかさ部背面に衝突するクランク角領域を示してい
る。なお、図8には示していないが噴射燃料F2 もこの
クランク角領域Zで第1吸気弁6aのかさ部背面に衝突
し、噴射燃料F3 もこのクランク角領域Zで第2吸気弁
6bのかさ部背面に衝突する。
FIG. 7 shows the valve lift X of the first intake valve 6a and the second intake valve 6b and the valve lift Y of the exhaust valve 8. As can be seen from FIG. 7, the first intake valve 6a and the second intake valve 6b
The valve lift X of is the largest in the central part of the intake stroke. FIG. 8 shows the relationship between the first intake valve 6A and the injected fuel F 1 . As shown in FIG. 8, the injected fuel F 1 is injected slightly downward from the horizontal plane. Although not shown in FIG. 8, the injected fuels F 2 and F 3 are also injected slightly downward from the horizontal plane like the fuel injection F 1 . As can be seen from FIG.
(A), when the lift amount of the first intake valve 6a is small, the injected fuel F 1 does not collide with the first intake valve 6a, and as shown in (B) of FIG. The relative position of the first intake valve 6a and the fuel injection valve 11 and the fuel injection direction from the fuel injection valve 11 are determined so that the injected fuel F 1 collides with the back surface of the bulkhead of the first intake valve 6a when the amount increases. ing. In Z of FIG. 7, the injected fuel F 1 is the first intake valve 6
The crank angle area | region which collides with the back surface of the umbrella part of a is shown. Although not shown in FIG. 8, the injected fuel F 2 also collides with the rear surface of the bulge portion of the first intake valve 6a in the crank angle region Z, and the injected fuel F 3 also in the crank angle region Z in the second intake valve 6b. It collides with the back of the umbrella.

【0015】上述したように燃料噴射弁11から図7に
示すクランク角領域Zにおいて燃料を噴射すれば図8の
(B)に示すように噴射燃料F1 は第1吸気弁6aのか
さ部背面に衝突する。このとき噴射燃料F1 の流速が遅
いと噴射燃料F1 は第1吸気弁6aのかさ部背面に衝突
した後第1吸気弁6aのかさ部背面に沿って燃料噴射弁
11と反対側の燃焼室5の周辺部に向かうが噴射燃料F
1 の流速が速いと図8の(B)に示されるように噴射燃
料F1 は吸気弁6aのかさ部背面に衝突した後反射して
第1吸気ポート7a内に向かう。同様に噴射燃料F2
流速が速ければ噴射燃料F2 は第1吸気弁6aのかさ部
背面に衝突した後反射して第1吸気ポート7aに向か
い、噴射燃料F3 の流速が速ければ噴射燃料F3 は第2
吸気弁6bのかさ部背面に衝突した後反射して第2吸気
ポート7b内に向かう。本発明による実施例では各噴射
燃料F1 、F2 、F3 が対応する吸気弁6a、6bのか
さ部背面で反射した後、それぞれ対応する吸気ポート7
a、7b内に向かうように各噴射燃料F1 、F2 、F3
の流速が定められている。なお、この流速は主に燃料噴
射圧によって定まり、本発明による実施例では燃料噴射
圧は70Kg/cm2 以上に設定されている。
If the fuel is injected from the fuel injection valve 11 in the crank angle region Z shown in FIG. 7 as described above, the injected fuel F 1 is the back surface of the first intake valve 6a as shown in FIG. 8B. Clash with. At this time, if the flow velocity of the injected fuel F 1 is slow, the injected fuel F 1 collides with the back surface of the bulge portion of the first intake valve 6a and then burns on the side opposite to the fuel injection valve 11 along the back surface of the bulge portion of the first intake valve 6a. Toward the periphery of chamber 5 but injected fuel F
When the flow velocity of 1 is high, the injected fuel F 1 collides with the back surface of the bulkhead portion of the intake valve 6a and then is reflected and travels into the first intake port 7a, as shown in FIG. 8B. Similarly injected fuel F injected fuel F 2 if the flow velocity is fast in 2 toward the first intake port 7a is reflected after having collided with the rear bevel portion of the first intake valve 6a, the injection if Hayakere the flow velocity of the injected fuel F 3 Fuel F 3 is second
After colliding with the rear surface of the bulge portion of the intake valve 6b, it is reflected and travels into the second intake port 7b. In the embodiment according to the present invention, after each of the injected fuels F 1 , F 2 , F 3 is reflected on the back surface of the corresponding bulkhead of the intake valves 6a, 6b, the corresponding intake port 7
a, 7b so that the injected fuels F 1 , F 2 , F 3
The flow velocity of is fixed. The flow velocity is mainly determined by the fuel injection pressure, and in the embodiment of the present invention, the fuel injection pressure is set to 70 Kg / cm 2 or more.

【0016】図9は本発明の吸気旋回流制御弁異常検出
ルーチンのフローチャートである。本図においてSに続
く数字はステップ番号を示す。本ルーチンは数ms毎に
実行される。先ずステップS1ではフェイルセイフフラ
グXFSCVPによりフェイル検出の有無を判定する。
すなわちXFSCVP=0のときは以前にフェイル検出
がされていないと判定しステップS2へ進み、XFSC
VP=1のときは以前にフェイル検出がされていると判
定しステップS11へ進む。フェイルセイフフラグXF
SCVPは吸気旋回流制御弁(スワールコントロールバ
ルブ)に異常があると判定されたときに0から1にセッ
トされるものである。この吸気旋回流制御弁に異常があ
るか否かを判定するフェイル判定は吸気旋回流制御弁の
現在開度データSCVPと指令開度データSCVRとを
比較することにより下記のように実行される。この吸気
旋回流制御弁の指令開度データSCVRは機関の負荷及
び機関回転数に応じて決定されたデータであって予めR
OMに記憶される。本実施例における吸気旋回流制御弁
の指令開度データSCVRは、機関が低負荷運転時には
僅かに開弁し、中負荷運転時には全閉し、高負荷運転時
には全開するデータに設定されている。
FIG. 9 is a flow chart of the intake swirling flow control valve abnormality detection routine of the present invention. In the figure, the numbers following S indicate step numbers. This routine is executed every few ms. First, in step S1, the presence or absence of fail detection is determined by the fail-safe flag XFSCVP.
That is, when XFSCVP = 0, it is determined that the fail detection has not been performed before, and the process proceeds to step S2, where XFSC
When VP = 1, it is determined that the fail detection has been performed before, and the process proceeds to step S11. Fail Safe Flag XF
The SCVP is set from 0 to 1 when it is determined that the intake swirl flow control valve (swirl control valve) is abnormal. The fail determination for determining whether or not there is an abnormality in the intake swirl flow control valve is executed as follows by comparing the current opening data SCVP of the intake swirl flow control valve with the command opening data SCVR. The command opening data SCVR of the intake swirling flow control valve is data determined according to the load of the engine and the engine speed, and is R in advance.
Stored in OM. The command opening degree data SCVR of the intake swirling flow control valve in this embodiment is set to data that the valve is slightly opened during low load operation, fully closed during medium load operation, and fully opened during high load operation.

【0017】ステップS2では吸気旋回流制御弁の現在
開度データSCVPと指令開度データSCVRとを比較
してその差の絶対値が所定値α以上か否かを判別し、|
SCVP−SCVR|≧αのときはステップS3へ|S
CVP−SCVR|<αのときはステップS4へ進む。
この現在開度データSCVPは指令開度データSCVR
の設定が変更されて所定時間経過後に変化しないとき
は、吸気旋回流制御弁の開度センサの断線等による異常
とみなしこのルーチンは実行せず開度センサの出力異常
を示すフラグを立てて表示器で示してもよい。ステップ
S3ではカウンタCFSCVPのカウント値が所定値a
に達したか否かを判別し、その判別結果がYESのとき
はステップS5へ、NOのときはステップS6へ進む。
なおカウンタCFSCVPは数ms毎に1づつカウント
アップされこのルーチンのステップS4で毎回0にリセ
ットされる。ステップS2の判別結果がYESと判別さ
れた後はカウンタCFSCVPは0にリセットされず数
ms毎にカウントアップする。カウンタCFSCVPが
所定値aまでカウントアップする時間が経過するまでは
ステップS3の判別結果はNOとなりステップS6へ進
みカウンタCRSCVPを0にリセットしてこのルーチ
ンを終了する。その後このルーチンはステップS1、S
2、S3、S6の実行を繰り返し、a相当の時間が経過
した後にステップS3からS5へ進む。
In step S2, the current opening degree data SCVP of the intake swirl flow control valve and the command opening degree data SCVR are compared to determine whether or not the absolute value of the difference is equal to or greater than a predetermined value α.
If SCVP-SCVR | ≧ α, go to step S3 | S
When CVP-SCVR | <α, the process proceeds to step S4.
This current opening data SCVP is the command opening data SCVR.
If the setting is changed and does not change after the lapse of a predetermined time, it is considered as an abnormality due to a disconnection of the opening sensor of the intake swirl flow control valve, and this routine is not executed and a flag indicating an output abnormality of the opening sensor is set and displayed. You may show with a container. In step S3, the count value of the counter CFSCVP is a predetermined value a.
If it is YES, the process proceeds to step S5, and if NO, the process proceeds to step S6.
The counter CFSCVP is incremented by 1 every few ms and is reset to 0 every time in step S4 of this routine. After the determination result of step S2 is YES, the counter CFSCVP is not reset to 0 and counts up every few ms. Until the time for the counter CFSCVP to count up to the predetermined value a has elapsed, the determination result in step S3 becomes NO, the process proceeds to step S6, the counter CRSCVP is reset to 0, and this routine is ended. After that, this routine proceeds to steps S1 and S
The execution of steps 2, S3 and S6 is repeated, and after a time corresponding to a has elapsed, the process proceeds from step S3 to S5.

【0018】ステップS5では吸気旋回流制御弁が異常
であると判定しフェイルセイフフラグXFSCVPを1
にセットしステップS7へ進む。ステップS7では吸気
旋回流制御弁の現在開度データSCVPをバックアップ
メモリに記憶する。このバックアップメモリに記憶され
た吸気旋回流制御弁の開度データをSCVPBと呼ぶ。
またカウンタCRSCVPはCFSCVP同様に数ms
毎に1づつカウントアップされこのルーチンのステップ
S6で毎回0にリセットされる。
In step S5, it is determined that the intake swirl flow control valve is abnormal, and the fail-safe flag XFSCVP is set to 1
And set to step S7. In step S7, the current opening degree data SCVP of the intake swirling flow control valve is stored in the backup memory. The opening degree data of the intake swirling flow control valve stored in this backup memory is called SCVPB.
Also, the counter CRSCVP is several ms like CFSCVP.
Each time it is incremented by 1, it is reset to 0 every time in step S6 of this routine.

【0019】次に、ステップS5でフェイル判定された
後にこのルーチンが再び実行開始されるとステップS1
でフェイルセイフフラグXFSCVPが1にセットされ
ているのでステップS11へ進む。ステップS11では
バックアップメモリに記憶された吸気旋回流制御弁の開
度データSCVPBと指令開度データSCVRとを比較
してその差の絶対値が所定値β(α<β)以上か否かを
判別し、|SCVPB−SCVR|≧βのときはステッ
プS12へ|SCVPB−SCVR|<βのときはステ
ップS4へ進む。
Next, when the routine is started again after the fail determination is made in step S5, step S1
Since the fail-safe flag XFSCVP has been set to 1, the process proceeds to step S11. In step S11, the opening degree data SCVPB of the intake swirling flow control valve stored in the backup memory is compared with the command opening degree data SCVR, and it is determined whether or not the absolute value of the difference is a predetermined value β (α <β) or more. If | SCVPB-SCVR | ≧ β, the process proceeds to step S12. If | SCVPB-SCVR | <β, the process proceeds to step S4.

【0020】ステップS12ではステップS2と同様に
このルーチンの今回の処理サイクルにおける吸気旋回流
制御弁の現在開度データSCVPと指令開度データSC
VRとを再び比較してその差の絶対値が所定値αより小
か否かを判別し、|SCVP−SCVR|<αのときは
ステップS13へ進み|SCVP−SCVR|≧αのと
きはステップS4へ進む。ステップS4ではカウンタC
FSCVPを0にリセットしステップS6へ進み、ステ
ップS6ではカウンタCRSCVPを0にリセットして
このルーチンを終了する。
In step S12, as in step S2, the present opening degree data SCVP and the command opening degree data SC of the intake swirling flow control valve in the current processing cycle of this routine.
VR is again compared to determine whether the absolute value of the difference is smaller than a predetermined value α, and if | SCVP-SCVR | <α, proceed to step S13, and if | SCVP-SCVR | ≧ α, proceed to step S13. Proceed to S4. In step S4, the counter C
FSCVP is reset to 0 and the process proceeds to step S6. In step S6, the counter CRSCVP is reset to 0 and this routine ends.

【0021】ステップS13ではカウンタCRSCVP
の値が所定値bまでカウントアップしたか否かを判別
し、その判別結果がYESのときはステップS15へ、
NOのときはこのルーチンを終了する。このカウンタC
RSCVPはステップS3でYESと判別されるまでは
このルーチンのステップS6で毎回0にリセットされ
る。カウンタCRSCVPはステップS3でYESと判
別された後は数ms毎に1づつカウントアップされる。
しかしステップS12の判別結果がNOと判別されたと
きにカウンタCRSCVPはステップS4を経由してス
テップS6で0にリセットされる。
In step S13, the counter CRSCVP
It is determined whether or not the value of is counted up to the predetermined value b, and if the result of the determination is YES, to step S15,
If NO, this routine ends. This counter C
The RSCVP is reset to 0 each time in step S6 of this routine until it is determined YES in step S3. The counter CRSCVP is incremented by 1 every few ms after the determination in step S3 is YES.
However, when the determination result of step S12 is NO, the counter CRSCVP is reset to 0 in step S6 via step S4.

【0022】ステップS13ではカウンタCRSCVP
のカウント値が所定値bに達したか否かを判別し、その
判別結果がYESのときはステップS15へ、NOのと
きはこのルーチンを終了する。ステップS3でYESと
判別された後にステップS12の判別結果がYESと判
別されたときはカウンタCRSCVPは0にリセットさ
れず数ms毎のカウントアップを継続する。カウンタC
RSCVPが所定回数bまでカウントアップする時間が
経過するまではステップS13の判別結果はNOとなり
このルーチンを終了し、その後このルーチンはステップ
S1、S11、S12、S13の実行を繰り返し、ステ
ップS3でYESと判別された後にb相当の時間が経過
した後のステップS13でステップS15へ進む。ステ
ップS15では吸気旋回流制御弁が正常であると判定し
フェイルセイフフラグXFSCVPを0にリセットして
このルーチンを終了する。
In step S13, the counter CRSCVP
It is determined whether or not the count value of has reached the predetermined value b. If the determination result is YES, the process proceeds to step S15, and if NO, the routine ends. When the result of the determination in step S12 is YES after the determination in step S3 is YES, the counter CRSCVP is not reset to 0 and continues counting up every few ms. Counter C
Until the time for the RSCVP to count up to the predetermined number b has elapsed, the determination result of step S13 becomes NO, and this routine ends, after which this routine repeats execution of steps S1, S11, S12, S13, and YES at step S3. In step S13 after the time corresponding to b has elapsed after the determination is made, the process proceeds to step S15. In step S15, it is determined that the intake swirling flow control valve is normal, the fail-safe flag XFSCVP is reset to 0, and this routine ends.

【0023】図10は本発明のフェイルセイフ制御ルー
チンのメインフローチャートである。本図においてSに
続く数字はステップ番号を示す。本ルーチンは4気筒機
関では180°CA(クランク角)、6気筒機関では1
20°CA毎に割込処理され各気筒の点火時期と燃料噴
射時期を演算するクランク角割込処理ルーチンである。
先ずステップS1では機関の回転数NEと負荷センサ2
6により検出された負荷に相当するアクセル開度θAと
を読み込む。ステップS2ではステップS1で読み込ん
だ回転数NEとアクセル開度θAに対する燃料噴射量Q
INJをマップ1(図11)から読み込む。このマップ
1は実験的に求め予めROMに格納しておく。
FIG. 10 is a main flowchart of the fail-safe control routine of the present invention. In the figure, the numbers following S indicate step numbers. This routine is 180 ° CA (crank angle) for a 4-cylinder engine and 1 for a 6-cylinder engine.
It is a crank angle interrupt processing routine that is interrupted every 20 ° CA to calculate the ignition timing and the fuel injection timing of each cylinder.
First, in step S1, the engine speed NE and the load sensor 2
The accelerator opening degree θA corresponding to the load detected in 6 is read. In step S2, the fuel injection amount Q with respect to the rotational speed NE and the accelerator opening degree θA read in step S1.
Read INJ from Map 1 (FIG. 11). This map 1 is experimentally obtained and stored in the ROM in advance.

【0024】ステップS3では前述の吸気旋回流制御弁
異常検出ルーチンで判定されたフェイルセイフフラグX
FSCVPが1にセットされているか否かを判別し、X
FSCVPが1のときはステップS4へ進み、XFSC
VPが0のときはステップS11へ進む。ステップS1
1では吸気旋回流制御弁が正常と判定されたので後述す
る正常時の制御ルーチンを実行してこのルーチンを終了
する。
In step S3, the fail-safe flag X determined by the above-described intake swirl flow control valve abnormality detection routine.
Determine if FSCVP is set to 1 and X
When FSCVP is 1, the process proceeds to step S4 and XFSC
When VP is 0, the process proceeds to step S11. Step S1
In No. 1, the intake swirl flow control valve is determined to be normal, so the control routine for normal time described below is executed and this routine is ended.

【0025】ステップS4では機関の噴射パターン指令
データXINJPを2に設定する。本実施例ではこの噴
射パターン指令データは機関の負荷及び機関回転数に応
じて0、1または2に設定される。指令データ0は低負
荷時の圧縮行程噴射、指令データ1は中負荷時の吸気行
程噴射と圧縮行程噴射の両方を行う2回噴射、指令デー
タ2は高負荷時の吸気行程噴射をそれぞれ実行するよう
に指令する。このステップS4では噴射パターン指令デ
ータXINJPは2に設定され、機関の負荷が低、中、
高の何れの場合でも吸気行程噴射を実行するように指令
する。
In step S4, the injection pattern command data XINJP of the engine is set to 2. In the present embodiment, this injection pattern command data is set to 0, 1 or 2 depending on the engine load and engine speed. Command data 0 executes a compression stroke injection at low load, command data 1 executes two injections that perform both intake stroke injection and compression stroke injection at a medium load, and command data 2 executes intake stroke injection at a high load. To order. In this step S4, the injection pattern command data XINJP is set to 2, and the engine load is low, medium,
Command to perform intake stroke injection in either case of high.

【0026】ステップS5からS8において吸気行程噴
射によって点火時期までに気筒内に均質な混合気を生成
するためのスロットルバルブ開度TRT、EGR弁開度
EGR、点火時期SAおよび噴射時期AINJを、ステ
ップS1で読み込んだ機関の回転数NEとアクセル開度
θAおよびステップS2で算出した燃料噴射量QINJ
に基づいてそれぞれ算出する。すなわちステップS5で
はスロットルバルブ開度TRTをマップ2(図12)か
ら算出する。吸気行程噴射により点火時期までに気筒内
に均質な混合気を生成するためのスロットルバルブ開度
TRTは、圧縮行程噴射時に同量の燃料噴射量QINJ
を噴射して成層混合気を生成する場合と比べて混合気は
濃くなり空燃比は小さくなるので絞られる。ステップS
6では排気ガス再循環装置EGRのEGR率をマップ3
(図13)から算出する。NOXの発生を抑制するため
に要求されるEGR量は圧縮行程噴射して成層混合気を
生成する場合と比べて少量に設定される。なお図13に
示すようにEGR率は、燃料噴射量QINJが大きくな
る程すなわち機関の負荷が高負荷になる程減少するよう
に設定され、機関の回転数NEが高くなる程減少するよ
うに設定される。ステップS7では点火時期SAをマッ
プ4(図14)から算出する。点火時期SAは最大燃焼
トルクを得るように圧縮上死点より進角側に設定される
が、圧縮行程噴射して成層混合気を生成する場合と比べ
て少しだけ進角側に設定される。ステップS8では燃料
噴射弁の吸気行程の噴射時期AINJをマップ5(図1
5)から算出する。上述のマップは実験的に求め予めR
OMに格納される。
In steps S5 to S8, the throttle valve opening TRT, the EGR valve opening EGR, the ignition timing SA, and the injection timing AINJ for producing a homogeneous mixture in the cylinder by the intake stroke injection by the ignition timing are set. The engine speed NE and the accelerator opening degree θA read in S1 and the fuel injection amount QINJ calculated in step S2
It is calculated based on each. That is, in step S5, the throttle valve opening TRT is calculated from the map 2 (FIG. 12). The throttle valve opening TRT for generating a homogeneous air-fuel mixture in the cylinder by the ignition stroke injection by the ignition timing is the same fuel injection amount QINJ during the compression stroke injection.
As compared with the case where the injection is performed to generate the stratified mixture, the mixture becomes richer and the air-fuel ratio becomes smaller, so that it is throttled. Step S
6 maps the EGR rate of the exhaust gas recirculation system EGR 3
(FIG. 13). The EGR amount required to suppress the generation of NOX is set to a small amount as compared with the case where the compression stroke injection is performed to generate the stratified mixture. Note that, as shown in FIG. 13, the EGR rate is set to decrease as the fuel injection amount QINJ increases, that is, the engine load increases, and decreases as the engine speed NE increases. To be done. In step S7, the ignition timing SA is calculated from the map 4 (FIG. 14). The ignition timing SA is set to the advanced side from the compression top dead center so as to obtain the maximum combustion torque, but is set to the advanced side slightly compared with the case where the compression stroke injection is performed to generate the stratified mixture. In step S8, the injection timing AINJ of the intake stroke of the fuel injection valve is set to map 5 (see FIG.
Calculated from 5). The above map is experimentally obtained and R
Stored in OM.

【0027】ステップS9では吸気旋回流制御弁の開度
センサの出力に対する点火時期の補正係数KSAと噴射時
期の補正係数KAINJを予めROMに格納したマップ6
(図16)から算出する。これらの係数は吸気旋回流制
御弁が全閉時の旋回流が最強となるときを基準1とし
て、吸気旋回流制御弁が開くに連れて旋回流が弱まるの
で徐々に1より大きくして吸気旋回流制御弁が全閉時の
点火時期と噴射時期より進角側となるように点火時期と
噴射時期を補正する。ステップS10ではステップS9
で算出した点火時期の補正係数KSAを吸気旋回流制御弁
が全閉のときの点火時期SAに乗算し、かつステップS
9で算出した噴射時期の補正係数KAINJを吸気旋回流制
御弁が全閉のときの噴射時期AINJに乗算して今回の
点火時期SAと噴射時期AINJを算出する。このよう
に吸気旋回流制御弁が故障した時の吸気旋回流制御弁の
開度に応じて気筒内に発生する旋回流の強さが変わり吸
気旋回流制御弁の開度は開く程旋回流は弱まるので吸気
旋回流制御弁が故障した時の吸気旋回流制御弁の開度が
開いている程噴射時期AINJを進角側に補正してやれ
ば気化し拡散する時間を充分に取れ点火するまでに均質
な混合気を気筒内に生成できる。また吸気旋回流制御弁
の開度が開く程旋回流は弱まるので吸気旋回流制御弁が
故障した時の吸気旋回流制御弁の開度が開いている程点
火時期SAを進角側にして早めに点火してやれば機関の
燃焼トルクをできるだけ最大にすることができる。
In step S9, the map 6 in which the ignition timing correction coefficient K SA and the injection timing correction coefficient K AINJ for the output of the opening sensor of the intake swirling flow control valve are stored in the ROM in advance.
(FIG. 16). These coefficients are set to 1 when the swirl flow when the intake swirl flow control valve is fully closed is the strongest, and the swirl flow weakens as the intake swirl flow control valve opens. The ignition timing and the injection timing are corrected so that they are on the advance side of the ignition timing and the injection timing when the flow control valve is fully closed. In step S10, step S9
The ignition timing correction coefficient K SA calculated in step S3 is multiplied by the ignition timing SA when the intake swirl flow control valve is fully closed, and step S
The injection timing correction coefficient K AINJ calculated in 9 is multiplied by the injection timing AINJ when the intake swirl flow control valve is fully closed to calculate the current ignition timing SA and the injection timing AINJ. In this way, the strength of the swirl flow generated in the cylinder changes according to the opening degree of the intake swirl flow control valve when the intake swirl flow control valve fails, and the swirl flow becomes Since it weakens, if the opening of the intake swirl flow control valve is opened when the intake swirl flow control valve fails, the injection timing AINJ will be corrected to the advance side, and sufficient time for vaporization and diffusion will be obtained, and it will be uniform until ignition. A rich air-fuel mixture can be generated in the cylinder. Further, since the swirling flow becomes weaker as the opening degree of the intake swirling flow control valve is increased, the ignition timing SA is advanced toward the advance side as the opening degree of the intake swirling flow control valve is increased when the intake swirling flow control valve fails. By igniting the engine, the combustion torque of the engine can be maximized.

【0028】吸気旋回流制御弁の開度を検出する吸気旋
回流制御弁開度センサがないときは、ステップS5から
S8においてスロットル開度TRTをアクセルペダル2
5の負荷センサ26の出力とし、EGR弁は全閉にし、
点火時期SAと噴射時期AINJに関しては前述同様に
機関の回転数NEと燃料噴射量QINJに基づくマップ
4とマップ5からそれぞれ算出し、ステップS9、S1
0はスキップする。
If there is no intake swirl flow control valve opening sensor for detecting the opening of the intake swirl flow control valve, the throttle opening TRT is set to the accelerator pedal 2 in steps S5 to S8.
5, the output of the load sensor 26, the EGR valve is fully closed,
The ignition timing SA and the injection timing AINJ are calculated from the map 4 and the map 5 based on the engine speed NE and the fuel injection amount QINJ, respectively, as described above, and steps S9 and S1 are performed.
0 is skipped.

【0029】図17は吸気旋回流制御弁が正常時の制御
ルーチンの詳細フローチャートである。図10のステッ
プS3で吸気旋回流制御弁は正常と判定されたので、こ
のルーチンは吸気旋回流制御弁が正常時の制御を実行す
る。すなわち図10のステップS3で説明したようにス
テップS20では機関の負荷及び機関回転数に応じた噴
射パターン指令データXINJPを図18に示すマップ
7から算出する。噴射パターン指令データXINJPは
図18に示すように機関の回転数が所定回転数以下の低
負荷時にはXINJP=0の圧縮行程噴射に、機関の回
転数が所定回転数以下の中負荷時にはXINJP=1の
吸気行程噴射と圧縮行程噴射の両方を行う2回噴射に、
機関の回転数が所定回転数以下の高負荷時または機関の
回転数が所定回転数以上のときにはXINJP=2の吸
気行程噴射にそれぞれ設定する。この機関の負荷状態は
アクセル開度θAから求めるものとする。次いでステッ
プS21ではステップS20で算出された噴射パターン
指令データXINJPのデータを読み取ってXINJP
=0のときはステップS23へ進み、XINJP=1の
ときはステップS33へ進み、XINJP=2のときは
ステップS43へ進む。
FIG. 17 is a detailed flowchart of the control routine when the intake swirling flow control valve is normal. Since it is determined in step S3 of FIG. 10 that the intake swirl flow control valve is normal, this routine executes control when the intake swirl flow control valve is normal. That is, as described in step S3 of FIG. 10, in step S20, the injection pattern command data XINJP corresponding to the engine load and the engine speed is calculated from the map 7 shown in FIG. As shown in FIG. 18, the injection pattern command data XINJP is used for the compression stroke injection of XINJP = 0 when the engine speed is a predetermined load or lower and XINJP = 1 when the engine speed is a medium load or lower. 2 injections that perform both intake stroke injection and compression stroke injection of
When the engine speed is a high load below a predetermined speed or when the engine speed is above a predetermined speed, the intake stroke injection is set to XINJP = 2. The load state of this engine is obtained from the accelerator opening θA. Next, in step S21, the data of the injection pattern command data XINJP calculated in step S20 is read and XINJP is read.
When = 0, the process proceeds to step S23, when XINJP = 1, the process proceeds to step S33, and when XINJP = 2, the process proceeds to step S43.

【0030】次に、図10におけるステップS1で求め
た機関の回転数NEとステップS2で求めた燃料噴射量
QINJに基づいて、ステップS23ではスロットル開
度TRTを図12と同様なマップ(図示せず)から算出
し、ステップS24では排気ガス再循環装置EGRのE
GR弁の開度を図13と同様なマップ(図示せず)から
算出し、ステップS25では点火時期SAを図14と同
様なマップ(図示せず)から算出する。ステップS26
では燃料噴射弁の圧縮行程の燃料噴射量Q2 と圧縮行程
の噴射時期AINJ2 (開始時期θS2と終了時期θE
2)を図6に示すマップからそれぞれ算出し、ステップ
S27へ進む。
Next, based on the engine speed NE obtained in step S1 in FIG. 10 and the fuel injection amount QINJ obtained in step S2, in step S23 the throttle opening TRT is set to a map similar to that shown in FIG. 12 (not shown). No.), and in step S24, E of the exhaust gas recirculation device EGR is calculated.
The opening of the GR valve is calculated from a map (not shown) similar to FIG. 13, and the ignition timing SA is calculated from a map (not shown) similar to FIG. 14 in step S25. Step S26
Then, the fuel injection amount Q 2 of the compression stroke of the fuel injection valve and the injection timing AINJ 2 of the compression stroke (start timing θS2 and end timing θE
2) is calculated from the map shown in FIG. 6, and the process proceeds to step S27.

【0031】ステップS33〜S35まではステップS
23〜S25までと同様なので説明は省略する。ステッ
プS36では燃料噴射弁の圧縮行程の燃料噴射量Q2
噴射時期AINJ2 (開始時期θS2と終了時期θE
2)および吸気行程の燃料噴射量Q1 と噴射時期AIN
1 (開始時期θS1と終了時期θE1)を図6のマッ
プから算出し、ステップS27へ進む。
Steps S33 to S35 are step S
Since it is the same as 23 to S25, the description is omitted. In step S36, the fuel injection amount Q 2 in the compression stroke of the fuel injection valve and the injection timing AINJ 2 (start timing θS2 and end timing θE
2) and the intake stroke fuel injection amount Q 1 and injection timing AIN
J 1 (start timing θS1 and end timing θE1) is calculated from the map of FIG. 6, and the process proceeds to step S27.

【0032】ステップS43〜S45まではステップS
23〜S25までと同様なので説明は省略する。ステッ
プS46では燃料噴射弁の吸気行程の燃料噴射量Q1
吸気行程の噴射時期AINJ1 (開始時期θS1と終了
時期θE1)を図6のマップから算出し、ステップS2
7へ進む。
Steps S43 to S45 are step S
Since it is the same as 23 to S25, the description is omitted. In step S46, the fuel injection amount Q 1 of the intake stroke of the fuel injection valve and the injection timing AINJ 1 (start timing θS1 and end timing θE1) of the intake stroke are calculated from the map of FIG. 6, and step S2
Proceed to 7.

【0033】ステップS27では予めROMに格納した
アクセルペダル25の踏み込み量θAに応じた吸気旋回
流制御弁17の目標開度を算出する。このように吸気旋
回流制御弁17の開度は上述の制御ルーチンにより算出
された目標開度となるようにステップモータ19を駆動
して制御される。
In step S27, the target opening degree of the intake swirling flow control valve 17 is calculated according to the depression amount θA of the accelerator pedal 25 stored in the ROM in advance. In this way, the opening degree of the intake swirling flow control valve 17 is controlled by driving the step motor 19 so as to reach the target opening degree calculated by the above-mentioned control routine.

【0034】前述の図11に示すマップ1から算出され
る燃料噴射量QINJは、噴射パターン指令データXI
NJP=0の圧縮行程噴射では圧縮行程の燃料噴射量Q
2 に等しく、噴射パターン指令データXINJP=1の
2回噴射では吸気行程の燃料噴射量Q1 と圧縮行程の燃
料噴射量Q2 の和に等しく、噴射パターン指令データX
INJP=2の吸気行程噴射では吸気行程の燃料噴射量
1 に等しい。この燃料噴射量QINJは機関の回転数
と負荷から算出される基本燃料噴射量であるが実際の燃
料噴射量は空燃比補正係数FAFや他の補正係数αを乗
算しかつその他の補正項βを加算して得られ、すなわち
QINJ×(FAF+α)+βを演算して得られる。従
ってステップS26、S36、S46で得られた吸気行
程の燃料噴射量Q1 や圧縮行程の燃料噴射量Q2 は上式
に基づいてフェイルセイフ制御ルーチンと同一クランク
角の割込処理で補正される。なお空燃比補正係数FAF
とは機関の排気系に設けられた空燃比センサの出力に応
じて機関の空燃比が目標空燃比になるようにフィードバ
ック制御して燃料噴射量を補正する係数である。
The fuel injection amount QINJ calculated from the map 1 shown in FIG. 11 is the injection pattern command data XI.
In the compression stroke injection of NJP = 0, the fuel injection amount Q in the compression stroke
2 and is equal to the sum of the fuel injection amount Q 1 in the intake stroke and the fuel injection amount Q 2 in the compression stroke in the double injection of the injection pattern command data XINJP = 1.
In the intake stroke injection of INJP = 2, it is equal to the fuel injection amount Q 1 in the intake stroke. This fuel injection amount QINJ is a basic fuel injection amount calculated from the engine speed and load, but the actual fuel injection amount is multiplied by the air-fuel ratio correction coefficient FAF and another correction coefficient α, and the other correction term β is used. It is obtained by addition, that is, it is obtained by calculating QINJ × (FAF + α) + β. Therefore, the fuel injection amount Q 1 in the intake stroke and the fuel injection amount Q 2 in the compression stroke obtained in steps S26, S36 and S46 are corrected by the same crank angle interruption process as the fail-safe control routine based on the above equation. . Air-fuel ratio correction coefficient FAF
Is a coefficient for performing feedback control so that the air-fuel ratio of the engine becomes the target air-fuel ratio in accordance with the output of the air-fuel ratio sensor provided in the exhaust system of the engine, and correcting the fuel injection amount.

【0035】以上説明した実施例の内燃機関は吸気管に
配置され吸気ポートに向けて燃料噴射する第2の燃料噴
射弁を備えていない機関であるが、本発明は図1で示す
筒内に直接噴射する第1の燃料噴射弁の他に第2の燃料
噴射弁を吸気管に設けた筒内噴射式内燃機関にも適用で
きる。この内燃機関においては、吸気旋回流制御弁の正
常時には機関の運転状態に応じて圧縮行程と吸気行程に
噴射時期を切り換えて点火時期までに気筒内に成層混合
気を生成するように制御する第1制御手段と、吸気旋回
流制御弁の異常が検出されたときは第1の燃料噴射弁を
使用せずに第2の燃料噴射弁のみを使用して機関の運転
状態によらず均質混合気を生成するように制御する第2
制御手段とを備えて構成する。また第2制御手段は、吸
気旋回流制御弁の異常が検出されたときに第1および第
2の燃料噴射弁を共に用いて機関の運転状態によらず均
質混合気を生成する構成としてもよい。
The internal combustion engine of the embodiment described above is an engine which is arranged in the intake pipe and does not have the second fuel injection valve for injecting fuel toward the intake port. However, the present invention is not limited to the cylinder shown in FIG. The present invention can be applied to a cylinder injection internal combustion engine in which a second fuel injection valve is provided in the intake pipe in addition to the first fuel injection valve for direct injection. In this internal combustion engine, when the intake swirl flow control valve is normal, the injection timing is switched between the compression stroke and the intake stroke in accordance with the operating state of the engine, and control is performed to generate a stratified mixture in the cylinder by the ignition timing. 1 When the abnormality of the control means and the intake swirl flow control valve is detected, the first fuel injection valve is not used and only the second fuel injection valve is used to obtain a homogeneous mixture regardless of the operating state of the engine. Second to control to generate
And a control means. Further, the second control means may be configured to generate the homogeneous air-fuel mixture regardless of the operating state of the engine by using both the first and second fuel injection valves when the abnormality of the intake swirling flow control valve is detected. .

【0036】[0036]

【発明の効果】以上説明したように本発明の筒内噴射式
内燃機関によれば、機関の気筒内の混合気を成層状態と
する第1制御手段を吸気旋回流制御手段に異常が発生し
たときに気筒内の混合気を均質状態とする第2制御手段
に切り換えるようにしたので吸気旋回流制御手段に異常
が発生しても機関が燃焼不良とならずドライバビリティ
も良好のまま運転できる。
As described above, according to the in-cylinder injection type internal combustion engine of the present invention, an abnormality occurs in the intake swirling flow control means of the first control means for stratifying the air-fuel mixture in the cylinder of the engine. At this time, since the air-fuel mixture in the cylinder is switched to the second control means that makes the air-fuel mixture homogeneous, even if an abnormality occurs in the intake swirling flow control means, the engine does not become defective in combustion and can be operated with good drivability.

【図面の簡単な説明】[Brief description of drawings]

【図1】筒内噴射式内燃機関の全体構成図である。FIG. 1 is an overall configuration diagram of a cylinder injection internal combustion engine.

【図2】シリンダヘッドの平面断面図である。FIG. 2 is a plan sectional view of a cylinder head.

【図3】ピストン頂面の平面図である。FIG. 3 is a plan view of a piston top surface.

【図4】図2のIV−IV線に沿ってみた断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】図2のV−V線に沿ってみた断面図である。5 is a sectional view taken along line VV of FIG.

【図6】燃料噴射量および燃料噴射時期を示す図であ
る。
FIG. 6 is a diagram showing a fuel injection amount and a fuel injection timing.

【図7】吸気弁および排気弁のリフト量を示す線図であ
る。
FIG. 7 is a diagram showing lift amounts of an intake valve and an exhaust valve.

【図8】図5と同じ断面に沿ってみた側面断面図であ
る。
8 is a side sectional view taken along the same section as FIG.

【図9】本発明の吸気旋回流制御弁異常検出ルーチンの
フローチャートである。
FIG. 9 is a flowchart of an intake swirling flow control valve abnormality detection routine of the present invention.

【図10】本発明のフェイルセイフ制御ルーチンのメイ
ンフローチャートである。
FIG. 10 is a main flowchart of a fail-safe control routine of the present invention.

【図11】マップ1を示す図である。11 is a diagram showing a map 1. FIG.

【図12】マップ2を示す図である。FIG. 12 is a diagram showing a map 2;

【図13】マップ3を示す図である。FIG. 13 is a diagram showing map 3;

【図14】マップ4を示す図である。FIG. 14 is a diagram showing map 4;

【図15】マップ5を示す図である。FIG. 15 is a diagram showing a map 5;

【図16】マップ6を示す図である。16 is a diagram showing a map 6. FIG.

【図17】吸気旋回流制御弁が正常時の制御ルーチンの
詳細フローチャートである。
FIG. 17 is a detailed flowchart of a control routine when the intake swirling flow control valve is normal.

【図18】マップ7を示す図である。FIG. 18 is a diagram showing a map 7.

【符号の説明】[Explanation of symbols]

6a、6b…吸気弁 7a、7b…吸気ポート 8…排気弁 10…点火プラグ 11…燃料噴射弁 17…吸気旋回流制御弁(スワールコントロールバル
ブ) 19…ステップモータ 29…吸気旋回流制御弁開度センサ 30…制御装置
6a, 6b ... Intake valve 7a, 7b ... Intake port 8 ... Exhaust valve 10 ... Spark plug 11 ... Fuel injection valve 17 ... Intake swirl control valve (swirl control valve) 19 ... Step motor 29 ... Intake swirl control valve opening Sensor 30 ... Control device

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/34 C 9523−3G F02M 69/00 360 C 69/04 Z Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location F02D 41/34 C 9523-3G F02M 69/00 360 C 69/04 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機関の気筒内に燃料を直接噴射する第一
燃料噴射弁と、該気筒内の燃焼室に流入する吸入空気流
により該燃焼室内に発生する旋回流の強さを該機関の運
転状態に応じて制御する吸気旋回流制御手段と、該機関
の運転状態に応じて該気筒内に成層混合気を生成するよ
うに該機関を制御する第一制御手段と、を備える筒内噴
射式内燃機関において、 前記吸気旋回流制御手段の異常を検出する異常検出手段
と、 前記異常検出手段により前記吸気旋回流制御手段の異常
が検出されたとき、前記第一制御手段に代わって、前記
機関の運転状態に応じて前記気筒内に均質混合気を生成
するように該機関を制御する第二制御手段と、を備えた
ことを特徴とする筒内噴射式内燃機関。
1. A first fuel injection valve for directly injecting fuel into a cylinder of an engine, and a strength of a swirl flow generated in the combustion chamber by an intake air flow flowing into the combustion chamber in the cylinder. In-cylinder injection provided with intake swirling flow control means for controlling in accordance with the operating state, and first control means for controlling the engine so as to generate a stratified mixture in the cylinder in accordance with the operating state of the engine In an internal combustion engine, an abnormality detecting means for detecting an abnormality of the intake swirling flow control means, and when an abnormality of the intake swirling flow control means is detected by the abnormality detecting means, instead of the first control means, the A cylinder injection type internal combustion engine, comprising: a second control unit that controls the engine so as to generate a homogeneous mixture in the cylinder according to an operating state of the engine.
【請求項2】 前記第二制御手段は、前記第一燃料噴射
弁の噴射時期を前記機関の運転状態によらず常に吸気行
程とする請求項1に記載の筒内噴射式内燃機関。
2. The cylinder injection internal combustion engine according to claim 1, wherein the second control means always sets the injection timing of the first fuel injection valve to the intake stroke regardless of the operating state of the engine.
【請求項3】 前記筒内噴射式内燃機関は前記機関の運
転状態に応じた噴射時期に該機関の吸気ポートへ向けて
燃料噴射し均質混合気を生成する第二燃料噴射弁をさら
に備え、 前記第二制御手段は、前記第二燃料噴射弁の噴射時期を
前記機関の運転状態によらず吸気行程とする請求項1に
記載の筒内噴射式内燃機関。
3. The in-cylinder injection internal combustion engine further comprises a second fuel injection valve for injecting fuel toward an intake port of the engine at an injection timing corresponding to an operating state of the engine to generate a homogeneous mixture, The cylinder injection internal combustion engine according to claim 1, wherein the second control means sets the injection timing of the second fuel injection valve to an intake stroke regardless of the operating state of the engine.
JP7007447A 1995-01-20 1995-01-20 Cylinder fuel injection-type internal combustion engine Pending JPH08200116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7007447A JPH08200116A (en) 1995-01-20 1995-01-20 Cylinder fuel injection-type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7007447A JPH08200116A (en) 1995-01-20 1995-01-20 Cylinder fuel injection-type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08200116A true JPH08200116A (en) 1996-08-06

Family

ID=11666100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7007447A Pending JPH08200116A (en) 1995-01-20 1995-01-20 Cylinder fuel injection-type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08200116A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051920A1 (en) * 1997-05-10 1998-11-19 Robert Bosch Gmbh Actuating system for a direct injection internal combustion engine, especially in a vehicle
US5960769A (en) * 1996-11-18 1999-10-05 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
US6662779B2 (en) 1999-12-28 2003-12-16 Nissan Motor Co., Ltd. Support structure of valve shaft for butterfly valve
US7185627B2 (en) 2004-12-27 2007-03-06 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
FR2893361A1 (en) * 2005-11-17 2007-05-18 Bosch Gmbh Robert Motor vehicle`s internal combustion engine operating method, involves evaluating actual value of parameter characterizing combustion in combustion chamber, where evaluation result is utilized for function monitoring of charge motion valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193881U (en) * 1975-01-27 1976-07-28
JPH01222762A (en) * 1988-03-02 1989-09-06 Yamaki Kk Processed seaweed and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193881U (en) * 1975-01-27 1976-07-28
JPH01222762A (en) * 1988-03-02 1989-09-06 Yamaki Kk Processed seaweed and preparation thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960769A (en) * 1996-11-18 1999-10-05 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
US6019082A (en) * 1996-11-18 2000-02-01 Toyota Jidosha Kabushiki Kaisha Air intake method and controller for engines performing stratified charge combustion
WO1998051920A1 (en) * 1997-05-10 1998-11-19 Robert Bosch Gmbh Actuating system for a direct injection internal combustion engine, especially in a vehicle
US6213087B1 (en) 1997-05-10 2001-04-10 Robert Bosch Gmbh Actuating system for a direct injection internal combustion engine, especially in a vehicle
US6662779B2 (en) 1999-12-28 2003-12-16 Nissan Motor Co., Ltd. Support structure of valve shaft for butterfly valve
US7185627B2 (en) 2004-12-27 2007-03-06 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
FR2893361A1 (en) * 2005-11-17 2007-05-18 Bosch Gmbh Robert Motor vehicle`s internal combustion engine operating method, involves evaluating actual value of parameter characterizing combustion in combustion chamber, where evaluation result is utilized for function monitoring of charge motion valve

Similar Documents

Publication Publication Date Title
EP1515031B1 (en) System and method for controlling spark-ignition internal combustion engine
US6725825B1 (en) Method and system for controlling combustion mode in an internal combustion engine
JPH04219445A (en) Fuel injection control device for multicylinder internal combustion engine
JPH0552145A (en) Control device for internal combustion engine
JP3175601B2 (en) Air intake control system for lean burn engine
JP2004324428A (en) Variable valve type internal combustion engine and control method
JP2023020229A (en) engine system
JP3448870B2 (en) Combustion control device for internal combustion engine
JPH0579370A (en) Cylinder injection type internal combustion engine
EP1559889A2 (en) Direct fuel injection/spark ignition engine control device
JPH0579386A (en) Inter-cylinder injection type internal combustion engine
JPS60230544A (en) Fuel injector for engine
JPH08189405A (en) Cylinder injection type spark ignition engine
JPH08200116A (en) Cylinder fuel injection-type internal combustion engine
JPH10159642A (en) Knocking judging device for internal combustion engine
JP2836353B2 (en) In-cylinder internal combustion engine
JPH1068376A (en) Lean-burn internal combustion engine
JP2003106186A (en) Control system for spark ignition type direct injection engine
JPH0579337A (en) Inter-cylinder injection type internal combustion engine
JP2002339782A (en) Control device for spark ignition type direct-injection engine
JP3677947B2 (en) Fuel injection control device for internal combustion engine
JP2002332849A (en) Controller for spark ignition type direct-injection engine
JP3319311B2 (en) Intake control device for stratified combustion internal combustion engine
JPH0433377Y2 (en)
JP3677948B2 (en) Fuel injection control device for internal combustion engine