JPH08196643A - Cavity organ treatment apparatus - Google Patents
Cavity organ treatment apparatusInfo
- Publication number
- JPH08196643A JPH08196643A JP2872795A JP2872795A JPH08196643A JP H08196643 A JPH08196643 A JP H08196643A JP 2872795 A JP2872795 A JP 2872795A JP 2872795 A JP2872795 A JP 2872795A JP H08196643 A JPH08196643 A JP H08196643A
- Authority
- JP
- Japan
- Prior art keywords
- cover member
- hollow organ
- tubular cover
- stent
- organ treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、血管や胆管などの生体
内の中空器官に挿入して、狭搾や破裂を防ぐために使用
する中空器官治療用器具に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow organ treatment instrument which is inserted into a hollow organ in a living body such as a blood vessel or a bile duct to prevent narrowing or rupture.
【0002】[0002]
【従来の技術】狭搾した中空器官をバル−ンカテ−テル
などで元通りに拡張した後、再狭搾を防止するためにス
テントが使用されるようになってきた。現在使用されて
いるステントは金属製のワイヤを組み立てたものであ
り、最初は折りたたんで小径にしておき、中空器官の目
的とする部位に到達したところで拡径して中空器官の内
壁に密着させ、狭搾を防止するものである。2. Description of the Related Art Stents have come to be used to prevent restenosis after expanding a narrowed hollow organ with a balloon catheter or the like. The stent currently used is an assembly of metal wires, and it is first folded to have a small diameter, and when it reaches the target site of the hollow organ, it is expanded and brought into close contact with the inner wall of the hollow organ. It prevents squeezing.
【0003】このような金属製のステントは、狭搾防止
にある程度の効果はあるが、中空器官にストレスを与え
やすいために、再狭搾の原因となる炎症や過剰肥厚など
を生じるという問題があることが分かってきた。また、
金属は生体内で異物として永久に残るという問題もあ
る。そのため、最近では合成樹脂製のステントが検討さ
れており、とくに生体吸収性の合成樹脂を使用したもの
が種々提案されている。そのような例としては、特開平
3−205059号公報、特開平5−103830号公
報および特表平5−509008号公報などがある。Although such a metal stent has some effect in preventing stenosis, it tends to give stress to a hollow organ, so that it causes inflammation or excessive thickening which causes restenosis. I know that there is. Also,
There is also a problem that metal permanently remains as a foreign substance in the living body. Therefore, recently, a stent made of a synthetic resin has been studied, and in particular, various stents using a bioabsorbable synthetic resin have been proposed. As such examples, there are JP-A-3-205059, JP-A-5-103830, and JP-A-5-509008.
【0004】一方、特公平6−93920号公報には、
金属製ステントの問題点を解決するために、金属製ステ
ントの外側に柔軟性のあるスリーブを装着したものが提
案されている。On the other hand, Japanese Patent Publication No. 6-93920 discloses that
In order to solve the problems of the metallic stent, it has been proposed to mount a flexible sleeve on the outer side of the metallic stent.
【0005】[0005]
【発明が解決しようとする課題】金属製ステントの欠点
を解決するための上述したような改良は、ある程度の効
果があるが、再狭搾の防止という点でなお不十分であ
る。本発明の目的は、中空器官の再狭搾を効果的に防止
することができる器具を提供することにある。Although the above-mentioned improvements for solving the drawbacks of the metal stent have some effects, they are still insufficient in terms of preventing restenosis. An object of the present invention is to provide a device capable of effectively preventing restenosis of a hollow organ.
【0006】[0006]
【課題を解決するための手段】本発明の器具は、可撓性
の筒状カバー部材と、該筒状カバー部材内に配置され、
小径の第1の形状から大径の第2の形状に変移可能で比
較的硬質のステント部材より構成されている。そして、
前記筒状カバー部材もステント部材も生体吸収性材料で
形成されており、さらに、筒状カバー部材の少なくとも
外表面は多孔性であることを特徴とするものである。と
くに筒状カバー部材の少なくとも外表面を多孔性にした
点が重要であり、これによって再狭搾を効果的に防止す
ることができる。SUMMARY OF THE INVENTION The device of the present invention comprises a flexible tubular cover member, and a tubular tubular cover member disposed within the tubular tubular cover member.
It is composed of a relatively hard stent member that is capable of transitioning from a small-diameter first shape to a large-diameter second shape. And
Both the tubular cover member and the stent member are made of a bioabsorbable material, and at least the outer surface of the tubular cover member is porous. In particular, it is important that at least the outer surface of the tubular cover member is made porous so that restenosis can be effectively prevented.
【0007】[0007]
【作用】本発明の器具は、筒状カバー部材とステント部
材を小径にした状態で中空器官内に挿入し、目的の部位
でステント部材を大径の第2の形状に変移させて筒状カ
バー部材が中空器官の内壁に密着するように中空器官を
内部から保持して狭搾を防止する。According to the device of the present invention, the tubular cover member and the stent member are inserted into the hollow organ in a state where the diameter thereof is small, and the stent member is changed to the second shape having the large diameter at a target site to form the tubular cover. The hollow organ is held from the inside so that the member adheres to the inner wall of the hollow organ to prevent squeezing.
【0008】本発明においては、ステント部材を比較的
硬質の材料で形成したので、大径の第2の形状への復元
力を十分確保できる。そして、これを可撓性の筒状カバ
ー部材で覆ったことにより、硬質部材が直接生体に接触
することがないので、生体に対するストレスが少ない。
また、筒状カバー部材の少なくとも外表面を多孔性にし
たことにより、生体組織が孔に侵入して組織と一体化
し、効果的に狭搾を防ぐことができる。さらに、全体を
生体吸収性材料で形成したので、やがて生体に吸収され
て消失し、金属のように永久に異物として残ることがな
い。In the present invention, since the stent member is made of a relatively hard material, it is possible to sufficiently secure the restoring force to the second shape having the large diameter. Since the hard member does not come into direct contact with the living body by covering it with the flexible tubular cover member, stress on the living body is small.
In addition, since at least the outer surface of the cylindrical cover member is made porous, the living tissue invades the pores and is integrated with the tissue, so that squeezing can be effectively prevented. Furthermore, since the whole body is made of the bioabsorbable material, it is eventually absorbed by the living body and disappears, and does not remain as a foreign substance permanently like metal.
【0009】[0009]
【実施例】以下、図面を用いて本発明をさらに具体的に
説明する。図1は、本発明の中空器官治療用器具の実施
例の1つである。図において、1は筒状カバー部材であ
り、2がステント部材である。この実施例においては、
ステント部材は形状記憶性の材料で形成されており、図
2に示すように最初は引き伸ばされて小径であり、中空
器官に挿入後、体温で加熱されて右側の大径の形状に復
元する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically below with reference to the drawings. FIG. 1 shows one embodiment of the hollow organ treatment device of the present invention. In the figure, 1 is a tubular cover member, and 2 is a stent member. In this example,
The stent member is made of a shape-memory material, and is initially stretched to have a small diameter, and after being inserted into the hollow organ, it is heated at body temperature and restored to the large diameter shape on the right side.
【0010】図3はステント部材の他の実施例である。
この例では、最初は円筒を折り畳んだ形状であり、これ
が本来の円筒形状に復元する。図4は、さらに他の実施
例であり、シートを巻いた形状から円筒形状に復元す
る。FIG. 3 shows another embodiment of the stent member.
In this example, the shape is initially a folded cylinder, which restores the original cylindrical shape. FIG. 4 shows still another embodiment, in which the rolled shape of the sheet is restored to the cylindrical shape.
【0011】また、ステント部材は、第2の形状のもの
を弾性的に圧縮して小径にするようにしたものでもよ
い。とくに、特公平4−32662号公報に開示されて
いるように、線状部材をジグザグ構造の閉ループに形成
し、これを弾性的に圧縮するようにしたものは、好まし
く使用することができる。Further, the stent member may be one in which the second shape is elastically compressed to have a small diameter. Particularly, as disclosed in Japanese Patent Publication No. 4-32662, a linear member formed in a closed loop having a zigzag structure and elastically compressed can be preferably used.
【0012】筒状カバー部材の外表面は多孔性であるこ
とが必要であるが、カバー部材全体が多孔性であっても
よいし、外表面は多孔性で内表面は非多孔性の2層構造
であってもよい。孔径は、生体組織が侵入するのに適し
た大きさであることが好ましく、10〜200μm程度
が適当であり、とくに好ましいのは20〜100μmで
ある。多孔性のものを製造する方法としては、ポリマー
原料に所定の粒径の固体粒子を混合して成形した後、粒
子は溶解するがポリマーは溶解しない溶媒に浸漬して、
固体粒子を除去する方法が適当である。固体粒子として
は、塩化ナトリウムや炭酸カルシウムが好適であり、塩
化ナトリウムの場合は溶媒として水または水溶液が好ま
しく、炭酸カルシウムの場合は塩酸や硝酸などの酸水溶
液が好ましい。また、織物や編物も多孔性材料として使
用可能であるが、所望の孔径の多孔体をコンスタントに
製造できる点で、上述した方法で得られる多孔体の方が
好ましい。The outer surface of the cylindrical cover member needs to be porous, but the entire cover member may be porous, or the outer surface is porous and the inner surface is non-porous. It may be a structure. The pore size is preferably a size suitable for invasion of biological tissue, about 10 to 200 μm is suitable, and 20 to 100 μm is particularly preferable. As a method for producing a porous material, after mixing solid particles of a predetermined particle size with a polymer raw material and molding, the particles are dissolved, but the polymer is immersed in a solvent that does not dissolve,
A method of removing solid particles is suitable. As the solid particles, sodium chloride or calcium carbonate is preferable. In the case of sodium chloride, water or an aqueous solution is preferable, and in the case of calcium carbonate, an acid aqueous solution such as hydrochloric acid or nitric acid is preferable. A woven fabric or a knitted fabric can also be used as the porous material, but the porous body obtained by the above-described method is preferable in that a porous body having a desired pore size can be constantly manufactured.
【0013】本発明においては、図1に示すように、ス
テント部材を筒状カバー部材の内部に収納するようにし
てもよいし、筒状カバー部材に埋め込んで一体化した構
造にすることもできる。In the present invention, as shown in FIG. 1, the stent member may be housed inside the tubular cover member, or may be embedded in the tubular cover member to form an integrated structure. .
【0014】ステント部材も筒状カバー部材も生体吸収
性材料で形成するが、そのような材料としては、ポリグ
リコール酸、ポリ乳酸、乳酸−グリコール酸共重合体、
乳酸−εカプロラクトン共重合体、乳酸−グリコール酸
−εカプロラクトン共重合体、ヒドロキシ酪酸−ヒドロ
キシ吉草酸共重合体、ポリジオキサノン、ポリグリコネ
ートおよびキチンなどをあげることができる。Both the stent member and the tubular cover member are made of a bioabsorbable material. Examples of such a material include polyglycolic acid, polylactic acid, lactic acid-glycolic acid copolymer,
Examples thereof include lactic acid-ε caprolactone copolymer, lactic acid-glycolic acid-ε caprolactone copolymer, hydroxybutyric acid-hydroxyvaleric acid copolymer, polydioxanone, polyglyconate and chitin.
【0015】これらの中でも、ステント部材としては、
形状記憶性を付与することができる点で、ポリグリコー
ル酸、ポリ乳酸および乳酸−グリコール酸共重合体が好
ましい。すなわち、これらの重合体からなる成形物を所
定の温度以下(通常は30〜40℃以下、好ましくは室
温またはそれ以下の温度)で変形させると、特開平1−
192367号公報に開示されているように、形状記憶
性を有するようになる。したがって、図2〜4に示すよ
うな第2の形状の成形物を用意し、これを変形させて第
1の形状にすれば、本発明におけるステント部材として
好適に使用することができる。なお、上記の重合体の中
でも、乳酸の共重合比が70〜90重量%の乳酸−グリ
コール酸共重合体が、体温程度の温度で復元させること
ができるので、とくに好ましい。Among these, as the stent member,
Polyglycolic acid, polylactic acid, and a lactic acid-glycolic acid copolymer are preferable in that shape memory can be imparted. That is, when a molded article made of these polymers is deformed at a predetermined temperature or lower (usually 30 to 40 ° C. or lower, preferably room temperature or lower), JP-A-1-
As disclosed in Japanese Patent No. 192367, it has a shape memory property. Therefore, if a molded product having a second shape as shown in FIGS. 2 to 4 is prepared and deformed into the first shape, it can be suitably used as the stent member in the present invention. Among the above-mentioned polymers, a lactic acid-glycolic acid copolymer having a lactic acid copolymerization ratio of 70 to 90% by weight is particularly preferable because it can be restored at a temperature of about body temperature.
【0016】筒状カバー部材としては、ステント部材よ
りも柔軟性のある材料が好ましい。好適な材料を具体的
にあげれば、乳酸−グリコール酸共重合体、乳酸−εカ
プロラクトン共重合体、乳酸−グリコール酸−εカプロ
ラクトン共重合体、ポリジオキサノンおよびポリグリコ
ネートなどを例示することができる。The tubular cover member is preferably made of a material that is more flexible than the stent member. Specific examples of suitable materials include lactic acid-glycolic acid copolymers, lactic acid-ε caprolactone copolymers, lactic acid-glycolic acid-ε caprolactone copolymers, polydioxanone and polyglyconates.
【0017】本発明の中空器官治療用器具は、血管、胆
管、尿管などの狭搾防止のために使用することができ
る。本発明の器具を狭搾防止の必要な中空器官の所定部
位に到達させるには、カテーテルを使用するのが一般的
である。すなわち、カテーテルの先端部に本発明の器具
を収納して中空器官内に挿入し、所定の位置でカテーテ
ルから放出して拡径させる。The device for treating hollow organs of the present invention can be used for preventing stenosis of blood vessels, bile ducts, ureters and the like. A catheter is generally used to bring the device of the present invention to a predetermined portion of a hollow organ that requires squeezing prevention. That is, the device of the present invention is housed in the distal end portion of the catheter, inserted into the hollow organ, and released from the catheter at a predetermined position to expand the diameter.
【0018】また、本発明の器具は、動脈瘤の破裂を防
止するための治療にも使用することができる。すなわ
ち、動脈瘤のある場所に本発明の器具を挿入して筒状カ
バー部材を血管の内壁に密着させれば、血管壁が筒状カ
バー部材によって補強され、動脈瘤に血管内の圧力が直
接作用しなくなるので、破裂の危険が少なくなる。The device of the present invention can also be used for treatment to prevent rupture of an aneurysm. That is, if the device of the present invention is inserted into a place where an aneurysm is present and the tubular cover member is brought into close contact with the inner wall of the blood vessel, the blood vessel wall is reinforced by the tubular cover member, and the intravascular pressure is directly applied to the aneurysm. Since it does not work, the risk of rupture is reduced.
【0019】[0019]
【発明の効果】本発明の中空器官治療用器具は、ステン
ト部材が柔軟な筒状カバー部材で覆われているので、中
空器官に対するストレスが少なく、炎症や過剰肥厚など
が起こりにくい。また、ステント部材は硬質材料で形成
されているので、第2の形状への拡径が十分な力で行わ
れる。そして、筒状カバー部材は少なくとも外表面が多
孔性であるので、内皮細胞、線維芽細胞等の生体組織が
侵入してカバー部材と一体化し、所定の期間は中空器官
の狭搾を効果的に防止することができる。多孔性である
ことによって優れた狭搾防止効果が得られる理由につい
ては明確ではないが、生体組織が侵入することによって
生体適合性が高まるためではないかと推定される。さら
に、器具全体が生体吸収性材料で形成されているので、
やがては分解されて生体に吸収され、異物として生体内
に残るという問題が生じない。そして、最終的には、孔
に侵入した生体組織が筒状カバー部材と置換して生体組
織のみになり、生体修復が完了する。In the device for treating hollow organs of the present invention, since the stent member is covered with the flexible tubular cover member, stress on the hollow organ is small, and inflammation and excessive thickening hardly occur. Further, since the stent member is formed of a hard material, the diameter expansion to the second shape is performed with a sufficient force. Since at least the outer surface of the cylindrical cover member is porous, biological tissue such as endothelial cells and fibroblasts invades and is integrated with the cover member, effectively squeezing the hollow organ for a predetermined period. Can be prevented. Although it is not clear why the porous material has an excellent anti-squeezing effect, it is presumed that the biocompatibility is enhanced by the invasion of the biological tissue. Furthermore, since the entire device is made of bioabsorbable material,
The problem of being decomposed and absorbed by the living body and remaining in the living body as a foreign substance does not occur. Then, finally, the biological tissue that has penetrated into the hole is replaced with the tubular cover member to become only the biological tissue, and the biological repair is completed.
【図1】本発明の中空器官治療用器具の実施例を示す斜
視図。FIG. 1 is a perspective view showing an embodiment of a hollow organ treatment instrument of the present invention.
【図2】本発明で使用するステント部材の実施例を示す
斜視図。FIG. 2 is a perspective view showing an embodiment of a stent member used in the present invention.
【図3】本発明で使用するステント部材の他の実施例を
示す斜視図。FIG. 3 is a perspective view showing another embodiment of the stent member used in the present invention.
【図4】本発明で使用するステント部材のさらに他の実
施例を示す斜視図。FIG. 4 is a perspective view showing still another embodiment of the stent member used in the present invention.
1 筒状カバー部材 2 ステント部材 1 Cylindrical cover member 2 Stent member
Claims (7)
ー部材内に配置され、小径の第1の形状から大径の第2
の形状に変移可能で比較的硬質のステント部材より構成
されてなる中空器官治療用器具であって、前記筒状カバ
ー部材もステント部材も生体吸収性材料で形成されてな
り、さらに、筒状カバー部材の少なくとも外表面は多孔
性であることを特徴とする中空器官治療用器具。1. A flexible tubular cover member and a first shape having a small diameter to a second diameter having a large diameter, which is disposed in the tubular cover member.
A device for treating a hollow organ comprising a relatively hard stent member that can be transformed into the shape of FIG. 1, wherein both the tubular cover member and the stent member are made of a bioabsorbable material, and the tubular cover A hollow organ treatment device characterized in that at least the outer surface of the member is porous.
収納されてなる請求項1記載の中空器官治療用器具。2. The hollow organ treatment instrument according to claim 1, wherein the stent member is housed inside a tubular cover member.
まれてなる請求項1記載の中空器官治療用器具。3. The hollow organ treatment instrument according to claim 1, wherein the stent member is embedded in a tubular cover member.
の単独重合体あるいはこれらの共重合体からなる請求項
1〜3のいずれかの項に記載の中空器官治療用器具。4. The hollow organ treatment device according to claim 1, wherein the stent member is made of a homopolymer of lactic acid or glycolic acid or a copolymer thereof.
項1〜4のいずれかの項に記載の中空器官治療用器具。5. The hollow organ treatment instrument according to claim 1, wherein the stent member has a shape memory property.
項1〜5のいずれかの項に記載の中空器官治療用器具。6. The hollow organ treatment instrument according to claim 1, wherein the entire tubular cover member is porous.
共重合体または乳酸とεカプロラクトンの共重合体から
形成されてなる請求項1〜6のいずれかの項に記載の中
空器官治療用器具。7. The hollow organ treatment device according to claim 1, wherein the tubular cover member is formed of a copolymer of lactic acid and glycolic acid or a copolymer of lactic acid and ε-caprolactone. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2872795A JPH08196643A (en) | 1995-01-24 | 1995-01-24 | Cavity organ treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2872795A JPH08196643A (en) | 1995-01-24 | 1995-01-24 | Cavity organ treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08196643A true JPH08196643A (en) | 1996-08-06 |
Family
ID=12256473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2872795A Pending JPH08196643A (en) | 1995-01-24 | 1995-01-24 | Cavity organ treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08196643A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878159B2 (en) | 2001-10-30 | 2005-04-12 | Olympus Corporation | Stent |
KR100485013B1 (en) * | 2002-10-22 | 2005-04-22 | 주식회사 에스앤지바이오텍 | A biodegradable stent and the manufacturing method thereof |
US7131992B2 (en) | 2001-10-09 | 2006-11-07 | Olympus Corporation | Stent |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
JP2008536596A (en) * | 2005-04-19 | 2008-09-11 | メディノール リミテッド | Coating for endoprosthesis device and method for use in aneurysm treatment |
JP2008296041A (en) * | 1998-09-08 | 2008-12-11 | Kyoto Medical Planning Ltd | Stent for vascular channel |
US8968390B2 (en) | 2004-09-27 | 2015-03-03 | Medinol Ltd. | Covering for an endoprosthetic device and methods of using for aneurysm treatment |
-
1995
- 1995-01-24 JP JP2872795A patent/JPH08196643A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008296041A (en) * | 1998-09-08 | 2008-12-11 | Kyoto Medical Planning Ltd | Stent for vascular channel |
JP2008307405A (en) * | 1998-09-08 | 2008-12-25 | Kyoto Medical Planning Ltd | Method of manufacturing vascular stent yarn |
JP2009000553A (en) * | 1998-09-08 | 2009-01-08 | Kyoto Medical Planning Ltd | Stent thread for vascular channel |
JP4889151B2 (en) * | 1998-09-08 | 2012-03-07 | 株式会社 京都医療設計 | Vascular stent |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
US7131992B2 (en) | 2001-10-09 | 2006-11-07 | Olympus Corporation | Stent |
US6878159B2 (en) | 2001-10-30 | 2005-04-12 | Olympus Corporation | Stent |
KR100485013B1 (en) * | 2002-10-22 | 2005-04-22 | 주식회사 에스앤지바이오텍 | A biodegradable stent and the manufacturing method thereof |
US8968390B2 (en) | 2004-09-27 | 2015-03-03 | Medinol Ltd. | Covering for an endoprosthetic device and methods of using for aneurysm treatment |
US9060851B2 (en) | 2004-09-27 | 2015-06-23 | Medinol Ltd. | Covering for an endoprosthetic device and methods of using for aneurysm treatment |
JP2008536596A (en) * | 2005-04-19 | 2008-09-11 | メディノール リミテッド | Coating for endoprosthesis device and method for use in aneurysm treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749296B2 (en) | Biodegradable endoprosthesis and manufacturing method | |
JP3361212B2 (en) | Dual-stable luminal graft prosthesis | |
JP5175277B2 (en) | Method of manufacturing an implantable medical device that reduces the probability of delayed inflammatory reaction | |
US6200335B1 (en) | Stent for vessel | |
JP5189501B2 (en) | Hybrid stent | |
US8747878B2 (en) | Method of fabricating an implantable medical device by controlling crystalline structure | |
JP2842943B2 (en) | Vascular stent, its holding structure, and vascular stent insertion device | |
AU2014265460B2 (en) | Bioabsorbable biomedical implants | |
US10292808B2 (en) | Device and method for management of aneurism, perforation and other vascular abnormalities | |
CN110269959A (en) | Bioabsorbable biomedical implants | |
JPH0686827A (en) | Vessel stent and vessel stent inserting device | |
JP2008296041A (en) | Stent for vascular channel | |
JP2009541008A (en) | Polymer composite stent with polymer particles | |
EP2384725A1 (en) | Biocorrodable implant in which corrosion may be triggered or accelerated after implantation by means of an external stimulus | |
CA2589691C (en) | Polymeric endoprostheses with modified erosion rates and methods of manufacture | |
US20100049310A1 (en) | Method for coating a stent | |
JPH08196643A (en) | Cavity organ treatment apparatus | |
JP2005143979A (en) | Tube for neuroregeneration | |
JP2004033535A (en) | Aneurysm obturator | |
JP2003024448A (en) | In vivo self-retaining iodine releasing treatment material and stent | |
JP2004166807A (en) | Stent | |
AU2323402A (en) | Stent for vessel |