JPH08195357A - Laser irradiating device - Google Patents
Laser irradiating deviceInfo
- Publication number
- JPH08195357A JPH08195357A JP2101195A JP2101195A JPH08195357A JP H08195357 A JPH08195357 A JP H08195357A JP 2101195 A JP2101195 A JP 2101195A JP 2101195 A JP2101195 A JP 2101195A JP H08195357 A JPH08195357 A JP H08195357A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- energy
- mirror
- irradiation
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001678 irradiating effect Effects 0.000 title claims description 8
- 239000004065 semiconductor Substances 0.000 abstract description 20
- 230000003287 optical effect Effects 0.000 abstract description 12
- 238000000137 annealing Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ion Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば半導体デバイス
の作製する際に使用する、レーザー装置の構成に関す
る。特に、本発明は、1部もしくは全部が非晶質成分か
らなる半導体材料、あるいは、実質的に真性な多結晶の
半導体材料、さらには、イオン照射、イオン注入、イオ
ンドーピング等によってダメージを受け、結晶性が著し
く損なわれた半導体材料に対してレーザー光を照射する
ことによって、該半導体材料の結晶性を向上せしめ、あ
るいは結晶性を回復させる目的で使用するレーザー装置
の構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a laser device used for manufacturing a semiconductor device, for example. In particular, the present invention is a semiconductor material which is partially or wholly composed of an amorphous component, or a substantially intrinsic polycrystalline semiconductor material, and further, which is damaged by ion irradiation, ion implantation, ion doping, or the like. The present invention relates to the configuration of a laser device used for the purpose of improving the crystallinity of a semiconductor material or recovering the crystallinity by irradiating the semiconductor material whose crystallinity is significantly impaired with laser light.
【0002】[0002]
【従来の技術】近年、半導体素子プロセスの低温化に関
して盛んに研究が進められている。その大きな理由は、
ガラス等の絶縁基板上に半導体素子を形成する必要が生
じたからである。その他にも素子の微小化や素子の多層
化に伴う要請もある。2. Description of the Related Art In recent years, much research has been conducted on lowering the temperature of semiconductor device processes. The big reason is
This is because it becomes necessary to form a semiconductor element on an insulating substrate such as glass. In addition, there are demands for miniaturization of elements and multilayering of elements.
【0003】半導体プロセスにおいては、半導体材料に
含まれる非晶質成分もしくは非晶質半導体材料を結晶化
させることや、もともと結晶性であったものの、イオン
を照射したために結晶性が低下した半導体材料の結晶性
を回復することや、結晶性であるのだが、より結晶性を
向上させることが必要とされることがある。従来、この
ような目的のためには熱的なアニールが用いられてい
た。半導体材料として珪素を用いる場合には、600℃
から1100℃の温度で0.1〜48時間、もしくはそ
れ以上の時間のアニールをおこなうことによって、非晶
質の結晶化、結晶性の回復、結晶性の向上等がなされて
きた。[0003] In a semiconductor process, an amorphous component contained in a semiconductor material or an amorphous semiconductor material is crystallized, or a semiconductor material whose crystallinity is lowered due to irradiation of ions although it is originally crystalline. It may be necessary to recover the crystallinity of (3) or to improve the crystallinity, although it is crystalline. Conventionally, thermal annealing has been used for this purpose. 600 ° C. when using silicon as the semiconductor material
Therefore, by performing annealing at a temperature of 1 to 1100 ° C. for 0.1 to 48 hours or more, amorphous crystallization, recovery of crystallinity, improvement of crystallinity and the like have been performed.
【0004】このような、熱アニールは、一般に温度が
高いほど処理時間は短くても良かったが、500℃以下
の温度ではほとんど効果はなかった。したがって、プロ
セスの低温化の観点からは、従来、熱アニールによって
なされていた工程を他の手段によって置き換えることが
必要とされた。[0004] In such thermal annealing, in general, the higher the temperature, the shorter the processing time may be, but at a temperature of 500 ° C or lower, there is almost no effect. Therefore, from the viewpoint of lowering the process temperature, it has been necessary to replace the step conventionally performed by thermal annealing with another means.
【0005】レーザー光照射技術は究極の低温プロセス
と注目されている。すなわち、レーザー光は熱アニール
に匹敵する高いエネルギーを必要とされる箇所にのみ限
定して与えることができ、基板全体を高い温度にさらす
必要がないからである。レーザー光の照射に関しては、
大きく分けて2つの方法が提案されていた。The laser light irradiation technique is drawing attention as the ultimate low temperature process. That is, the laser light can be applied to only the places where high energy comparable to thermal annealing is required, and it is not necessary to expose the entire substrate to high temperature. Regarding the irradiation of laser light,
Two methods were roughly proposed.
【0006】第1の方法はアルゴンイオン・レーザー等
の連続発振レーザーを用いたものであり、スポット状の
ビームを半導体材料に照射する方法である。これはビー
ム内部でのエネルギー分布の差、およびビームの移動に
よって、半導体材料が溶融した後、緩やかに凝固するこ
とによって半導体材料を結晶化させる方法である。第2
の方法はエキシマーレーザーのごときパルス発振レーザ
ーを用いて、大エネルギーレーザーパルスを半導体材料
に照射し、半導体材料を瞬間的に溶融させ、凝固させる
ことによって半導体材料を結晶化させる方法である。The first method uses a continuous wave laser such as an argon ion laser and irradiates a semiconductor material with a spot-like beam. This is a method of crystallizing the semiconductor material by melting the semiconductor material and then slowly solidifying it due to the difference in energy distribution inside the beam and the movement of the beam. Second
Is a method of crystallizing a semiconductor material by irradiating the semiconductor material with a high-energy laser pulse using a pulsed laser such as an excimer laser to instantaneously melt and solidify the semiconductor material.
【0007】[0007]
【発明が解決しようとする課題】第1の方法の問題点は
処理に時間がかかることであった。これは連続発振レー
ザーの最大エネルギーが限られたものであるため、ビー
ムスポットのサイズがせいぜいmm単位となったためで
ある。これに対し、第2の方法ではレーザーの最大エネ
ルギーは非常に大きく、したがって、数cm2 以上の大
きなスポットを用いて、より量産性を上げることができ
る。しかしながら、通常用いられる正方形もしくは長方
形の形状のビームでは、1枚の大きな面積の基板を処理
するには、ビームを上下左右に移動させる必要があり、
量産性の面で依然として改善する余地があった。The problem of the first method is that the processing takes a long time. This is because the maximum energy of the continuous wave laser is limited and the size of the beam spot is at most mm. On the other hand, in the second method, the maximum energy of the laser is very large, and therefore, mass productivity can be further improved by using a large spot of several cm 2 or more. However, with a commonly used square or rectangular shaped beam, it is necessary to move the beam up, down, left and right in order to process one large area substrate.
There was still room for improvement in terms of mass productivity.
【0008】これに関しては、ビームを線状に変形し、
ビームの幅を処理すべき基板を越える長さとし、このビ
ームを走査することによって、大きく改善できる。改善
すべき問題として残されていたことはレーザー照射効果
の均一性である。エキシマレーザーに代表されるガスに
対して放電を行うことによってレーザー発振を行うパル
ス発振レーザーは、パルスごとにエネルギーがある程度
変動する性質を有している。さらに、パルス発振レーザ
ーは出力されるエネルギーによってそのエネルギーの変
動の度合いが変化する特性を有している。特にレーザー
が安定に発振しにくいエネルギー領域で照射を行なう場
合、基板全面にわたって均一なエネルギーでレーザー処
理することは困難である。In this regard, the beam is deformed linearly,
This can be greatly improved by making the width of the beam longer than the substrate to be processed and scanning this beam. What remains to be improved is the uniformity of the laser irradiation effect. A pulsed laser that oscillates by discharging a gas represented by an excimer laser has a property that energy varies to some extent for each pulse. Further, the pulsed laser has a characteristic that the degree of fluctuation of the energy changes depending on the energy output. In particular, when the laser is irradiated in an energy region where stable oscillation is difficult, it is difficult to perform laser processing with uniform energy over the entire surface of the substrate.
【0009】パルス発振型のレーザーを使用するもう一
つの問題点として、レーザーを長時間使用することによ
って、レーザー発振に必要なガスが劣化し、レーザーエ
ネルギーが下がってゆくことが挙げられる。このことに
関してはレーザーの出力を上げれば、レーザーエネルギ
ーも上がるので、問題ないように思われる。しかし、実
際はレーザーの出力を変えるとしばらくの間レーザーの
エネルギーが安定しなくなるので、この方法はあまり好
ましくない。Another problem of using the pulse oscillation type laser is that the gas required for laser oscillation deteriorates and the laser energy decreases as the laser is used for a long time. In this regard, increasing the laser power also increases the laser energy, so there seems to be no problem. However, in practice, changing the laser output makes the laser energy unstable for a while, so this method is not very preferable.
【0010】[0010]
【課題を解決するための手段】本発明では、減光フィル
ターで代表されるエネルギー減衰装置とビームプロファ
イラーで代表されるエネルギー測定装置を組み合わせ用
いることによって、これらの問題を解決する。即ち、本
発明は、レーザーができるだけ安定する出力でレーザー
発振を行ない、さらにエネルギー減衰装置を組み合わせ
用いることで、レーザー強度を被照射物に対して最適な
エネルギーに調節し照射する方法に関する。In the present invention, these problems are solved by using an energy attenuator represented by a neutral density filter and an energy measuring instrument represented by a beam profiler in combination. That is, the present invention relates to a method of irradiating an object by adjusting the laser intensity to an optimum energy by irradiating the laser with an output that is as stable as possible and using an energy attenuator in combination.
【0011】なお、本発明の場合、エネルギー減衰装置
はエネルギー減衰率が連続可変であることが望ましい
が、不連続可変でも良い。すなわち、本発明の概要はレ
ーザーエネルギーを上記最適エネルギーより高く設定
し、エネルギー減衰装置を使用することで上記最適エネ
ルギーに調節する。このとき、レーザーはできるだけ安
定に発振できるエネルギー領域で発振させる。そして、
レーザーを長時間発振し続けるとレーザーエネルギーが
低下してくる。この低下分をエネルギー減衰装置を調節
することで補うのが、本発明の主旨である。即ち、最終
的に低下してしまうエネルギーを最初の段階ではエネル
ギー減衰装置で減衰させ、レーザー光の照射を続ける段
階において、徐々に減衰率を低下させていくことで、常
に一定のエネルギーでレーザー光を照射することを特徴
とする。であるから、エネルギー減衰装置が連続可変で
ある方が好ましい。In the case of the present invention, the energy attenuation device preferably has a continuously variable energy attenuation rate, but may have a discontinuously variable energy attenuation rate. That is, according to the outline of the present invention, the laser energy is set higher than the optimum energy, and the optimum energy is adjusted by using the energy attenuator. At this time, the laser oscillates in an energy range in which it can oscillate as stably as possible. And
If the laser continues to oscillate for a long time, the laser energy will decrease. It is the gist of the present invention to compensate for this decrease by adjusting the energy attenuator. That is, the energy that is finally reduced is attenuated by the energy attenuator in the first stage, and the attenuation rate is gradually reduced in the stage where the laser light irradiation is continued, so that the laser light is always kept at a constant energy. It is characterized by irradiating. Therefore, it is preferable that the energy attenuator is continuously variable.
【0012】[0012]
〔実施例1〕まず装置について説明する。図1には本実
施例で使用するレーザーアニール装置の概念図を示す。
1がレーザーアニール装置の本体である。レーザー光は
発振器2で発振される。発振器2で発振されるレーザー
光は、KrFエキシマレーザー(波長248nm、パル
ス幅25ns)である。勿論、他のエキシマレーザーさ
らには他の方式のレーザーを用いることもできる。[Embodiment 1] First, the apparatus will be described. FIG. 1 shows a conceptual diagram of a laser annealing apparatus used in this embodiment.
Reference numeral 1 is the main body of the laser annealing apparatus. The laser light is oscillated by the oscillator 2. The laser light oscillated by the oscillator 2 is a KrF excimer laser (wavelength 248 nm, pulse width 25 ns). Of course, other excimer lasers or lasers of other types can be used.
【0013】発振器2で発振されたレーザー光は、全反
射ミラー5、6を経由して増幅器3で増幅され、さらに
全反射ミラー7、8を経由して光学系4に導入される。
なお、図1中には示さなかったが、8と4との間にエネ
ルギー減衰装置を挿入する。この機械の構造は図3に示
す。The laser light oscillated by the oscillator 2 is amplified by the amplifier 3 via the total reflection mirrors 5 and 6, and is further introduced into the optical system 4 via the total reflection mirrors 7 and 8.
Although not shown in FIG. 1, an energy attenuator is inserted between 8 and 4. The structure of this machine is shown in FIG.
【0014】図3の装置は1枚のフィルターをレーザー
ビームの進行方向に対してほぼ面を向け、その角度を変
えることでエネルギー透過率を変化させる方式ものであ
る。The apparatus shown in FIG. 3 is a system in which one filter is oriented substantially in the direction of the laser beam and the energy transmittance is changed by changing the angle.
【0015】光学系に入射する直前のレーザー光のビー
ムは、3×2cm2 程度の長方形であるが、光学系4によ
って、長さ8〜30cm、幅0〜0. 5mm程度の細長い
ビーム(線状ビーム)に加工される。この光学系4を経
たレーザー光のエネルギーは最大で1000mJ/ショ
ットである。The beam of laser light immediately before entering the optical system is a rectangle of about 3 × 2 cm 2 , but the optical system 4 allows a long and narrow beam (line of 8 to 30 cm and width of 0 to 0.5 mm). Beam). The energy of the laser beam that has passed through this optical system 4 is 1000 mJ / shot at the maximum.
【0016】レーザー光をこのような細長いビームに加
工するのは、加工性を向上させるためである。即ち、線
状のビームは光学系4を出た後、全反射ミラー9を経
て、試料11に照射されるが、ビームの幅は試料の幅よ
りも長いので、試料を1方向に移動させることで、試料
全体に対してレーザー光を照射することができる。従っ
て、試料のステージ及び駆動装置10は構造が簡単で保
守も用意である。また、試料をセットする際の位置合わ
せの操作(アラインメント)も容易である。The reason why the laser beam is processed into such an elongated beam is to improve the workability. That is, the linear beam exits the optical system 4, passes through the total reflection mirror 9, and is irradiated on the sample 11. However, since the width of the beam is longer than the width of the sample, the sample should be moved in one direction. Thus, the entire sample can be irradiated with laser light. Therefore, the sample stage and the driving device 10 have a simple structure and are easy to maintain. In addition, the positioning operation (alignment) when setting the sample is easy.
【0017】レーザー光が照射される試料のステージ1
0はコンピュータにより制御されており線状のレーザー
光に対してほぼ直角方向に動くよう設計されている。Stage 1 of the sample irradiated with laser light
0 is controlled by a computer and is designed to move in a direction substantially perpendicular to the linear laser beam.
【0018】光学系4の内部の光路を図2に示す。光学
系4に入射したレーザー光はシリンドリカル凹レンズ
A、シリンドリカル凸レンズB、横方向のフライアイレ
ンズC、Dを通過することによってレーザー光はそれま
でのガウス分布型から短形分布に変化する。さらに、シ
リンドリカル凸レンズE、Fを通過してミラーG(図1
ではミラー9に相当)を介して、シリンドリカルレンズ
Hによって集束され、試料に照射される。The optical path inside the optical system 4 is shown in FIG. The laser light incident on the optical system 4 passes through the cylindrical concave lens A, the cylindrical convex lens B, and the lateral fly-eye lenses C and D, so that the laser light changes from the Gaussian distribution type to the rectangular distribution. Further, the light passes through the cylindrical convex lenses E and F, and the mirror G (see FIG.
Then, it is focused by the cylindrical lens H via the mirror 9) and is irradiated onto the sample.
【0019】ミラーG(図1のミラー9に相当する)は
レーザーエネルギーを少し透過できるようにできてお
り、ミラーGの後ろにビームプロファイラーを置いて、
レーザーを試料に照射中でもリアルタイムでレーザーエ
ネルギーを測定できる。線状レーザーは面積も大きいの
で、ビームプロファイラーを線状レーザー内でスキャン
させることでエネルギーを測定する。(図4参照)こう
することで線状レーザー内のエネルギー分布も測定でき
る。Mirror G (corresponding to mirror 9 in FIG. 1) is designed to allow a small amount of laser energy to be transmitted, and a beam profiler is placed behind mirror G to
Laser energy can be measured in real time even when the sample is irradiated with laser. Since the linear laser has a large area, the energy is measured by scanning the beam profiler inside the linear laser. (See FIG. 4) By doing so, the energy distribution in the linear laser can also be measured.
【0020】これらの装置はレーザー照射中、線状レー
ザーのエネルギーが設定エネルギーよりもある一定の割
合以上ずれてくると自動的にビームスプリッターからエ
ネルギー減衰装置に信号がきて、レーザーエネルギーを
上記設定エネルギーに直すよう設計されている。In these devices, when the energy of the linear laser deviates from the set energy by a certain ratio or more during laser irradiation, a signal is automatically sent from the beam splitter to the energy attenuator, and the laser energy is changed to the set energy. It is designed to be fixed.
【0021】〔実施例2〕実施例1の方法で図1記載の
ミラーGに透過性をもたせることは、レーザー照射のエ
ネルギーをリアルタイムで測定できる利点を持つ反面、
レーザーエネルギーを損失してしまう欠点がある。そこ
で本実施例では、上記欠点を解消する装置配置について
述べる。ただし、本実施例の装置配置だと試料照射中に
リアルタイムで線状レーザービームのエネルギーを測定
することはできなくなる。[Embodiment 2] While making the mirror G shown in FIG. 1 transparent by the method of Embodiment 1 has the advantage that the energy of laser irradiation can be measured in real time,
It has the drawback of losing laser energy. Therefore, in the present embodiment, a device arrangement for solving the above-mentioned drawback will be described. However, with the apparatus arrangement of this embodiment, the energy of the linear laser beam cannot be measured in real time during sample irradiation.
【0022】本実施例で使用する装置のレーザー照射部
分を図5に示す。図5中のミラーPに図1のミラーGが
対応する。ミラーPは全反射ミラーで、その下に4%反
射ミラーQがある。ミラーQで折り返されたエネルギー
はビームプロファイラーRに入るようになっている。ミ
ラーQはミラーPに比べるとサイズが小さい。というの
は、ビームプロファイラーが一度に測定できる面積が小
さいからである。ミラーQはビームプロファイラーRと
連動していて、線状レーザーに沿って、線状レーザーよ
りも広い範囲でスライドできるようになっている。ミラ
ーQとビームプロファイラーRはレーザー照射時には線
状レーザーの外までスライドさせておく。ここで、もし
被照射物が線状レーザーの幅にたいして狭いものである
なら、照射に影響しない線状レーザーの端のところにミ
ラーQを置くことで、レーザー照射中もエネルギーを測
定することが可能となる。The laser-irradiated portion of the apparatus used in this embodiment is shown in FIG. The mirror G in FIG. 1 corresponds to the mirror P in FIG. The mirror P is a total reflection mirror, and below it is a 4% reflection mirror Q. The energy returned by the mirror Q enters the beam profiler R. The size of the mirror Q is smaller than that of the mirror P. This is because the beam profiler has a small area that can be measured at one time. The mirror Q is interlocked with the beam profiler R so that it can slide along the linear laser in a wider range than that of the linear laser. The mirror Q and the beam profiler R are slid to the outside of the linear laser during laser irradiation. Here, if the irradiation target is narrower than the width of the linear laser, it is possible to measure the energy during laser irradiation by placing the mirror Q at the end of the linear laser that does not affect the irradiation. Becomes
【0023】[0023]
【発明の効果】本発明のレーザー照射技術によって、レ
ーザーエネルギーを極力一定に保ちながらレーザー処理
を行うことが可能となった。この結果、レーザー処理工
程の再現性が高まり、レーザー処理工程を経る製品のバ
ラツキが著しく減ることが期待できる。本発明は特に、
半導体デバイスのプロセスに利用される全てのレーザー
処理プロセスに有効に利用できる。なぜなら、上記プロ
セスはレーザーエネルギーのマージンが狭く、わずかな
エネルギーの違いが特性に大きく影響するからである。
このように本発明は工業上、有益なものと考えられる。The laser irradiation technique of the present invention makes it possible to perform laser processing while keeping laser energy as constant as possible. As a result, it can be expected that the reproducibility of the laser processing step is improved and the variation in products that have undergone the laser processing step is significantly reduced. The present invention, in particular,
It can be effectively used for all laser processing processes used for semiconductor device processes. This is because the above process has a narrow laser energy margin, and a slight difference in energy greatly affects the characteristics.
As described above, the present invention is considered to be industrially useful.
【図1】 レーザーアニール装置の概略を示す図FIG. 1 is a diagram showing an outline of a laser annealing apparatus.
【図2】 光学系を示す図FIG. 2 is a diagram showing an optical system.
【図3】 減光フィルターを示す図FIG. 3 is a diagram showing a neutral density filter.
【図4】 線状レーザーのエネルギーを測定する状態を
示す図FIG. 4 is a diagram showing a state in which the energy of a linear laser is measured.
【図5】 レーザー照射装置の概略の構成を示す図FIG. 5 is a diagram showing a schematic configuration of a laser irradiation device.
1 レーザー照射装置 2 レーザー光の発振器 3 レーザー光の増幅器 4 光学系 5、6、8、9 全反射ミラー 10 ステージ 11 試料 1 Laser irradiation apparatus 2 Laser light oscillator 3 Laser light amplifier 4 Optical system 5, 6, 8, 9 Total reflection mirror 10 Stage 11 Sample
Claims (6)
をつけたことを特徴とするレーザー照射装置。1. A laser irradiation apparatus comprising an excimer laser provided with an energy measuring device.
つけたことを特徴とするレーザー照射装置。2. An excimer laser equipped with an energy attenuating device, which is a laser irradiation device.
ルギー減衰率が可変であることを特徴とするレーザー照
射装置。3. A laser irradiation device according to claim 2, wherein the energy attenuation device has a variable energy attenuation rate.
エネルギー減衰装置とをつけたことを特徴とするレーザ
ー照射装置。4. A laser irradiating device comprising an excimer laser provided with an energy measuring device and an energy attenuating device.
エネルギー減衰率が可変であるエネルギー減衰装置とを
つけたことを特徴とするレーザー照射装置。5. A laser irradiation apparatus comprising an excimer laser equipped with an energy measuring device and an energy attenuating device having a variable energy attenuating rate.
ルギー減衰装置とが連動しており、レーザーエネルギー
をある一定の値に保ってレーザー照射を行えることを特
徴とするレーザー照射装置。6. A laser irradiating device, wherein the energy measuring device according to claim 5 and the energy attenuating device are interlocked with each other, and laser irradiation can be performed while keeping the laser energy at a certain value.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02101195A JP3727034B2 (en) | 1995-01-13 | 1995-01-13 | Laser irradiation device |
US08/579,396 US5854803A (en) | 1995-01-12 | 1995-12-27 | Laser illumination system |
US09/203,613 US6210996B1 (en) | 1995-01-13 | 1998-12-02 | Laser illumination system |
US09/811,701 US6468842B2 (en) | 1995-01-13 | 2001-03-20 | Laser illumination system |
US10/178,349 US6706570B2 (en) | 1995-01-13 | 2002-06-25 | Laser illumination system |
US10/406,309 US6784030B2 (en) | 1995-01-13 | 2003-04-04 | Laser illumination system |
US10/917,454 US7528079B2 (en) | 1995-01-13 | 2004-08-13 | Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02101195A JP3727034B2 (en) | 1995-01-13 | 1995-01-13 | Laser irradiation device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35258998A Division JP3929190B2 (en) | 1998-12-11 | 1998-12-11 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08195357A true JPH08195357A (en) | 1996-07-30 |
JP3727034B2 JP3727034B2 (en) | 2005-12-14 |
Family
ID=12043128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02101195A Expired - Fee Related JP3727034B2 (en) | 1995-01-12 | 1995-01-13 | Laser irradiation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3727034B2 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11214306A (en) * | 1998-01-27 | 1999-08-06 | Toshiba Corp | Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer |
JP2003059831A (en) * | 2001-08-17 | 2003-02-28 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003224070A (en) * | 2001-11-26 | 2003-08-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003229359A (en) * | 2001-11-29 | 2003-08-15 | Semiconductor Energy Lab Co Ltd | Manufacturing method for semiconductor device |
JP2003257864A (en) * | 2001-12-28 | 2003-09-12 | Semiconductor Energy Lab Co Ltd | Semiconductor device and production system thereof |
US6700096B2 (en) | 2001-10-30 | 2004-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US6750423B2 (en) | 2001-10-25 | 2004-06-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
US6770546B2 (en) | 2001-07-30 | 2004-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US6808969B2 (en) | 2001-10-30 | 2004-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
US6841434B2 (en) | 2002-03-26 | 2005-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device |
US6847050B2 (en) | 2002-03-15 | 2005-01-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element and semiconductor device comprising the same |
US6930326B2 (en) | 2002-03-26 | 2005-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor circuit and method of fabricating the same |
US6933527B2 (en) | 2001-12-28 | 2005-08-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US6962860B2 (en) | 2001-11-09 | 2005-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US6979605B2 (en) | 2001-11-30 | 2005-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light |
US7050878B2 (en) | 2001-11-22 | 2006-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductror fabricating apparatus |
US7105392B2 (en) | 2002-01-28 | 2006-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7109069B2 (en) | 2001-12-21 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7112517B2 (en) | 2001-09-10 | 2006-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7115903B2 (en) | 2001-12-28 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device producing system |
US7132375B2 (en) | 2001-08-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate |
US7133737B2 (en) | 2001-11-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer |
US7138306B2 (en) | 2001-09-25 | 2006-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US7148092B2 (en) | 2002-01-28 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7148507B2 (en) | 2002-01-17 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having thin film transistor with position controlled channel formation region |
US7160764B2 (en) | 2000-12-27 | 2007-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and semiconductor device fabricating method |
US7214573B2 (en) | 2001-12-11 | 2007-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device that includes patterning sub-islands |
US7226817B2 (en) | 2001-12-28 | 2007-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing |
US7259082B2 (en) | 2002-10-03 | 2007-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US7312473B2 (en) | 2001-12-28 | 2007-12-25 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device using the same |
US7317205B2 (en) | 2001-09-10 | 2008-01-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing a semiconductor device |
US7326630B2 (en) | 2003-04-04 | 2008-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device utilizing laser irradiation |
US7387922B2 (en) | 2003-01-21 | 2008-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system |
US7390704B2 (en) | 2004-06-16 | 2008-06-24 | Semiconductor Energy Laboratory Co., Ltd. | Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device |
US7405114B2 (en) | 2002-10-16 | 2008-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method of manufacturing semiconductor device |
US7439107B2 (en) | 2002-12-26 | 2008-10-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device |
US7459406B2 (en) | 2004-09-01 | 2008-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing unit, laser processing method, and method for manufacturing semiconductor device |
US7557991B2 (en) | 2004-12-06 | 2009-07-07 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device |
US7705357B2 (en) | 2002-03-05 | 2010-04-27 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with channel region in recess |
US7709895B2 (en) | 2002-02-08 | 2010-05-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having insulating stripe patterns |
US7749818B2 (en) | 2002-01-28 | 2010-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7927983B2 (en) | 2001-08-31 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
WO2011142154A1 (en) * | 2010-05-11 | 2011-11-17 | 株式会社日本製鋼所 | Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program |
US8346497B2 (en) | 2003-03-26 | 2013-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for testing semiconductor film, semiconductor device and manufacturing method thereof |
-
1995
- 1995-01-13 JP JP02101195A patent/JP3727034B2/en not_active Expired - Fee Related
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4659930B2 (en) * | 1998-01-27 | 2011-03-30 | 株式会社東芝 | Polycrystalline semiconductor film manufacturing method and laser annealing apparatus |
JPH11214306A (en) * | 1998-01-27 | 1999-08-06 | Toshiba Corp | Manufacture of polycrystal line semiconductor film, manufacture of liquid crystal display, and laser annealer |
US7498212B2 (en) | 2000-12-27 | 2009-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and semiconductor device fabricating method |
US7872246B2 (en) | 2000-12-27 | 2011-01-18 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and semiconductor device fabricating method |
US7160764B2 (en) | 2000-12-27 | 2007-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and semiconductor device fabricating method |
US8035877B2 (en) | 2001-07-30 | 2011-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US7679800B2 (en) | 2001-07-30 | 2010-03-16 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US7218431B2 (en) | 2001-07-30 | 2007-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment apparatus and method of manufacturing semiconductor device |
US6770546B2 (en) | 2001-07-30 | 2004-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US7109073B2 (en) | 2001-08-17 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating semiconductor device |
US7393729B2 (en) | 2001-08-17 | 2008-07-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating semiconductor device |
JP2003059831A (en) * | 2001-08-17 | 2003-02-28 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
US7422987B2 (en) | 2001-08-30 | 2008-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US7132375B2 (en) | 2001-08-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by crystallization of a semiconductor region by use of a continuous wave laser beam through the substrate |
US7927983B2 (en) | 2001-08-31 | 2011-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
US7317205B2 (en) | 2001-09-10 | 2008-01-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing a semiconductor device |
US7682949B2 (en) | 2001-09-10 | 2010-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7112517B2 (en) | 2001-09-10 | 2006-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser treatment device, laser treatment method, and semiconductor device fabrication method |
US7138306B2 (en) | 2001-09-25 | 2006-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US10910219B2 (en) | 2001-09-25 | 2021-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US10366885B2 (en) | 2001-09-25 | 2019-07-30 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US7943885B2 (en) | 2001-09-25 | 2011-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and method of manufacturing semiconductor device |
US8686315B2 (en) | 2001-09-25 | 2014-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US9748099B2 (en) | 2001-09-25 | 2017-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation device and method of manufacturing semiconductor device |
US6750423B2 (en) | 2001-10-25 | 2004-06-15 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
US8993421B2 (en) | 2001-10-25 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
US8530788B2 (en) | 2001-10-25 | 2013-09-10 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device |
US7892952B2 (en) | 2001-10-30 | 2011-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US6808969B2 (en) | 2001-10-30 | 2004-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
US7037809B2 (en) | 2001-10-30 | 2006-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device using a laser irradiation process |
CN100437911C (en) * | 2001-10-30 | 2008-11-26 | 株式会社半导体能源研究所 | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
CN1312730C (en) * | 2001-10-30 | 2007-04-25 | 株式会社半导体能源研究所 | Laser apparatus, laser irradiation method and semiconductor device and its producing method |
US7300516B2 (en) | 2001-10-30 | 2007-11-27 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device |
US6700096B2 (en) | 2001-10-30 | 2004-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment |
US6962860B2 (en) | 2001-11-09 | 2005-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US7050878B2 (en) | 2001-11-22 | 2006-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductror fabricating apparatus |
US7439115B2 (en) | 2001-11-22 | 2008-10-21 | Semiconductor Eneregy Laboratory Co., Ltd. | Semiconductor fabricating apparatus |
JP2003224070A (en) * | 2001-11-26 | 2003-08-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2003229359A (en) * | 2001-11-29 | 2003-08-15 | Semiconductor Energy Lab Co Ltd | Manufacturing method for semiconductor device |
US7133737B2 (en) | 2001-11-30 | 2006-11-07 | Semiconductor Energy Laboratory Co., Ltd. | Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer |
US7588974B2 (en) | 2001-11-30 | 2009-09-15 | Semiconductor Energy Laboratory Co., Ltd. | Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer |
US7510920B2 (en) | 2001-11-30 | 2009-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for a thin film transistor that uses a pulse oscillation laser crystallize an amorphous semiconductor film |
US6979605B2 (en) | 2001-11-30 | 2005-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light |
US7214573B2 (en) | 2001-12-11 | 2007-05-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device that includes patterning sub-islands |
US7560397B2 (en) | 2001-12-11 | 2009-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method and method of manufacturing a semiconductor device |
US7109069B2 (en) | 2001-12-21 | 2006-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US8093593B2 (en) | 2001-12-21 | 2012-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having multichannel transistor |
US7176490B2 (en) | 2001-12-28 | 2007-02-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US7115903B2 (en) | 2001-12-28 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device producing system |
US7226817B2 (en) | 2001-12-28 | 2007-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing |
US7312473B2 (en) | 2001-12-28 | 2007-12-25 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device using the same |
US6933527B2 (en) | 2001-12-28 | 2005-08-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US7538350B2 (en) | 2001-12-28 | 2009-05-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor thin film device |
JP2003257864A (en) * | 2001-12-28 | 2003-09-12 | Semiconductor Energy Lab Co Ltd | Semiconductor device and production system thereof |
US9899419B2 (en) | 2002-01-17 | 2018-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US7148507B2 (en) | 2002-01-17 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having thin film transistor with position controlled channel formation region |
US7582162B2 (en) | 2002-01-17 | 2009-09-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US10879272B2 (en) | 2002-01-17 | 2020-12-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US10515983B2 (en) | 2002-01-17 | 2019-12-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US9178069B2 (en) | 2002-01-17 | 2015-11-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US10361222B2 (en) | 2002-01-17 | 2019-07-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and semiconductor device production system |
US7749818B2 (en) | 2002-01-28 | 2010-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7105392B2 (en) | 2002-01-28 | 2006-09-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7737506B2 (en) | 2002-01-28 | 2010-06-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7148092B2 (en) | 2002-01-28 | 2006-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7795734B2 (en) | 2002-01-28 | 2010-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US7709895B2 (en) | 2002-02-08 | 2010-05-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having insulating stripe patterns |
US7705357B2 (en) | 2002-03-05 | 2010-04-27 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with channel region in recess |
US6847050B2 (en) | 2002-03-15 | 2005-01-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element and semiconductor device comprising the same |
US7166863B2 (en) | 2002-03-15 | 2007-01-23 | Semiconductor Energy Laboratory Co. Ltd. | Semiconductor element, semiconductor device, electronic device, TV set and digital camera |
US7547593B2 (en) | 2002-03-26 | 2009-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device |
US7145175B2 (en) | 2002-03-26 | 2006-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor circuit and method of fabricating the same |
US6841434B2 (en) | 2002-03-26 | 2005-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device |
US6930326B2 (en) | 2002-03-26 | 2005-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor circuit and method of fabricating the same |
US7704812B2 (en) | 2002-03-26 | 2010-04-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor circuit and method of fabricating the same |
US7179699B2 (en) | 2002-03-26 | 2007-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device |
US7259082B2 (en) | 2002-10-03 | 2007-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US7800080B2 (en) | 2002-10-03 | 2010-09-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method of manufacturing semiconductor device |
US7405114B2 (en) | 2002-10-16 | 2008-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus and method of manufacturing semiconductor device |
US7439107B2 (en) | 2002-12-26 | 2008-10-21 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, method of irradiating laser light, and method of manufacturing a semiconductor device |
US7387922B2 (en) | 2003-01-21 | 2008-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation method, method for manufacturing semiconductor device, and laser irradiation system |
US8346497B2 (en) | 2003-03-26 | 2013-01-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for testing semiconductor film, semiconductor device and manufacturing method thereof |
US7326630B2 (en) | 2003-04-04 | 2008-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device utilizing laser irradiation |
US7390704B2 (en) | 2004-06-16 | 2008-06-24 | Semiconductor Energy Laboratory Co., Ltd. | Laser process apparatus, laser irradiation method, and method for manufacturing semiconductor device |
US7459406B2 (en) | 2004-09-01 | 2008-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing unit, laser processing method, and method for manufacturing semiconductor device |
US7557991B2 (en) | 2004-12-06 | 2009-07-07 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device |
WO2011142154A1 (en) * | 2010-05-11 | 2011-11-17 | 株式会社日本製鋼所 | Laser annealing device, method for manufacturing laser-annealed object, and laser annealing program |
Also Published As
Publication number | Publication date |
---|---|
JP3727034B2 (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08195357A (en) | Laser irradiating device | |
US5854803A (en) | Laser illumination system | |
US8737438B2 (en) | Systems and methods for implementing an interaction between a laser shaped as line beam and a film deposited on a substrate | |
JP4567984B2 (en) | Flat panel display manufacturing equipment | |
EP1063049B1 (en) | Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same | |
KR101167324B1 (en) | Laser thin film poly-silicon annealing optical system | |
US8796159B2 (en) | Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions | |
JP3033120B2 (en) | Manufacturing method of semiconductor thin film | |
JP2000357667A (en) | Laser processing equipment | |
US6545248B2 (en) | Laser irradiating apparatus | |
KR20060126665A (en) | Laser Thin Film Polysilicon Annealing System | |
EP1952105A2 (en) | Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate | |
US7277188B2 (en) | Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate | |
JP2002176007A (en) | Method and apparatus for measuring laser power of laser treating unit | |
JP2003510825A (en) | Laser system | |
JPH0888196A (en) | Laser treatment method | |
JP4551385B2 (en) | Laser irradiation device | |
JP3929190B2 (en) | Manufacturing method of semiconductor device | |
JP2003243322A (en) | Method of manufacturing semiconductor device | |
JPS5940526A (en) | Laser processing method and device | |
JPH03289128A (en) | Manufacture of semiconductor thin film crystal layer | |
JPH10150003A (en) | Laser processing equipment | |
JP2007019539A (en) | Laser processing method | |
JPH10150002A (en) | Method for manufacturing semiconductor film | |
JPH10150001A (en) | Laser processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050926 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081007 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131007 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |