[go: up one dir, main page]

JPH0819500B2 - Hydrogen storage alloy thin film body and method for producing the same - Google Patents

Hydrogen storage alloy thin film body and method for producing the same

Info

Publication number
JPH0819500B2
JPH0819500B2 JP63063594A JP6359488A JPH0819500B2 JP H0819500 B2 JPH0819500 B2 JP H0819500B2 JP 63063594 A JP63063594 A JP 63063594A JP 6359488 A JP6359488 A JP 6359488A JP H0819500 B2 JPH0819500 B2 JP H0819500B2
Authority
JP
Japan
Prior art keywords
thin film
phase
solid solution
film body
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63063594A
Other languages
Japanese (ja)
Other versions
JPH01240629A (en
Inventor
伸 藤谷
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63063594A priority Critical patent/JPH0819500B2/en
Publication of JPH01240629A publication Critical patent/JPH01240629A/en
Publication of JPH0819500B2 publication Critical patent/JPH0819500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、気中から水素を分離精製するために好適な
水素吸蔵合金薄膜体、およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy thin film body suitable for separating and purifying hydrogen from the atmosphere, and a method for producing the same.

(ロ)従来の技術 従来、水素の精製法として、吸着法、深冷吸着法等が
知られている。また、上記以外の方法として高分子膜や
パラジウム合金膜を利用した水素分離膜が実用化されて
いる。しかし、高分子膜は水素ガス分離比が2〜20程度
と低く、かつ180℃以上の高温では殆ど使用できない。
一方、実用域にあるパラジウム合金膜は分離比は極めて
高いが、貴金属であるため非常に高価であるという欠点
がある。
(B) Conventional technology As a hydrogen purification method, an adsorption method, a cryogenic adsorption method, and the like have been conventionally known. In addition, as a method other than the above, a hydrogen separation membrane using a polymer membrane or a palladium alloy membrane has been put into practical use. However, the polymer membrane has a low hydrogen gas separation ratio of about 2 to 20 and can hardly be used at a high temperature of 180 ° C. or higher.
On the other hand, a palladium alloy membrane in a practical range has an extremely high separation ratio, but has a drawback that it is very expensive because it is a precious metal.

近年、パラジウム合金と同様に、水素を金属格子内に
取り込む性質を有するLaNi5,TiCo,TiFe等の水素吸蔵合
金が開発され、特公昭60−246203号公報に見られるよう
に水素を分離精製する方法が提案されている。しかしこ
の方法は、バッチ式によるため基本的に連続運転が不可
能で、容器の複数化により見掛け上の連続運転を試みて
も、システム構成が複雑化するだけで、効率のよい運転
は望めなかった。
In recent years, hydrogen storage alloys such as LaNi 5 , TiCo, and TiFe, which have the property of incorporating hydrogen into the metal lattice, have been developed in the same manner as palladium alloys, and hydrogen is separated and purified as seen in Japanese Patent Publication No. 60-246203. A method has been proposed. However, this method is basically batch-type, so continuous operation is basically impossible.Even if an attempt is made to continuously operate by using multiple containers, the system configuration will only be complicated and efficient operation cannot be expected. It was

(ハ)発明が解決しようとする課題 このため、最近は特開昭62−191402号公報に見られる
ように、水素吸蔵合金をスパッタ法や蒸着法により薄膜
化して、水素の選択透過性のある分離膜を製造すること
が試みられている。しかしながら、水素吸蔵合金は一般
的に金属間化合物であって延性、展性に乏しく、このた
め、水素の吸蔵、放出に伴う応力により割れが生じ、水
素の選択透過による水素分離能力が低下する欠点があっ
た。
(C) Problems to be Solved by the Invention For this reason, recently, as shown in JP-A-62-191402, a hydrogen storage alloy is formed into a thin film by a sputtering method or a vapor deposition method and has a selective hydrogen permeability. Attempts have been made to produce separation membranes. However, hydrogen storage alloys are generally intermetallic compounds and are poor in ductility and malleability. Therefore, the stress associated with storage and release of hydrogen causes cracking, which reduces the hydrogen separation capacity due to selective permeation of hydrogen. was there.

そこで本発明は、上記従来技術の欠点を除いて水素吸
蔵、放出によっても割れが生じない水素吸蔵合金薄膜体
およびその製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a hydrogen storage alloy thin film body which does not crack even when storing and releasing hydrogen and a method for producing the same, except for the above-mentioned drawbacks of the prior art.

(ニ)課題を解決するための手段 本発明の水素吸蔵合金薄膜体は、Ti−Fe2元合金のTi
固溶体相内にTiFe化合物相が分散されてなるものであ
る。これは、Ti−Fe2元合金の組成と温度で決まるTi固
溶体相領域で熱間圧延(含鍛造)により、薄膜体加工お
よび溶体化処理を行って、均質なTi固溶体相薄膜体とな
し、次いでTi固溶体相をTiFe化合物相の2相共存領域に
おいて時間をかけてTiFe化合物相を析出させたのち、常
温まで冷却することにより得られる。
(D) Means for Solving the Problems The hydrogen storage alloy thin film body of the present invention is made of Ti-Fe binary alloy Ti.
The TiFe compound phase is dispersed in the solid solution phase. This is performed by hot rolling (including forging) in the Ti solid solution phase region determined by the composition and temperature of the Ti-Fe binary alloy to perform thin film body processing and solution treatment to form a homogeneous Ti solid solution phase thin film body, and then The Ti solid solution phase is obtained by precipitating the TiFe compound phase in the two-phase coexisting region of the TiFe compound phase over a period of time and then cooling to room temperature.

(ホ)作用 第1図はTi−Fe2元合金の状態図を示したもので、図
示の如く、Ti−Fe合金はその組成(重量%)と温度
(℃)に応じて種々の状態を取り得る。即ち、図のaで
示す組成と温度の領域は、βTi相領域又はTi固溶体相領
域と呼ばれ、TiとFeが均一に混じり合って固溶体相を形
成する領域である。また、図のbで示す組成と温度の領
域は、TiFe化合物相領域であり、その間に存在するcで
示す領域は、Ti固溶体相とTiFe化合物相のいずれの状態
をも取り得る2相共存領域である。その他αTi相領域、
TiFe2化合物相領域、αFe相領域および共存領域等が存
在するが、これらは本発明に直接関係ないためその詳細
説明は省略する。
(E) Action Fig. 1 shows the phase diagram of the Ti-Fe binary alloy. As shown in the figure, the Ti-Fe alloy takes various states depending on its composition (% by weight) and temperature (° C). obtain. That is, the region of composition and temperature indicated by a in the figure is called a βTi phase region or a Ti solid solution phase region, and is a region where Ti and Fe are uniformly mixed to form a solid solution phase. Further, the region of composition and temperature shown by b in the figure is a TiFe compound phase region, and the region shown by c existing between them is a two-phase coexisting region which can take both states of Ti solid solution phase and TiFe compound phase. Is. Other αTi phase region,
A TiFe 2 compound phase region, an αFe phase region, a coexistence region, and the like exist, but since they are not directly related to the present invention, detailed description thereof will be omitted.

これら各相領域を形成する温度状態から直に常温に取
り出し冷却すれば、その相を保った状態の合金が得られ
る。そのTi固溶体相は、水素の透過には殆ど関与しない
が、延性、展性に富む。一方、TiFe化合物相は水素透過
特性を有するが延性、展性に欠ける。
If the temperature condition forming each of these phase regions is immediately taken out to room temperature and cooled, an alloy in which the phases are maintained can be obtained. The Ti solid solution phase is hardly involved in hydrogen permeation, but is rich in ductility and malleability. On the other hand, the TiFe compound phase has hydrogen permeability, but lacks ductility and malleability.

そこで、図のTi固溶体相領域aと2相共存領域cの境
界部分即ち組成17〜24.7(重量%)、温度600〜1085
(℃)の部分に注目し、例えばA点に示す組成23(重量
%)、温度1085(℃)にて形成したTi固溶体相合金をB
点に示す温度700(℃)にて長時間保持することによりT
i固溶体相にTiFe化合物相を析出させる時効析出処理を
施こす。すると、Ti固溶体相にTiFe化合物相が混じり合
った合金が得られる。
Therefore, the boundary portion between the Ti solid solution phase region a and the two-phase coexisting region c in the figure, that is, the composition 17 to 24.7 (wt%), the temperature 600 to 1085
Paying attention to the (° C) portion, for example, the Ti solid solution phase alloy formed at the composition A (point A) of 23 (% by weight) and the temperature of 1085 (° C) is
By keeping the temperature shown at 700 (℃) for a long time, T
i Aging precipitation treatment for precipitating the TiFe compound phase in the solid solution phase. Then, an alloy in which the TiFe compound phase is mixed with the Ti solid solution phase is obtained.

このときの合金組成は、時効析出処理でできるだけ多
くのTiFe化合物相を析出させるため、Ti固溶体相の安定
領域aで最大のFe含有率とすることが望ましい。
The alloy composition at this time is desired to have the maximum Fe content in the stable region a of the Ti solid solution phase in order to precipitate as many TiFe compound phases as possible by the aging precipitation treatment.

このようにして得られる水素吸蔵合金薄膜体は、水素
透過に関与するTiFe化合物相の粒子が、水素透過に殆ど
関与せずしかも延性、展性に富むTi固溶体相に金属結合
を介して担持されているため、水素吸蔵、放出過程を含
む連続的な水素透過によってもTiFe化合物相が割れを起
こすことがなく、安定したものとなる。
The hydrogen-absorbing alloy thin film thus obtained has particles of the TiFe compound phase involved in hydrogen permeation, which are hardly involved in hydrogen permeation and are supported on the Ti solid solution phase which is rich in ductility and malleability through a metal bond. Therefore, the TiFe compound phase does not crack even by continuous hydrogen permeation including hydrogen absorption and desorption processes, and the TiFe compound phase becomes stable.

(ヘ)実施例 (1)先ず、Ti(チタン)粉末76重量%、Fe(鉄)粉末
24重量%を秤量して混合し、アーク炉にて溶融しボタン
状に形成して取り出すことにより、Ti−Fe2元合金塊を
得た。これを温度約1000℃で熱間圧延し、板厚0.1mmの
薄膜体に加工する。しかし、このままではTi単体やFe単
体の遊離相を含む可能性があるため、これを十分にアニ
ールし、均一な固溶体に溶体化処理した。
(F) Example (1) First, 76% by weight of Ti (titanium) powder and Fe (iron) powder
24 wt% was weighed and mixed, melted in an arc furnace, formed into a button shape, and taken out to obtain a Ti—Fe binary alloy ingot. This is hot-rolled at a temperature of about 1000 ° C. and processed into a thin film body with a plate thickness of 0.1 mm. However, if it is left as it is, it may contain a free phase of Ti simple substance or Fe simple substance, so this was sufficiently annealed and solution-treated into a uniform solid solution.

次に、このTi固溶体相の薄膜体をアルゴンガス雰囲以
下の電気炉において、1080℃にて約10時間保持すること
により均質なTi固溶体相を得た。
Next, the thin film of the Ti solid solution phase was kept at 1080 ° C. for about 10 hours in an electric furnace under an argon gas atmosphere to obtain a homogeneous Ti solid solution phase.

更に、これを約700℃にて約10時間保持することによ
り時効析出処理を行なった後、常温にて冷却して水素吸
蔵合金薄膜体を得た。
Further, this was held at about 700 ° C. for about 10 hours to perform an aging precipitation treatment, and then cooled at room temperature to obtain a hydrogen storage alloy thin film body.

(2)Ti粉末76重量%、Fe粉末20重量%、Nb粉末4重量
%を秤量して混合し、アーク炉を用いて得られる合金塊
を実施例(1)同様にして熱間圧延による薄膜体加工、
Ti固溶体相を得る溶体化処理、TiFe化合物相の時効析出
処理、冷却を行なって水素吸蔵合金薄膜体を得た。
(2) 76% by weight of Ti powder, 20% by weight of Fe powder, and 4% by weight of Nb powder were weighed and mixed, and an alloy ingot obtained by using an arc furnace was hot rolled into a thin film in the same manner as in Example (1). Body processing,
Solution treatment to obtain a Ti solid solution phase, age precipitation treatment of the TiFe compound phase, and cooling were performed to obtain a hydrogen storage alloy thin film body.

(3)Ti粉末76重量%、Fe粉末20重量%、Mn粉末4重量
%を秤量して混合し、実施例(2)同様の処理を施すこ
とにより水素吸蔵合金薄膜体を得た。
(3) 76 wt% of Ti powder, 20 wt% of Fe powder, and 4 wt% of Mn powder were weighed and mixed, and the same treatment as in Example (2) was performed to obtain a hydrogen storage alloy thin film body.

以上の各実施例にて得られる水素吸蔵合金薄膜体を粉
末X線回折装置により調べたところ、いずれの合金もTi
固溶体相とTiFe化合物相の2相からなることを確認し
た。更に、金属顕微鏡およびEPMA(Electron Probe Mic
ro Analyzer)装置による膜厚断面の観察の結果、第2
図(a)の薄膜表面組織図および第2図(b)の膜厚断
面組織図に示す如く、Ti固溶体相1内に均一にTiFe化合
物相粒子2が析出しており、しかも析出したTi固溶体相
の殆どは厚さ約0.1mmの膜の上下表面を貫通しているこ
とが確認された。
The hydrogen storage alloy thin film obtained in each of the above examples was examined by a powder X-ray diffractometer.
It was confirmed that it consisted of two phases, a solid solution phase and a TiFe compound phase. In addition, a metallurgical microscope and EPMA (Electron Probe Mic
ro Analyzer) The result of the observation of the film thickness cross section by the device, the second
As shown in the thin film surface structure diagram of FIG. (A) and the film thickness sectional structure diagram of FIG. 2 (b), TiFe compound phase particles 2 are uniformly deposited in the Ti solid solution phase 1, and the deposited Ti solid solution It was confirmed that most of the phases penetrated the upper and lower surfaces of the film having a thickness of about 0.1 mm.

更に、比較例として公知のスパッタ法によりTiFe0.8N
b0.2合金薄膜体を造り、前記各実施例により得られた水
素吸蔵合金薄膜体と共に水素透過試験を行なったとこ
ろ、下記第1表に示す結果が得られた。
Furthermore, as a comparative example, TiFe 0.8 N was formed by a known sputtering method.
When a b0.2 alloy thin film body was prepared and a hydrogen permeation test was conducted with the hydrogen storage alloy thin film bodies obtained in the above-mentioned respective examples, the results shown in Table 1 below were obtained.

上記の結果から、公知のスパッタ法によるTiFe0.8Nb
0.2合金薄膜に比べ、各実施例で得られるTi−Fe,Ti−Fe
−Nb,Ti−Fe−Mn水素吸蔵合金薄膜体は、透過の安定性
が極めて大きいことが判る。
From the above results, TiFe 0.8 Nb by the known sputtering method
Compared with 0.2 alloy thin film, Ti-Fe, Ti-Fe obtained in each example
It can be seen that the -Nb, Ti-Fe-Mn hydrogen storage alloy thin film body has extremely high permeation stability.

一方、各実施例の中では、実施例(1)のTi−Fe水素
吸蔵合金薄膜体に比べ、実施例(2)、(3)のTi−Fe
−Nb,Ti−Fe−Mn水素吸蔵合金薄膜体の方が初期活性化
条件及び水素透過条件が低くてよいことが判る。この傾
向はNb,MnをZr,V,Cr,Co,Ni,Cuに変えても同様であっ
た。
On the other hand, in each example, compared with the Ti-Fe hydrogen storage alloy thin film body of Example (1), the Ti-Fe of Examples (2) and (3)
It can be seen that the -Nb, Ti-Fe-Mn hydrogen storage alloy thin film body may have lower initial activation conditions and lower hydrogen permeation conditions. This tendency was the same even when Nb and Mn were changed to Zr, V, Cr, Co, Ni and Cu.

なお、以上の実施例では水素吸蔵合金薄膜体としてTi
−Fe2元合金を例にとり説明したが、本発明はTi−Fe系
合金と同様の状態図をもつTi−Mn系合金についても同様
に適用できる。
In the above examples, the hydrogen storage alloy thin film body was made of Ti
Although the description has been made by using the -Fe binary alloy as an example, the present invention can be similarly applied to a Ti-Mn alloy having a phase diagram similar to that of the Ti-Fe alloy.

(ト)発明の効果 本発明の水素吸蔵合金薄膜体を用いることにより、水
素透過による割れの発生が無くなり、安定した水素分離
が可能となる。また、圧延加工過程を含むため、板状、
パイプ状等任意の形状の薄膜体を得ることができ、装置
設計上も極めて有利であり、実用的な水素精製装置の実
現に大きな効果をもたらす。
(G) Effect of the Invention By using the hydrogen-absorbing alloy thin film body of the present invention, generation of cracks due to hydrogen permeation is eliminated, and stable hydrogen separation becomes possible. In addition, since it includes rolling process,
A thin film having an arbitrary shape such as a pipe shape can be obtained, which is extremely advantageous in designing the apparatus, and has a great effect in realizing a practical hydrogen purification apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図はTi−Fe2元合金の状態図、第2図(a)は本発
明による水素吸蔵合金薄膜体の薄膜表面組織図、同図
(b)はその膜厚断面組織図である。 1……Ti固溶体相、2……TiFe化合物相。
FIG. 1 is a phase diagram of a Ti—Fe binary alloy, FIG. 2 (a) is a thin film surface structural diagram of a hydrogen storage alloy thin film according to the present invention, and FIG. 2 (b) is a film thickness sectional structural diagram thereof. 1 ... Ti solid solution phase, 2 ... TiFe compound phase.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】薄膜体をなすTi−Fe2元合金のTi固溶体相
内にTiFe化合物相が一様に分散されてなることを特徴と
する水素吸蔵合金薄膜体。
1. A hydrogen storage alloy thin film body, wherein a TiFe compound phase is uniformly dispersed in a Ti solid solution phase of a Ti-Fe binary alloy forming a thin film body.
【請求項2】特許請求の範囲第1項記載において、V,N
b,Zr,Cr,Mn,Co,Ni,Cuのいずれか1つ又は複数の組み合
わせ元素を含むことを特徴とする水素吸蔵合金薄膜体。
2. The method according to claim 1, wherein V, N
A hydrogen storage alloy thin film body comprising any one or a plurality of combination elements of b, Zr, Cr, Mn, Co, Ni and Cu.
【請求項3】所定の組成を有するTi−Fe2元合金塊をTi
固溶体相領域を満足する温度に保持し、熱間圧延により
薄膜体加工および溶体化処理を施すことにより均質なTi
固溶体相薄膜体となし、次いで、Ti固溶体相とTiFe化合
物相の2相共存領域を満たす温度に長時間保持すること
により、Ti固溶体相内にTiFe化合物相を析出させること
を特徴とする水素吸蔵合金薄膜体の製造方法。
3. A Ti-Fe binary alloy ingot having a predetermined composition is converted into Ti.
By maintaining a temperature that satisfies the solid solution phase region and performing thin film processing and solution treatment by hot rolling, homogeneous Ti
Hydrogen absorption characterized by precipitating a TiFe compound phase in the Ti solid solution phase by forming a solid solution thin film and then maintaining the temperature for satisfying the two phase coexistence region of the Ti solid solution phase and the TiFe compound phase for a long time Method for manufacturing alloy thin film body.
JP63063594A 1988-03-18 1988-03-18 Hydrogen storage alloy thin film body and method for producing the same Expired - Fee Related JPH0819500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063594A JPH0819500B2 (en) 1988-03-18 1988-03-18 Hydrogen storage alloy thin film body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063594A JPH0819500B2 (en) 1988-03-18 1988-03-18 Hydrogen storage alloy thin film body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01240629A JPH01240629A (en) 1989-09-26
JPH0819500B2 true JPH0819500B2 (en) 1996-02-28

Family

ID=13233750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063594A Expired - Fee Related JPH0819500B2 (en) 1988-03-18 1988-03-18 Hydrogen storage alloy thin film body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0819500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049450A (en) * 1990-04-26 1992-01-14 Yoshiro Nakamatsu Hydrogen storage alloy
JP4889947B2 (en) * 2005-01-14 2012-03-07 パナソニック株式会社 Gas adsorption alloy
JP4953337B2 (en) * 2005-03-28 2012-06-13 日立金属株式会社 Double phase alloy for hydrogen separation and purification
CN115874083B (en) * 2022-12-21 2024-12-17 扬州钛博医疗器械科技有限公司 Superhard titanium alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH01240629A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
Ozaki et al. Hydrogen permeation characteristics of V–Ni–Al alloys
KR20130142467A (en) Titanium-based bulk amorphous matrix composite and method of fabricating thereof
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
CN106834855B (en) Alloy and preparation method are penetrated using the Nb base hydrogen of special elements doping
US5626691A (en) Bulk nanocrystalline titanium alloys with high strength
JP3626298B2 (en) Hydrogen storage alloy and manufacturing method
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JPH0382734A (en) Rare earth metal hydrogen storage alloy
KR870009050A (en) Metal semi-finished product, manufacturing method of the metal semi-finished product and use thereof
JP5310541B2 (en) Hydrogen permeable alloy and method for producing the same
EP1992401B1 (en) Hydrogen-permeable separation thin membranes
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JPH0819500B2 (en) Hydrogen storage alloy thin film body and method for producing the same
JP2006283075A (en) Dual phase alloy for separating/refining hydrogen
Jianting et al. Precipitation of β Phase in the γ’Particles of Nickel-Base Superalloy
Suryanarayana et al. Light metals synthesis by mechanical alloying
CN106929729B (en) Alloy and preparation method are penetrated using the Ta base hydrogen of special elements doping
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2007237074A (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
Sipatov et al. Structure and properties study of V-based membrane alloys for ultra-high purity hydrogen production
JPH1180865A (en) Hydrogen storage alloy with excellent durability and method for producing the same
JP3953138B2 (en) Hydrogen storage alloy
CN106917028B (en) Alloy and preparation method are penetrated using the high-performance V base hydrogen of special elements doping
Yi et al. Oxidation of γ′-Ni 3 Al and γ′-Ni 3 Al (Si) intermetallic compounds at low-oxygen pressures
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees