[go: up one dir, main page]

JPH08189902A - Picture processing device - Google Patents

Picture processing device

Info

Publication number
JPH08189902A
JPH08189902A JP7002828A JP282895A JPH08189902A JP H08189902 A JPH08189902 A JP H08189902A JP 7002828 A JP7002828 A JP 7002828A JP 282895 A JP282895 A JP 282895A JP H08189902 A JPH08189902 A JP H08189902A
Authority
JP
Japan
Prior art keywords
differential
image data
picture
sum
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7002828A
Other languages
Japanese (ja)
Inventor
Riyouichi Danki
亮一 段木
Tetsuji Uetake
徹司 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7002828A priority Critical patent/JPH08189902A/en
Publication of JPH08189902A publication Critical patent/JPH08189902A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE: To easily and quantitatively measure the texture of variable density picture at an interval nearly the same as visual inspection with small calculation quantity based on the edge information of an object to be tested with gray level picture. CONSTITUTION: A steel plate 1 as a transfer object to be tested is illuminated by an illumination 2 and deffectives 3 on the surface thereof such as scratch, recessed part, etc., are picked up by a camera 4, and the surface picture of the plate 1 is A/D converted by a signal processing circuit 5, then the output picture data is stored by a picture memory 6. The optional rectangular area in the picture data from the memory 6 is set by a mask setting circuit 7 and it is differentiated by a differentiating circuit 8, then a characteristic quantity calculation circuit 9 calculates a sum or squared sum of differentiation information with a specified value or more regarded as edge of defect in the rectangular area and the number of picture elements of the differentiation information. The sum or squared sum thereof and the number thereof show the intensity and contrast of the edge in the rectangular area and the number of edges respectively, and a circuit 10 for judging the presence or absence of defect and the degree of existence judges the presence or absence of defect and the degree of existence thereof on the surface of the plate 1 based on the obtained results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃淡画像の対象物のエ
ッジ情報を基にその濃淡画像のテクスチャを定量化する
技術に関するもので、例えば生産ラインより搬出される
鋼板等の製品の表面欠陥を検査するために、その表面の
濃淡画像を画像処理する画像処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for quantifying the texture of a grayscale image based on the edge information of the grayscale image object, for example, surface defects of a product such as a steel plate carried out from a production line. The present invention relates to an image processing apparatus for performing image processing on a grayscale image of a surface of the image in order to inspect.

【0002】[0002]

【従来の技術】各種生産ラインの表面欠陥検査などで
は、欠陥の有無はもちろんのこと、その欠陥がどれほど
鮮明にどれほど多数見えるかといった評価も必要になっ
ている。しかしながら、人間の目視による視覚的評価は
各人により異なり、主観的なばらつきが伴い、客観的な
定量性の面にかける。そこで従来より各種の濃淡画像の
定量化方法とその特徴量の算出方法が提案されてきた。
2. Description of the Related Art In surface defect inspections of various production lines, it is necessary to evaluate not only the presence or absence of defects but also how clearly and how many defects are visible. However, the visual evaluation by human eyes varies from person to person, and there is a subjective variation, which puts aside on objective quantitativeness. Therefore, conventionally, various quantification methods of grayscale images and calculation methods of their feature amounts have been proposed.

【0003】例えば、文献’シンチグラムに対するテク
スチャ解析の適応’(Radioisotopes V
ol,40, No1pp.33−36 1991)で
は、医師により読影される病変部位のシンチグラムを画
像処理し、その画像から得られる平均、分散、スキュ
ー、エネルギー、エントロピーの5種類の特徴量により
シンチグラムの視覚的評価を定量的に行っている。特に
分散は、輝度値のばらつき状態を表わすのに従来からよ
く使われているが、画像内にシェーディング等が存在す
る場合は分散特徴量は望ましくない。また、テクスチャ
解析に一般的に使われる手法(画像解析ハンドブック
(東京大学出版会)pp.518〜522)に、濃度共
起行列や濃度差分統計量や濃度ランレングス行列などを
用いて解析を行う手法があり、これらの手法の中でも濃
度共起行列を用いる手法が有効であることが知られてい
る。濃度共起行列、濃度差分統計量は画素濃度の2次統
計量、濃度ランレングス行列は画素濃度の高次統計量で
ある。これらの統計量から計算できる特徴量が定義され
ていて、この特徴量を用いて分類、識別などの解析が行
われている(特開平5−146433号公報,特開平6
−60182号公報)。
For example, the document “Adaptation of Texture Analysis to Scintigrams” (Radioisotopes V
ol, 40, No1 pp. 33-36 1991), image processing is performed on a scintigram of a lesion site read by a doctor, and a visual evaluation of the scintigram is performed based on five types of feature values obtained from the image: average, variance, skew, energy, and entropy. We do quantitatively. In particular, the variance is conventionally often used to represent the variation state of the brightness value, but when the shading or the like exists in the image, the variance feature amount is not desirable. In addition, analysis is performed by using a density co-occurrence matrix, density difference statistics, density run length matrix, etc. in the method commonly used for texture analysis (Image Analysis Handbook (The University of Tokyo Press) pp. 518-522). There are methods, and among these methods, it is known that the method using the concentration co-occurrence matrix is effective. The density co-occurrence matrix, the density difference statistic are second-order statistics of pixel density, and the density run-length matrix is a higher-order statistic of pixel density. A feature amount that can be calculated from these statistics is defined, and analysis such as classification and identification is performed using this feature amount (JP-A-5-146433, JP-A-6-63).
-60182).

【0004】[0004]

【発明が解決しようとする課題】しかし、これらは一般
的に計算量が多く、算出する際に設定するベクトルによ
り計算結果が異なり、適当なパラメータを決定するのが
難しい。また、情報量を多くしようとして行列を大きく
すると計算量が非常に大きくなるため、適当な行列の大
きさを決定しなければならない。
However, these generally have a large amount of calculation, and the calculation result differs depending on the vector set at the time of calculation, and it is difficult to determine appropriate parameters. In addition, if the matrix is made large to increase the amount of information, the amount of calculation becomes very large. Therefore, it is necessary to determine an appropriate matrix size.

【0005】本発明は、上記事情に鑑み、容易に、かつ
上記のテクスチャ解析より少ない計算量で、さらに、目
視に近い感覚で画像のテクスチャを定量化する画像処理
装置を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide an image processing apparatus that can easily quantify the texture of an image with a calculation amount smaller than that of the texture analysis described above and with a feeling close to that of visual observation. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する画像
処理装置は、 (1)濃淡画像を表わす画像データを記憶する画像デー
タ記憶部 (2)その画像データ記憶部に記憶された濃淡画像の部
分領域を切り出すマスク設定部 (3)そのマスク設定部で切り出された部分領域を表わ
す画像データを微分することにより微分画像データを生
成する微分演算部 (4)その微分演算部で生成された微分画像データのば
らつきの程度を表わす第1の指標と、その微分画像デー
タのうち所定値を越える微分画像データを有する画素の
数を表わす第2の指標とを求める指標演算部 を備えたことを特徴とするものである。
An image processing apparatus that achieves the above object includes (1) an image data storage unit for storing image data representing a grayscale image, and (2) a grayscale image stored in the image data storage unit. Mask setting unit that cuts out a partial area (3) Differential operation unit that generates differential image data by differentiating the image data representing the partial area cut out by the mask setting unit (4) Differentiation generated by the differential operation unit An index calculation unit is provided for determining a first index indicating the degree of variation of image data and a second index indicating the number of pixels having differential image data exceeding a predetermined value in the differential image data. It is what

【0007】ここで、上記微分演算部が、互いに交わる
2方向それぞれについて微分を行い、これにより得られ
た各画素毎に2つのデータに基づいて、各画素毎の微分
画像データを生成するものであることが効果的である。
また、上記指標演算部が、上記第1の指標として、上記
微分画像データのうち所定値を越える微分画像データに
ついてその微分画像データとその所定値との差分の和も
しくは自乗和を求めるものであることが好ましい。
Here, the above-mentioned differential operation section performs a differential operation in each of the two directions intersecting with each other and generates differential image data for each pixel based on the two data obtained for each pixel. It is effective to have.
Further, the index calculation unit obtains, as the first index, the sum of the differences between the differential image data and the predetermined value or the sum of squares of the differential image data that exceeds a predetermined value among the differential image data. It is preferable.

【0008】[0008]

【作用】本発明の画像処理装置は、微分画像データに基
づいて、上記の第1の指標と上記の第2の指標とを求め
るものであり、第1の指標により、濃淡画像上の欠陥が
どれほど鮮明に見えるかという程度がわかり、第2の指
標により、濃淡画像上にどれほど多数の欠陥が存在する
かという程度がわかる。後述するように、これら第1の
指標及び第2の指標により、人間の目視検査に近い、客
観的な評価が可能となった。
The image processing apparatus of the present invention obtains the above-mentioned first index and the above-mentioned second index based on the differential image data, and the defect on the grayscale image is detected by the first index. The degree of how clear the image looks can be known, and the second index shows how many defects are present on the grayscale image. As will be described later, the first index and the second index enable objective evaluation close to human visual inspection.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の画像処理装置の一実施例のブロック図で
ある。搬送される被検査物としての鋼板1が照明2で照
らされている。なお、鋼板1の表面は、傷や凹み等の欠
陥3を有している。カメラ4にて撮像された鋼板1の表
面画像が信号処理回路5にてA/D変換され、その出力
である画像データを画像メモリ6に記憶する。この画像
メモリ6から読み出された画像データからマスク設定回
路7で任意の矩形領域を設定し、微分処理回路8で微分
処理を行う。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram of an embodiment of the image processing apparatus of the present invention. A steel plate 1 as a transported inspection object is illuminated by a light 2. The surface of the steel plate 1 has defects 3 such as scratches and dents. The surface image of the steel plate 1 taken by the camera 4 is A / D converted by the signal processing circuit 5, and the output image data is stored in the image memory 6. The mask setting circuit 7 sets an arbitrary rectangular area from the image data read from the image memory 6, and the differentiation processing circuit 8 performs the differentiation processing.

【0010】図2は、図1に示す微分処理回路における
微分処理の説明図である。この微分処理は、図2に示す
ように処理対象画像の各画素にこの画素を中心とした3
×3領域に微分フィルタFを重ね合わせ、対応する画素
同士の積を求め、それらの総和を微分値とする。この操
作を左上の画像から右下の画素まで行うものである。
FIG. 2 is an explanatory diagram of the differential processing in the differential processing circuit shown in FIG. As shown in FIG. 2, this differentiating process is performed by centering this pixel on each pixel of the image to be processed.
The differential filter F is superimposed on the × 3 region, the product of the corresponding pixels is obtained, and the sum of them is used as the differential value. This operation is performed from the upper left image to the lower right pixel.

【0011】濃淡画像に作用させる微分フィルタFは対
象物の形状に応じて設定変更する必要がないものの、一
定の方向のみのエッジを抽出する微分フィルタではその
方向の対象物のエッジしか見つけられない。それで対象
とする対象物が検出できればよいが、一般には対象物を
検出する際の精度が落ちてしまう。そこで微分フィルタ
Fは全ての方向のエッジを検出し背景のノイズの影響を
受けにくいソベールフィルタか、もしくはそれと同様の
作用をする微分フィルタが望ましい。ただし、一定の方
向性のあるエッジを検出する微分フィルタを作用させる
と、その方向性に対するテクスチャの定量化が行えるの
で、欠陥の種類ないし方向性がわかっているときは、一
定の方向性のあるエッジを検出する微分フィルタを作用
させてもよい。
Although it is not necessary to change the setting of the differential filter F acting on the grayscale image according to the shape of the object, a differential filter for extracting edges in only a certain direction can find only the edge of the object in that direction. . It suffices if the target object can be detected, but in general, the accuracy in detecting the target will be reduced. Therefore, the differential filter F is preferably a Sober filter that detects edges in all directions and is not easily affected by background noise, or a differential filter that operates similarly to it. However, if a differential filter that detects edges with a certain directionality is applied, the texture can be quantified for that directionality. Therefore, if the type or directionality of the defect is known, there is a certain directionality. A differential filter for detecting edges may be operated.

【0012】図3は、図2に示す微分フィルタとしてソ
ベールフィルタを示す図である。図3に示すソベールフ
ィルタは、X方向に重み係数を持ったX方向フィルタ
(a)とY方向に重み係数を持ったY方向フィルタ
(b)から構成されている。微分処理に用いる微分フィ
ルタとして、このようなソベールフィルタを用いると、
一方向のエッジのみではなくて全ての方向のエッジを検
出し背景のノイズの影響を抑えた微分処理を行える。こ
の場合、X方向フィルタ(a)を作用させた結果をΔ
x,y方向フィルタ(b)を作用させた結果をΔyとし
たときのΔxyが微分値となる。ここで微分値Δxy
は、 Δxy=√(△x2 +△y2 ) として表される。
FIG. 3 is a diagram showing a Sober filter as the differential filter shown in FIG. The Sober filter shown in FIG. 3 is composed of an X-direction filter (a) having a weighting factor in the X direction and a Y-direction filter (b) having a weighting factor in the Y direction. If such a Sober filter is used as the differential filter used for the differential processing,
It is possible to perform not only the edge in one direction but also the edge in all directions to perform the differential processing in which the influence of the background noise is suppressed. In this case, the result of applying the X-direction filter (a) is Δ
Δxy is the differential value, where Δy is the result of the action of the x, y direction filter (b). Here, the differential value Δxy
Is expressed as Δxy = √ (△ x 2 + △ y 2).

【0013】こうして得られた微分値△xyはその画素
の近傍領域における輝度値の変化率を表わしている。ソ
ベールフィルタの他によく使われるフィルタとしてラプ
ラシアン、ロバーツ、プレウィット、キルシュフィルタ
などがあるが、フィルタ内の重み係数の和が0であれ
ば、サイズも重みも係数も任意に設定してよい。また、
いくつかのフィルタを組み合わせてもよい。
The differential value Δxy thus obtained represents the rate of change of the brightness value in the area near the pixel. There are Laplacian, Roberts, Prewitt, Kirsch filters, etc. that are often used in addition to the Sovert filter. However, if the sum of the weighting factors in the filter is 0, the size, weight, and coefficient may be set arbitrarily. . Also,
You may combine several filters.

【0014】再び図1に戻って説明を続ける。特徴量算
出回路9は、矩形領域内の欠陥のエッジとみなせる所定
値以上の微分情報の和又は自乗和と、矩形領域内の欠陥
のエッジとみなせる所定値以上の微分情報の画素の個数
を算出する。欠陥のエッジとみなせる所定値以上の微分
情報の和又は自乗和は矩形領域内のエッジの強さ、コン
トラストを表わすものであり、欠陥のエッジとみなせる
所定値以上の微分情報の画素の個数はエッジの数を表わ
しており、欠陥有無、存在度判定回路10では、これら
に基づいて、鋼板1表面の欠陥の有無、存在度が判断さ
れる。
Returning to FIG. 1 again, the description will be continued. The feature amount calculation circuit 9 calculates the sum or squared sum of differential information of a predetermined value or more that can be regarded as an edge of a defect in a rectangular area and the number of pixels of differential information of a predetermined value or more that can be regarded as an edge of a defect in a rectangular area. To do. The sum or square sum of the differential information above a predetermined value that can be regarded as a defect edge indicates the strength and contrast of the edge in the rectangular area, and the number of pixels of the differential information above the predetermined value that can be regarded as a defect edge is the edge. The presence / absence determination circuit 10 determines the presence / absence and presence of a defect on the surface of the steel sheet 1 based on these.

【0015】図4,図5は、鋼板1表面の欠陥の有無、
存在度の判定図である。欠陥有無、存在度判定回路10
は、図4に示すような範囲で鋼板1表面の欠陥の有無、
存在度を判定する。一般に鋼板は欠陥が全く見えないも
のから非常に鮮明に多数見えるものまで5段階に分けら
れている。
4 and 5 show the presence or absence of defects on the surface of the steel plate 1,
It is a determination diagram of the degree of existence. Defect presence / absence determination circuit 10
Is the presence or absence of defects on the surface of the steel plate 1 in the range as shown in FIG.
Existence is judged. Generally, steel sheets are divided into five stages from those in which no defects are visible to those in which a large number of defects are clearly visible.

【0016】算出される特徴量と所定のしきい値から図
5に示すように定量的に欠陥の程度、すなわち、存在度
が5段階に分類される。図6は、鋼板1表面の欠陥の数
値データと目視結果との比較データを示す図である。図
6に示すプロット横の()内の数値は目視により検査を
行なったときの、欠陥のひどい順に付した番号である。
ある程度個人差はあるものの、図6に示すように目視の
感覚に近い結果となった。
As shown in FIG. 5, the degree of defects, that is, the degree of existence is quantitatively classified into five levels from the calculated feature amount and a predetermined threshold value. FIG. 6 is a diagram showing comparison data of numerical data of defects on the surface of the steel sheet 1 and visual observation results. The numbers in parentheses () next to the plots shown in FIG. 6 are the numbers given in the order of the defects when visually inspected.
Although there were some differences among individuals, the results were close to the visual sense as shown in FIG.

【0017】[0017]

【発明の効果】以上説明したように、本発明の画像処理
装置は、特に面状欠陥などの欠陥のひどさを表わす、目
視の感覚に近い存在度を算出するのに有効であり、画像
のシェーディングなどを考慮せずに、従来の手法と比較
して、容易に、少ない計算量で任意の領域のテクスチャ
が定量化できる。
As described above, the image processing apparatus of the present invention is particularly effective for calculating the degree of presence close to the visual sense, which indicates the severity of defects such as planar defects, and the image shading. The texture of an arbitrary area can be easily quantified with a small amount of calculation as compared with the conventional method without considering the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の画像処理装置の一実施例のブロック図
である。
FIG. 1 is a block diagram of an embodiment of an image processing apparatus of the present invention.

【図2】図1に示す微分処理回路における微分処理の説
明図である。
FIG. 2 is an explanatory diagram of a differential process in the differential processing circuit shown in FIG.

【図3】図2に示す微分フィルタとしてソベールフィル
タを示す図である。
FIG. 3 is a diagram showing a Sober filter as the differential filter shown in FIG. 2;

【図4】鋼板表面の欠陥の有無、存在度の判定図であ
る。
FIG. 4 is a diagram showing the presence / absence of defects on the surface of a steel sheet and the degree of presence thereof.

【図5】鋼板表面の欠陥の有無、存在度の判定例を示す
図である。
FIG. 5 is a diagram showing an example of determining the presence / absence of defects on the surface of a steel sheet.

【図6】鋼板表面の欠陥の数値データと目視結果との比
較データを示す図である。
FIG. 6 is a diagram showing comparison data of numerical data of defects on the surface of a steel sheet and visual observation results.

【符号の説明】 1 鋼板 2 照明 3 欠陥 4 カメラ 5 信号処理回路 6 画像メモリ 7 マスク設定回路 8 微分処理回路 9 特徴量算出回路 10 欠陥有無、存在度判定回路[Explanation of Codes] 1 Steel plate 2 Illumination 3 Defect 4 Camera 5 Signal processing circuit 6 Image memory 7 Mask setting circuit 8 Differentiation processing circuit 9 Feature amount calculation circuit 10 Defect presence / absence determination circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 濃淡画像を表わす画像データを記憶する
画像データ記憶部と、 該画像データ記憶部に記憶された濃淡画像の部分領域を
切り出すマスク設定部と、 該マスク設定部で切り出された部分領域を表わす画像デ
ータを微分することにより微分画像データを生成する微
分演算部と、 該微分演算部で生成された微分画像データのばらつきの
程度を表わす第1の指標と、該微分画像データのうち所
定値を越える微分画像データを有する画素の数を表わす
第2の指標とを求める指標演算部とを備えたことを特徴
とする画像処理装置。
1. An image data storage unit that stores image data representing a grayscale image, a mask setting unit that cuts out a partial region of the grayscale image stored in the image data storage unit, and a portion cut out by the mask setting unit. A differential operation unit that generates differential image data by differentiating image data that represents a region, a first index that indicates the degree of variation in the differential image data that is generated by the differential operation unit, and among the differential image data An image processing apparatus comprising: an index calculation unit that obtains a second index that represents the number of pixels having differential image data that exceeds a predetermined value.
【請求項2】 前記微分演算部が、互いに交わる2方向
それぞれについて微分を行い、これにより得られた各画
素毎に2つのデータに基づいて、各画素毎の微分画像デ
ータを生成するものであることを特徴とする請求項1記
載の画像処理装置。
2. The differential operation section performs a differential operation in each of two intersecting directions, and generates differential image data for each pixel based on the two data for each pixel obtained by the differential operation. The image processing apparatus according to claim 1, wherein
【請求項3】 前記指標演算部が、前記第1の指標とし
て、前記微分画像データのうち所定値を越える微分画像
データについて該微分画像データと該所定値との差分の
和もしくは自乗和を求めるものであることを特徴とする
請求項1又は2記載の画像処理装置。
3. The index calculation unit obtains, as the first index, a sum or a square sum of differences between the differential image data and the predetermined value for the differential image data that exceeds a predetermined value among the differential image data. The image processing apparatus according to claim 1, wherein the image processing apparatus is an image processing apparatus.
JP7002828A 1995-01-11 1995-01-11 Picture processing device Withdrawn JPH08189902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002828A JPH08189902A (en) 1995-01-11 1995-01-11 Picture processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002828A JPH08189902A (en) 1995-01-11 1995-01-11 Picture processing device

Publications (1)

Publication Number Publication Date
JPH08189902A true JPH08189902A (en) 1996-07-23

Family

ID=11540286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002828A Withdrawn JPH08189902A (en) 1995-01-11 1995-01-11 Picture processing device

Country Status (1)

Country Link
JP (1) JPH08189902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356300B1 (en) 1998-01-16 2002-03-12 Nec Corporation Automatic visual inspection apparatus automatic visual inspection method and recording medium having recorded an automatic visual inspection program
JP2009103498A (en) * 2007-10-22 2009-05-14 Denso Corp Visual inspection method
JP2015102382A (en) * 2013-11-22 2015-06-04 日本電信電話株式会社 Concrete structure deterioration detection apparatus, deterioration detection method, and program thereof
JP2019036015A (en) * 2017-08-10 2019-03-07 ヤマハ発動機株式会社 Surface mounting machine
JP2021153128A (en) * 2020-03-24 2021-09-30 国立大学法人東海国立大学機構 Crystal defect evaluation method and crystal defect evaluation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356300B1 (en) 1998-01-16 2002-03-12 Nec Corporation Automatic visual inspection apparatus automatic visual inspection method and recording medium having recorded an automatic visual inspection program
JP2009103498A (en) * 2007-10-22 2009-05-14 Denso Corp Visual inspection method
JP2015102382A (en) * 2013-11-22 2015-06-04 日本電信電話株式会社 Concrete structure deterioration detection apparatus, deterioration detection method, and program thereof
JP2019036015A (en) * 2017-08-10 2019-03-07 ヤマハ発動機株式会社 Surface mounting machine
JP2021153128A (en) * 2020-03-24 2021-09-30 国立大学法人東海国立大学機構 Crystal defect evaluation method and crystal defect evaluation device

Similar Documents

Publication Publication Date Title
CN115082418B (en) Precise identification method for automobile parts
CN114387273B (en) Environmental dust concentration detection method and system based on computer image recognition
CN115841447A (en) Detection method for surface defects of magnetic shoe
CN113570605A (en) Defect detection method and system based on liquid crystal display panel
CN116883408B (en) Integrating instrument shell defect detection method based on artificial intelligence
JPH08504522A (en) Method and apparatus for identifying objects using a regular sequence of boundary pixel parameters
Patel et al. Development and an application of computer vision system for nondestructive physical characterization of mangoes
CN113450383A (en) Quantitative analysis method, device, equipment and medium for immunochromatographic test paper
KR100250631B1 (en) Image processing method
JPH08189904A (en) Surface defect detector
CN109632811A (en) Structural steel pattern segregation fault detection based on machine vision quantifies ranking method
CN111353992A (en) Agricultural product defect detection method and system based on textural features
CN115511814A (en) An image quality assessment method based on fusion of multi-texture features in regions of interest
JPH08189902A (en) Picture processing device
CN119273992A (en) Mobile phone screen glass defect detection method based on improved YOLOv8
JPH07333197A (en) Automatic surface flaw detector
JP2541735B2 (en) Method and apparatus for diagnosing coating film deterioration
JPH08145907A (en) Inspection equipment of defect
JP4247993B2 (en) Image inspection apparatus, image inspection method, control program, and readable storage medium
JPH09179985A (en) Inspection method and classifying method for image defect
JPH0337564A (en) Automatic magnetic-particle examination apparatus
CN117495846B (en) Image detection method, device, electronic equipment and storage medium
JP2682112B2 (en) Automatic magnetic particle flaw detector
JP5392903B2 (en) Surface flaw inspection device
JP2564737B2 (en) Automatic magnetic particle flaw detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402