JPH0818873A - Video camera - Google Patents
Video cameraInfo
- Publication number
- JPH0818873A JPH0818873A JP6151120A JP15112094A JPH0818873A JP H0818873 A JPH0818873 A JP H0818873A JP 6151120 A JP6151120 A JP 6151120A JP 15112094 A JP15112094 A JP 15112094A JP H0818873 A JPH0818873 A JP H0818873A
- Authority
- JP
- Japan
- Prior art keywords
- defective pixel
- position information
- signal
- solid
- video camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002950 deficient Effects 0.000 claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000003384 imaging method Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 43
- 238000012937 correction Methods 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Picture Signal Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体撮像素子を用いたビ
デオカメラに係り、特に、固体撮像素子の画素欠陥を信
号処理で補正する機能を有するビデオカメラに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a video camera using a solid-state image sensor, and more particularly to a video camera having a function of correcting pixel defects of the solid-state image sensor by signal processing.
【0002】[0002]
【従来の技術】固体撮像素子の画素欠陥を補正する従来
技術としては、例えば特開平2−235480号公報に
記載のものが挙げられる。この先願に開示された技術
は、固体撮像素子を備える固体撮像装置に、不揮発性メ
モリと、該不揮発性メモリに書き込むデータを入力する
入力端子とを設け、出荷前に上記固体撮像素子の欠陥部
のアドレスを検出し、該欠陥部のアドレスデータを、上
記入力端子を通じて上記不揮発性メモリに書き込み、こ
のメモリデータにより画素欠陥を補正するというもので
あった。2. Description of the Related Art As a conventional technique for correcting a pixel defect of a solid-state image pickup device, there is, for example, one described in Japanese Patent Laid-Open No. 2-235480. The technology disclosed in this prior application is such that a solid-state imaging device including a solid-state imaging device is provided with a non-volatile memory and an input terminal for inputting data to be written in the non-volatile memory. The address data of the defective portion is detected, the address data of the defective portion is written in the nonvolatile memory through the input terminal, and the pixel defect is corrected by the memory data.
【0003】[0003]
【発明が解決しようとする課題】ところで、固体撮像素
子は、光のエネルギーを電気信号に変換するものである
が、熱エネルギーも電気信号に変換する性質がある。こ
の熱エネルギーにより電気信号に変換された信号成分は
暗電流と呼ばれる。暗電流は、熱エネルギーにより生ず
るものであるから、温度依存性が強く、白キズはその暗
電流が画素欠陥によりほかの画素に比べ異常に増加する
ことによって生ずるものである。よって、出荷前の検査
時点では、画素欠陥補正を必要とする検出レベル以下だ
った白キズも、温度上昇により白キズレベルが上昇し、
許容レベルを超えることがある。The solid-state image pickup device converts light energy into an electric signal, but has a property of converting thermal energy into an electric signal. The signal component converted into an electric signal by this heat energy is called dark current. Since the dark current is generated by thermal energy, it has a strong temperature dependency, and the white defect is caused by the dark current abnormally increasing as compared with other pixels due to a pixel defect. Therefore, at the time of inspection before shipment, even for white scratches that were below the detection level that required pixel defect correction, the white scratch level increased due to the temperature rise,
May exceed acceptable levels.
【0004】しかし、上記した先願に開示された従来技
術では、この様な温度上昇によりレベルが上昇した白キ
ズの補正については、全く考えられていなかった。However, in the prior art disclosed in the above-mentioned prior application, correction of white scratches whose level has risen due to such temperature rise has not been considered at all.
【0005】本発明は上記の点に鑑みなされたもので、
その目的とするところは、固体撮像素子の画素欠陥によ
る白キズの検出を頻繁に行い、温度上昇などにより発生
した白キズの補正を確実に行い得るようにすることにあ
る。The present invention has been made in view of the above points,
The purpose thereof is to frequently detect white defects due to pixel defects of the solid-state image pickup element and to reliably correct white defects caused by temperature rise.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明によるビデオカメラは、固体撮像素子の欠陥
画素を検出する欠陥画素検出手段と、検出した欠陥画素
の位置情報を記憶する欠陥画素位置記憶手段と、画素位
置記憶手段で得られる位置情報によって認知される欠陥
画素の信号が入力されたときに、この欠陥画素に対応す
る信号を当該欠陥画素の周辺画素の信号もしくは演算値
で置換する信号置換手段とを備え、また、適宜操作に連
動して起動する、固体撮像素子の欠陥画素を検出するた
めの欠陥画素検出モードをもち、この欠陥画素検出モー
ド時に検出された欠陥画素の位置データを、すでに記憶
された位置データと毎回比較し、新しい位置データのみ
を欠陥画素位置記憶手段に追加して記憶していくよう
に、構成される。In order to achieve the above object, a video camera according to the present invention comprises a defective pixel detecting means for detecting a defective pixel of a solid-state image sensor, and a defective pixel for storing position information of the detected defective pixel. When the signal of the defective pixel recognized by the position storage means and the position information obtained by the pixel position storage means is input, the signal corresponding to this defective pixel is replaced with the signal of the peripheral pixel of the defective pixel or the calculated value. And a defective pixel detection mode for detecting a defective pixel of the solid-state image sensor, which is activated in association with an appropriate operation, and the position of the defective pixel detected in the defective pixel detection mode. The data is compared with the already stored position data every time, and only the new position data is added to the defective pixel position storage means and stored.
【0007】[0007]
【作用】例えば、電源スイッチをONしたとき、あるい
は電源スイッチをOFFしたときに、ビデオカメラは自
動的に欠陥画素検出モードに入り、この欠陥画素検出モ
ードにより得た欠陥画素の位置情報は、すでに記憶され
た欠陥画素の位置情報と比較され、新しい位置情報のみ
を、欠陥画素位置記憶手段に新たに付加して記憶してい
く。よって、今までに発生した白キズの位置情報の全て
が記憶され、それら位置情報に対応する白キズ全部が補
正されることとなる。For example, when the power switch is turned on or when the power switch is turned off, the video camera automatically enters the defective pixel detection mode, and the position information of the defective pixel obtained by this defective pixel detection mode has already been obtained. The position information of the stored defective pixel is compared, and only the new position information is newly added and stored in the defective pixel position storage means. Therefore, all the position information of the white defects that have occurred so far are stored, and all the white defects corresponding to the position information are corrected.
【0008】[0008]
【実施例】以下、本発明を図示した各実施例により説明
する。図1は、本発明の第1実施例に係るビデオカメラ
の要部構成を示すブロック図であり、同図において、1
はレンズ、2はアイリス、3は同期信号発生回路、4は
固体撮像素子、5は自動利得制御回路(AGC回路)、
6はアナログ−デジタル変換回路(A/D変換回路)、
7は白キズ補正回路、8は信号処理回路、9はデジタル
−アナログ変換回路(D/A変換回路)、10はメモ
リ、11はマイクロプロセッサである。The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a block diagram showing the main configuration of a video camera according to the first embodiment of the present invention. In FIG.
Is a lens, 2 is an iris, 3 is a synchronizing signal generation circuit, 4 is a solid-state image sensor, 5 is an automatic gain control circuit (AGC circuit),
6 is an analog-digital conversion circuit (A / D conversion circuit),
Reference numeral 7 is a white defect correction circuit, 8 is a signal processing circuit, 9 is a digital-analog conversion circuit (D / A conversion circuit), 10 is a memory, and 11 is a microprocessor.
【0009】上記した構成において、レンズ1から入射
された光信号は、固体撮像素子4で電気信号に変換され
た後、被写体の明るさがAGC処理の必要な範囲にあれ
ば(アイリス2が全開状態にあるにもかかわらず、輝度
信号レベルが所定値に達しないときには)、AGC回路
5で被写体の明るさに応じた適宣可変増幅処理を受け、
次に、A/D変換回路6で各画素ごとにデジタル信号へ
と変換される。In the above-mentioned structure, the optical signal incident from the lens 1 is converted into an electric signal by the solid-state image sensor 4, and if the brightness of the subject is within the range required for AGC processing (the iris 2 is fully opened). (When the luminance signal level does not reach the predetermined value despite the state), the AGC circuit 5 performs a variable amplification process appropriately according to the brightness of the subject,
Next, the A / D conversion circuit 6 converts each pixel into a digital signal.
【0010】正常な信号は、白キズ補正回路7をスルー
し、信号処理回路8で色分離,白バランス,γ補正等の
映像信号規格に準拠するような公知の適宜処理を受けた
後、D/A変換回路9でアナログ信号に変換され、輝度
信号Yおよびクロマ信号Cとして出力される。また、欠
陥画素からの信号は、メモリ10に格納された位置情報
によって白キズ補正回路7で認知され、この欠陥画素に
対応する信号を、白キズ補正回路7は、当該欠陥画素の
周辺画素の信号もしくは演算値で置換して出力する。A normal signal passes through the white defect correction circuit 7 and is subjected to a known appropriate process that complies with the video signal standard such as color separation, white balance and γ correction in the signal processing circuit 8, and then D The signal is converted into an analog signal by the / A conversion circuit 9 and output as a luminance signal Y and a chroma signal C. Further, the signal from the defective pixel is recognized by the white defect correction circuit 7 based on the position information stored in the memory 10, and the signal corresponding to this defective pixel is detected by the white defect correction circuit 7 in the peripheral pixels of the defective pixel. Replace with signal or calculated value and output.
【0011】次に、白キズの検出、及びこれに基づく補
正の動作を、図2のフローチャート及び図3,図4を用
いて説明する。本実施例は、電源投入後、出画するまで
の間に、白キズを検出するものである。Next, the operation of detecting white defects and the correction operation based thereon will be described with reference to the flow chart of FIG. 2 and FIGS. In this embodiment, white flaws are detected after the power is turned on and before an image is output.
【0012】図2に示すように、電源投入後(ステップ
ST1)、白キズ補正回路7はアイリス2を閉じ続けさ
せ、固体撮像素子4への入射光を防ぐ(ステップST
2)。また、白キズの検出を容易にするため、AGC回
路5の利得を上げる(ステップST2)。本実施例で
は、デジタル信号にしてから白キズ検出を行っているた
め、デジタル化にともなう量子化誤差を軽減するために
も、A/D変換する前にアナログ信号系で増幅処理を施
す必要がある。なお、白キズ検出専用の利得設定モード
を用意し、この白キズ検出専用の利得設定モードでは、
通常動作の利得可変幅を上回る利得に設定するようにし
ても良い。As shown in FIG. 2, after the power is turned on (step ST1), the white defect correction circuit 7 keeps the iris 2 closed to prevent the incident light to the solid-state image pickup device 4 (step ST).
2). In addition, the gain of the AGC circuit 5 is increased to facilitate the detection of the white flaw (step ST2). In this embodiment, since the white flaw detection is performed after the digital signal is formed, it is necessary to perform the amplification process in the analog signal system before the A / D conversion in order to reduce the quantization error due to the digitization. is there. In addition, a gain setting mode dedicated to white defect detection is prepared, and in this gain setting mode dedicated to white defect detection,
The gain may be set to exceed the gain variable width of the normal operation.
【0013】この状態(アイリスクローズ且つ利得アッ
プ)にしておいてから、同期信号発生回路3のパルスに
同期して、固体撮像素子4の各画素からの信号を読み出
す。図3は、固体撮像素子4の色フィルタ配置例を示し
たもので、A,B,C,Dの4色から構成されている。
そして、この色フィルタに応じた色信号が、同期信号発
生回路3で生成される水平,垂直の駆動パルスに同期し
て読み出されるが、アイリス2は閉じているので固体撮
像素子4からの出力は、先に説明した暗電流だけであ
る。この暗電流を図4に示す。正常な画素の暗電流量に
は、さほどバラツキは無いが、画素欠陥が生じている画
素からは(図4ではA13に相当)非常に大きなレベルの
暗電流が得られる。これが白キズであるので、あるスレ
ッショルドレベルで比較を行い、スレッショルドレベル
よりも大きな信号が得られる画素の位置情報を、白キズ
補正回路7がマイクロプロセッサ11に送る。マイクロ
プロセッサ11では、いま入力された位置情報が、過去
にメモリ10内に記憶した位置情報と比べ同じものがな
いかを調べる。その結果、入力された位置情報がメモリ
10に無ければ、メモリ10に記憶する(ステップST
3〜ST6)。After keeping this state (iris closed and gain up), the signal from each pixel of the solid-state image pickup device 4 is read in synchronization with the pulse of the synchronizing signal generating circuit 3. FIG. 3 shows an example of the color filter arrangement of the solid-state image sensor 4, which is composed of four colors A, B, C, and D.
Then, the color signal corresponding to this color filter is read in synchronization with the horizontal and vertical drive pulses generated by the synchronization signal generation circuit 3, but since the iris 2 is closed, the output from the solid-state image sensor 4 is , Only the dark current described above. This dark current is shown in FIG. The dark current amount of a normal pixel does not vary so much, but a very large level of dark current (corresponding to A 13 in FIG. 4) is obtained from a pixel having a pixel defect. Since this is a white defect, comparison is performed at a certain threshold level, and the white defect correction circuit 7 sends to the microprocessor 11 the position information of the pixel for which a signal larger than the threshold level is obtained. The microprocessor 11 examines whether the position information input just now is the same as the position information stored in the memory 10 in the past. As a result, if the input position information does not exist in the memory 10, it is stored in the memory 10 (step ST
3 to ST6).
【0014】以上の動作により、白キズが生じるすべて
の画素の位置情報のメモリ10への記憶処理が終了し、
図2の処理フローは、白キズ画素検出のループ(ステッ
プST3〜ST6)を抜け、通常の出画処理となる(ス
テップST7,ST8)。すなわち、アイリス2ならび
にAGC回路5の利得制御を連動させ、適正な自動露出
を行いながら、同期信号発生回路3のパルスに同期して
固体撮像素子4から信号を読み出す。読み出す画素の位
置情報は、順次チェックを行い続け、メモリ10に記憶
されている白キズ画素の位置と一致したとき信号の補正
を行う(ステップST9〜ST11)。By the above operation, the storage processing of the position information of all pixels in which white defects occur in the memory 10 is completed,
The processing flow of FIG. 2 exits the white defect pixel detection loop (steps ST3 to ST6) and becomes the normal image output processing (steps ST7 and ST8). That is, while the gain control of the iris 2 and the AGC circuit 5 is interlocked with each other to perform proper automatic exposure, a signal is read from the solid-state image sensor 4 in synchronization with the pulse of the synchronizing signal generating circuit 3. The position information of the pixel to be read out is continuously checked, and the signal is corrected when it coincides with the position of the white defect pixel stored in the memory 10 (steps ST9 to ST11).
【0015】前にも述べたとおり、白キズのレベルは温
度に依存し、ビデオカメラにおいては連続通電によるセ
ット内温度の上昇や、高温度下での使用でそれらが著し
く目立ってくる。一方、ビデオカメラの使い方として
は、電源ON/OFFを頻繁に行うので、本第1実施例
では、固体撮像素子4が高温状態であるうちに電源を再
投入され、前記の白キズ画素検出ループを動作させるの
で、それら白キズの位置情報をメモリ10に記憶し、そ
れら温度上昇によって発生してきた白キズを補正でき
る。As described above, the level of white scratches depends on the temperature, and in a video camera, the temperature inside the set rises due to continuous energization, and they are noticeable when used at high temperatures. On the other hand, as to how to use the video camera, since the power is frequently turned on and off, in the first embodiment, the power is turned on again while the solid-state image pickup device 4 is in the high temperature state, and the white defect pixel detection loop described above. Since the position information of the white scratches is stored in the memory 10, the white scratches generated by the temperature rise can be corrected.
【0016】なお、前記の欠陥画素検出モードにおける
検出時間をNフィールドとするようになせば、欠陥画素
の出力レベルを、検出時間1フィールドのときと比べて
N倍にでき、欠陥画素検出率を上げることができる。If the detection time in the defective pixel detection mode is set to N fields, the output level of the defective pixels can be increased N times as compared with the case of the detection time of 1 field, and the defective pixel detection rate can be increased. Can be raised.
【0017】次に、本発明の第2実施例を図5を用いて
説明する。本実施例では、電源OFF時に白キズ検出を
行って、白キズの位置情報をメモリに記憶し、次の電源
投入時に、記憶された位置情報に基づき白キズを補正す
るものである。図5は、このビデオカメラの電源スイッ
チをOFFした場合のフローチャートである。なお、本
実施例の構成は図1と同様である。Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, white defects are detected when the power is off, the position information of the white defects is stored in the memory, and the white defects are corrected based on the stored position information when the power is turned on next time. FIG. 5 is a flowchart when the power switch of this video camera is turned off. The configuration of this embodiment is similar to that of FIG.
【0018】本実施例では、まず、電源スイッチOFF
の操作が検出されると(ステップST21)、アイリス
2をクローズさせる(ステップST22)と共に、AG
C回路5の利得を大きくする(ステップST23)。こ
のときの暗電流を図6に示す。電源投入時スレッショル
ドレベルを超える白キズはA13のみだったが、固体撮像
素子4の温度上昇により、B11の画素にも白キズが発生
したとする。そして、B11の位置情報がマイクロプロセ
ッサ11に送られ、メモリ10内に過去に記憶されてい
るかを判定され、B11の位置情報は記憶されていないの
でメモリ10に記憶される。また、A13の位置情報は、
以前の電源OFF時に記憶されたのでこのときは記憶さ
れない(ステップST24〜ST27)。以上の動作に
より、白キズが生じる新たな画素の位置情報のメモリ1
0への記憶処理が終了し、AGC回路5を通常利得に戻
し電源OFFとなる(ステップST28,ST29)。
この電源OFF直前の固体撮像素子4の温度が60℃だ
ったとすれば、この時点で60℃以下で発生する白キズ
の位置情報をすべて学習したこととなる。In this embodiment, first, the power switch is turned off.
Is detected (step ST21), the iris 2 is closed (step ST22) and the AG
The gain of the C circuit 5 is increased (step ST23). The dark current at this time is shown in FIG. Although only A 13 was the white defect that exceeded the threshold level when the power was turned on, it is assumed that the white defect also occurred in the pixel of B 11 due to the temperature rise of the solid-state image sensor 4. Then, the position information of B 11 is sent to the microprocessor 11 and it is determined whether or not it has been stored in the memory 10 in the past. Since the position information of B 11 is not stored, it is stored in the memory 10. The position information of A 13 is
Since it was stored when the power was turned off previously, it is not stored at this time (steps ST24 to ST27). By the above operation, the memory 1 for the position information of a new pixel in which a white defect occurs
The storing process to 0 is completed, the AGC circuit 5 is returned to the normal gain, and the power is turned off (steps ST28 and ST29).
If the temperature of the solid-state imaging device 4 immediately before the power is turned off is 60 ° C., it means that all the positional information of the white flaws generated at 60 ° C. or less has been learned at this time.
【0019】よって、次回電源を投入したとき、固体撮
像素子4の温度が60℃以下であれば、そのときに発生
し得る白キズの位置情報をメモリ10にて記憶してお
り、すべて補正してしまうので、白キズの無い良好な撮
影が出来る。また、固体撮像素子4の温度が60℃以上
になって新たな白キズが発生したり、経時変化による白
キズが発生したとしても、その時点で電源OFFすれ
ば、その新しい白キズも学習してしまうので、電源投入
時には、検出した時の温度以下の使用条件では、白キズ
すべてを補正することとなる。Therefore, when the temperature of the solid-state image pickup device 4 is 60 ° C. or less when the power is turned on next time, the position information of the white scratches that can occur at that time is stored in the memory 10, and all the corrections are made. Since it will be lost, you can shoot well without white scratches. Further, even if a new white defect occurs due to the temperature of the solid-state imaging device 4 being 60 ° C. or higher, or a white defect occurs due to aging, if the power is turned off at that time, the new white defect is also learned. Therefore, when the power is turned on, all white scratches will be corrected under the use condition of the temperature equal to or lower than the detected temperature.
【0020】[0020]
【発明の効果】以上説明してきたように、本発明によれ
ば、固体撮像素子の画素欠陥による白キズ補正をビデオ
カメラ単体でより確実に行うことが出来る。As described above, according to the present invention, it is possible to more surely perform white defect correction due to a pixel defect of a solid-state image pickup device by a video camera alone.
【図1】本発明の第1実施例に係るビデオカメラの要部
構成を示すブロック図である。FIG. 1 is a block diagram showing a main configuration of a video camera according to a first embodiment of the present invention.
【図2】本発明の第1実施例による電源投入時の白キズ
補正の処理フローを示すフローチャート図である。FIG. 2 is a flowchart showing a processing flow of white defect correction at power-on according to the first embodiment of the present invention.
【図3】固体撮像素子の色フィルタ配置を示す説明図で
ある。FIG. 3 is an explanatory diagram showing a color filter arrangement of a solid-state image sensor.
【図4】固体撮像素子の常温時の暗電流出力の説明図で
ある。FIG. 4 is an explanatory diagram of dark current output of the solid-state image sensor at room temperature.
【図5】本発明の第2実施例による電源OFF時の白キ
ズ補正の処理フローを示すフローチャート図である。FIG. 5 is a flowchart showing a processing flow of white defect correction when the power is turned off according to the second embodiment of the present invention.
【図6】固体撮像素子の高温時の暗電流出力の説明図で
ある。FIG. 6 is an explanatory diagram of a dark current output of the solid-state imaging device at high temperature.
1 レンズ 2 アイリス 3 同期信号発生回路 4 固体撮像素子 5 AGC回路 6 A/D変換回路 7 白キズ補正回路 8 信号処理回路 9 D/A変換回路 10 メモリ 11 マイクロプロセッサ DESCRIPTION OF SYMBOLS 1 lens 2 iris 3 synchronization signal generation circuit 4 solid-state image sensor 5 AGC circuit 6 A / D conversion circuit 7 white flaw correction circuit 8 signal processing circuit 9 D / A conversion circuit 10 memory 11 microprocessor
Claims (4)
子と、該固体撮像素子の欠陥画素を検出する欠陥画素検
出手段と、検出した前記欠陥画素の位置情報を記憶する
欠陥画素位置記憶手段と、該画素位置記憶手段で得られ
る位置情報によって認知される欠陥画素の信号が入力さ
れたときに、この欠陥画素に対応する信号を、当該欠陥
画素の周辺画素の信号もしくは演算値で置換する信号置
換手段とを備えたビデオカメラであって、 前記固体撮像素子の欠陥画素を検出するための欠陥画素
検出モードをもち、該欠陥画素検出モードで得た位置デ
ータは、毎回すでに記憶された位置データと比較し、新
しい位置データのみを前記欠陥画素位置記憶手段に追加
して記憶していくことを特徴とするビデオカメラ。1. A solid-state image sensor for converting incident light into an electric signal, defective pixel detection means for detecting a defective pixel of the solid-state image sensor, and defective pixel position storage means for storing position information of the detected defective pixel. When the signal of the defective pixel recognized by the position information obtained by the pixel position storage means is input, the signal corresponding to the defective pixel is replaced with the signal of the peripheral pixel of the defective pixel or the calculated value. A video camera having a signal replacement means, having a defective pixel detection mode for detecting a defective pixel of the solid-state imaging device, the position data obtained in the defective pixel detection mode, the position already stored every time A video camera characterized in that only new position data is added to the defective pixel position storage means and stored in comparison with the data.
ドとすることで、欠陥画素の出力レベルを、検出時間1
フィールドのときと比べてN倍とすることを特徴とする
ビデオカメラ。2. The output level of a defective pixel according to claim 1, wherein the detection time in the defective pixel detection mode is N fields.
A video camera characterized by being N times as many as in the field.
て、前記欠陥画素検出モードが自動的に起動することを
特徴とするビデオカメラ。3. The video camera according to claim 1, wherein the defective pixel detection mode is automatically activated by turning on or off a power switch.
力を増幅処理する自動利得制御回路の利得を、通常動作
の利得可変幅を上回る値に設定することを特徴とするビ
デオカメラ。4. The automatic gain control circuit according to claim 1, wherein, in the defective pixel detection mode, the gain of the automatic gain control circuit for amplifying the output of the solid-state imaging device is set to a value higher than a gain variable width of normal operation. Characteristic video camera.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6151120A JPH0818873A (en) | 1994-07-01 | 1994-07-01 | Video camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6151120A JPH0818873A (en) | 1994-07-01 | 1994-07-01 | Video camera |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0818873A true JPH0818873A (en) | 1996-01-19 |
Family
ID=15511811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6151120A Pending JPH0818873A (en) | 1994-07-01 | 1994-07-01 | Video camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818873A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002281385A (en) * | 2001-03-16 | 2002-09-27 | Olympus Optical Co Ltd | Imaging system |
JP2002281386A (en) * | 2001-03-16 | 2002-09-27 | Olympus Optical Co Ltd | Imaging device |
JP2003037783A (en) * | 2001-07-26 | 2003-02-07 | Olympus Optical Co Ltd | Imaging device |
JP2003037781A (en) * | 2001-07-25 | 2003-02-07 | Olympus Optical Co Ltd | Imaging device defect detection method and imaging device |
JP2006229475A (en) * | 2005-02-16 | 2006-08-31 | Canon Inc | Imaging apparatus and control method thereof |
JP2009224937A (en) * | 2008-03-14 | 2009-10-01 | Sanyo Electric Co Ltd | Electronic camera |
US7657116B2 (en) | 2003-10-08 | 2010-02-02 | Canon Kabushiki Kaisha | Correction method of defective pixel in image pickup device and image processing apparatus using the correction method |
JP2014187516A (en) * | 2013-03-22 | 2014-10-02 | Canon Inc | Image processing device, image processing method and program |
US9794502B2 (en) | 2015-02-05 | 2017-10-17 | Canon Kabushiki Kaisha | Image capturing apparatus |
-
1994
- 1994-07-01 JP JP6151120A patent/JPH0818873A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002281385A (en) * | 2001-03-16 | 2002-09-27 | Olympus Optical Co Ltd | Imaging system |
JP2002281386A (en) * | 2001-03-16 | 2002-09-27 | Olympus Optical Co Ltd | Imaging device |
JP2003037781A (en) * | 2001-07-25 | 2003-02-07 | Olympus Optical Co Ltd | Imaging device defect detection method and imaging device |
JP2003037783A (en) * | 2001-07-26 | 2003-02-07 | Olympus Optical Co Ltd | Imaging device |
US7657116B2 (en) | 2003-10-08 | 2010-02-02 | Canon Kabushiki Kaisha | Correction method of defective pixel in image pickup device and image processing apparatus using the correction method |
JP2006229475A (en) * | 2005-02-16 | 2006-08-31 | Canon Inc | Imaging apparatus and control method thereof |
JP2009224937A (en) * | 2008-03-14 | 2009-10-01 | Sanyo Electric Co Ltd | Electronic camera |
JP2014187516A (en) * | 2013-03-22 | 2014-10-02 | Canon Inc | Image processing device, image processing method and program |
US9794502B2 (en) | 2015-02-05 | 2017-10-17 | Canon Kabushiki Kaisha | Image capturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7876369B2 (en) | Image processing apparatus, image processing method, and program | |
JP3014895B2 (en) | Video camera | |
CN102572273B (en) | Camera head | |
US8497922B2 (en) | Image processing apparatus and image processing method | |
US7327392B2 (en) | Signal processing apparatus | |
JP4591046B2 (en) | Defect detection correction circuit and defect detection correction method | |
JPH0818873A (en) | Video camera | |
US20050030412A1 (en) | Image correction processing method and image capture system using the same | |
JP4288954B2 (en) | Defect detection circuit and defect detection method | |
JP3153949B2 (en) | Device for automatically detecting defective pixels in solid-state image sensor, method for automatically detecting defective pixels in solid-state image sensor, automatic defect correction device, and camera | |
JP3146762B2 (en) | Defect detection device for solid-state imaging device and camera using the same | |
JP2006166194A (en) | Pixel defect detection circuit and pixel defect detection method | |
US20040080635A1 (en) | Charge coupled device (CCD) camera having a correction function for defective CCDS and a correction method | |
JP4311833B2 (en) | Imaging device | |
JPH0951459A (en) | Video camera | |
JP3531601B2 (en) | Memory control method | |
JP2002152601A (en) | Solid-state imaging unit and method for correcting defective pixel | |
JP2001268447A (en) | Image pickup device | |
JP2008109582A (en) | Imaging apparatus and imaging method | |
JP4365483B2 (en) | Imaging device | |
JP2000083199A (en) | Video camera | |
JP3539378B2 (en) | Memory control method and camera control method | |
JP2005318337A (en) | Defect detecting and correcting device for solid-state image pickup element and image pickup device | |
JP2000184289A (en) | Defective pixel correction device for image pickup device and its method | |
JPH0715670A (en) | Defect correction device for solid-state image pickup element |